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Abstract—The continuously increasing demand for resources
in modern networks urges for more efficient resource alloca-
tion. Such an allocation of resources to network users can be
formulated as an optimization problem. However, the existence
of wireless links in modern networks and the competition
for resources by multimedia applications turn the optimization
problem into a non-convex one, which is in general difficult to
solve. This paper presents a non-convex optimization formulation
to describe the Network Resource Allocation problem in hybrid
ad-hoc networks, i.e. networks with both wired and wireless
links. To find the optimal solution to this problem, a novel
general optimization framework, for non-convex optimization
problems, is presented and the necessary and sufficient condition
for the convergence of a distributed algorithm to the optimal
solution is also proven. Moreover, based on this framework, a
distributed joint power and rate adaptation algorithm is proposed
to calculate the optimal solution, and finally, the convergence and
optimality of the algorithm are verified by simulation.

Index Terms—Hybrid Ad-Hoc Networks, Non-convex Opti-
mization, Resource Allocation, Network Utility Maximization

I. INTRODUCTION AND RELATED WORK

Modern networks must encompass and simultaneously sup-
port multiple users, services and applications with diverse
demands and requirements that push networks’ performance
closer to their limit. Therefore optimum resource allocation
between users and/or applications is of paramount importance
in order to assure efficient utilization of the network. The
Resource Allocation problem is one of the numerous research
areas in which Optimization Theory has found extensive use,
since it can lead to the development of distributed algorithms
to assure optimal allocation of resources in a network.

Kelly et al. in their seminal paper [1] introduced the Network
Utility Maximization (NUM) framework, where the Resource
Allocation problem is expressed as an optimization problem.
The authors propose an algorithm to determine the optimal
way to share the link bandwidths among different traffic flows
under the assumption that the utility functions are concave
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functions of the rate xr. In 1999, Low et al. [2] proposed
an alternative methodology as a solution to the exact same
problem. They propose a distributed algorithm, based on
Duality Theory, which allows the sources and network links
to communicate and update their controls. This framework has
found numerous applications in network resource allocation in
wired ([3] and [4]) and wireless networks ([5], [6], [7],[8]).

The main focus of existing pieces of work are on modeling
applications that generate elastic traffic. These applications
include FTP and HTTP, which were the majority of internet
traffic until recently. TCP is an example of a protocol designed
to perform optimally for this traffic in wired networks. How-
ever, modern internet traffic is dominated by real-time applica-
tions, such as video and audio streaming, that are considered
inelastic, and make TCP operate suboptimally. Moreover, TCP
operates suboptimally in networks with wireless links. This
absence of alternative transport protocols to allow network
optimization for inelastic applications in heterogeneous
networks is the main motivation behind this work.

The main challenge for inelastic traffic is that it cannot be
modeled using concave utility functions and therefore these
applications cannot be optimized using Convex Optimiza-
tion. Convexity of an optimization problem has always been
considered the “watershed” for the differentiation between
easy and hard problems. This is because, contrary to convex
optimization, where the duality gap between the primal and
the dual optimization problem, that is the gap between their
optimal solutions, is always zero [9], in non-convex optimiza-
tion problems it can be positive and then more sophisticated
techniques must be employed to solve them [10].

Recent work removes the assumption of concave utilities
in the context of NUM [11] [12]. Inelastic traffic is modeled
either as a non-concave utility function or as a discontinuous
utility function. An example of the first case could be a
sigmoidal function and a step function could be considered an
example of the discontinuous case. The authors in [13] [14]
examine a non-convex NUM formulation in wired networks
and prove the necessary and sufficient conditions so that the
duality gap is zero and the standard distributed algorithm
based on the gradient method [9] can solve this problem
formulation optimally. However, these works are restricted
only to a specific non-concave formulation for wired networks.

This paper makes the following contributions:
• Proposes a non-convex formulation of the Resource Allo-
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cation problem in hybrid ad-hoc networks, i.e, networks
with both wireless and wired links.

• In order to solve this problem, it develops a non-convex
optimization framework that removes the critical assump-
tions for convexity of the constraints and concavity of the
objective function. The significance of this optimization
framework is its generality and, therefore, its suitability
to a wide range of applications.

• The aforementioned optimization framework is used to
develop a distributed joint rate allocation and power con-
trol algorithm, which enables network nodes to optimize
their performance, even for the case of inelastic traffic.

• Proves the necessary and sufficient condition so that the
above mentioned optimization formulation can be solved
distributedly by the subgradient method.

The rest of the paper is organized as follows. Section II
presents the general optimization framework and proves a
necessary and sufficient condition to assure optimality of
the solution. In Section III, the framework is applied to the
resource allocation problem in hybrid ad-hoc networks and
the distributed algorithm is shown to converge to the optimal
solution. Then, its performance is evaluated by simulations
and, finally, our work is summarized in Section IV.

II. FRAMEWORK DESCRIPTION

The optimization problem formulating the resource alloca-
tion problem in hybrid networks (see Section III), is evidently
non-convex and therefore existent convex optimization frame-
works cannot be applied. Hence, we begin this section by de-
veloping a general novel non-convex optimization framework
and a necessary and sufficient condition for the convergence
of any gradient based distributed algorithm.

First, consider a maximization problem over the vector of
variables x = [x1, x2, . . . , xn] of the form:

max
x

f(x)

s. t. hi(x) ≥ 0, ∀ i
x ≥ 0.

(1)

Note that there are no assumptions regarding the concavity of
the objective function and no assumptions about the convexity
of the constraint functions hi(x). In order to solve the problem
using Duality Theory, the Lagrangian function L(x, λ) must
be first defined as L(x, λ) = f(x) +

∑M
i=0 λihi(x), where

M is the number of constraints of the optimization problem
and λi is the dual variable associated with the ith constraint.
Then, the dual function is defined as

d(λ) = sup
x

L(x,λ) = sup
x

{
f(x) +

M∑
i=0

λihi(x)
}

. (2)

The Lagrange Dual optimization problem is:

min d(λ) = L(x∗(λ), λ) s.t. λ ≥ 0, (3)

where λ is the optimization variable vector and x∗(λ) is a
price-based function that maximizes the Lagrangian for a given
price vector λ, i.e.

x∗(λ) = arg max L(x,λ). (4)

The dual function d(λ) is always convex as a pointwise
supremum of a family of affine functions of λ and hence
problem (3) is always convex even if the primal problem (1) is
not concave [9]. In other words, it is possible to solve the dual
optimization problem optimally using the update equation

λi(t + 1) = λi(t) − α(t)gi(x∗(λ)) (5)

where α(t) is the step size at time t and gi(x∗(λ)) is the
ith component of the gradient of the dual objective function
d(λ) with respect to λi. Note that the uniqueness of the
optimal vector λ is not guaranteed in all cases but the
Strict Mangasarian-Fromovitz Constraint Qualification [15]
provides a necessary and sufficient condition.

In concave maximization problems, equations (4) and (5)
always converge to the optimal solution but this is not guar-
anteed for non-concave problem (1). Nonetheless, it is possible
to identify the cases that (4) and (5) converge to the optimal
solution using Theorem 1.

Theorem 1 (Necessary and Sufficient Condition): If the
price based function x∗(λ) is continuous around at least one
of the optimal lagrange multiplier vectors λ∗ then the iterative
algorithm consisting of equations (4) and (5) converges to the
globally optimal solution.

Proof: To prove its sufficiency, it is necessary to show
first that continuity of x∗(λ) around the optimal dual vari-
ables λ∗

i implies that complementary slackness is satisfied for
problem (1). The complementary slackness condition states
that λ∗

i hi(x∗(λ∗)) = 0, ∀i at the optimal solution x∗(λ∗).

First, the case where λ∗
i > 0 for an arbitrary chosen i is

examined. A very small positive constant ε > 0 and a new
vector λ− are defined where

λ−
j =

{
λ∗

j − ε , if j = i
λ∗

j , if j �= i
(6)

Then, by definition of the subgradient [16],

d(λ∗) ≥ d(λ−) + (λ∗ − λ−)T g(λ−) ⇔
d(λ∗) ≥ d(λ−) + εgi(λ−) ⇔
d(λ∗) − d(λ−) ≥ εhi(x∗(λ−)). (7)

where gi (λ) is the ith component of the subgradient of
the dual objective function. But since the dual problem is a
minimization problem and λ∗ is its optimal solution, it follows
that d(λ∗) ≤ d(λ−) and hence by (7)

hi(x∗(λ−)) ≤ 0. (8)

Working at the same way, a second vector λ+ is defined as

λ+
j =

{
λ∗

j + ε , if j = i
λ∗

j , if j �= i
(9)

Again, by definition of the subgradient, it follows that

d(λ∗) ≥ d(λ+) + (λ∗ − λ+)T g(λ+) ⇔
d(λ∗) ≥ d(λ+) − εgi(λ+) ⇔
d(λ∗) − d(λ+) ≥ −εhi(x∗(λ+)). (10)

But for the same reason as before, d(λ∗) ≤ d(λ+) and hence
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by (10), we conclude that

hi(x∗(λ+)) ≥ 0. (11)

From (8) and (11) we get to the conclusion that as long as
x∗(λ) is continuous around λ∗, then

hi(x∗(λ−)) = hi(x∗(λ+)) = hi(x∗(λ∗)) = 0 (12)

and hence complementary slackness is satisfied and the solu-
tion x∗(λ∗) is primal feasible.

Then, the case where λ∗
i = 0 is examined. In this case, it is

obvious that complementary slackness is satisfied. Primal fea-
sibility of the solution can be shown using the positive constant
ε and the price vector λ+ are defined as before. Equation (11)
is reached again and under the continuity condition it follows
that hi(x∗(λ+)) ≥ 0. Hence, the complementary slackness
condition is satisfied under the condition that the price-based
function x∗(λ) is continuous at the optimal price vector λ∗.

By definition of the dual problem,

d∗ = sup
x

L(x, λ∗) = sup
x

{
f(x) +

m∑
i=0

λ∗
i hi(x)

}
⇔

d∗ = f(x∗(λ∗)) +
m∑

i=0

λ∗
i hi(x∗(λ∗)). (13)

Since complementary slackness holds, (13) reduces to D∗ =
f(x∗(λ∗)), which by definition of the primal problem is
f(x∗(λ∗)) ≤ f∗(x) and hence d∗ ≤ p∗. But by weak duality
it is known that d∗ ≥ p∗ and therefore it follows that d∗ = p∗,
where p∗ and d∗ are the optimal values of the primal and the
dual problem respectively.

So, it has been proven that continuity of the price based
function (4) around at least one of the optimal price vectors
implies that the duality gap is zero and that by solving the
dual optimization problem the optimal solution x∗ is also
obtained. To prove that it is also a necessary condition, it is
enough to consider that if the priced based function x∗(λ) is
discontinuous around all optimal price vectors λ∗, (12) does
not hold and thus the duality gap will be strictly positive.

Theorem 1, compared to [14], provides a far more general
optimization framework. [14] refers to a specific non-convex
formulation in wired networks, whereas the necessary and
sufficient condition in Theorem 1 here refers to the much more
general problem (1) and therefore is widely applicable.

The wide applicability of the framework imposes some
further research challenges as well. The calculation of the
optimal solution relies on the shape of x∗ (λ), given by the
non-concave problem (4). There are some cases where a closed
form solution of this problem can be calculated but in general
this is not possible and hence the need to develop a procedure
to determine whether Theorem 1 holds or not is evident.
Nonetheless, this is a significant result that shows that a family
of non-convex problems can be solved distributedly using a
gradient based method.

III. NETWORK UTILITY MAXIMIZATION IN HYBRID
AD-HOC NETWORKS

To demonstrate the suitability of the framework, this section
presents its application to the Resource Allocation problem in

Hybrid Ad-Hoc Networks, i.e, in networks with both wired
and wireless links. Such heterogeneous multi-hop networks
provide increased flexibility but impose additional constraints
in the resource allocation that can not be resolved by tradi-
tional transport protocols such as TCP.

A. Problem Formulation

Consider a multihop network where M nodes act as sources
sending streams of traffic to a set of destination nodes using
a set of K links. A single node can operate either as a source
node or as a destination node or even as an intermediate
node that just forwards traffic to its neighbors. Each link
in the network can be either wired or wireless. The rate
vector r = [r1, r2, . . . , rM ]T includes the transmission rates
of all source nodes in the network and the power vector
p = [p1, p2, . . . , pL]T includes the transmission powers of all
the wireless links. In addition, G is the path loss matrix of
size L × L which depends on the physical characteristics of
the wireless links. Its element Gij is the path loss gain from
the transmitter of link i to the receiver of link j. In addition,
nj is the power of White Additive Gaussian Noise at link j.
Then, depending on the type of the application running at each
source node i, node i receives a utility when sending traffic
through the network which is depicted by a utility function
Ui(ri). Typical example of Ui (ri) for applications such as
HTTP or FTP would be a logarithmic function of rate, while
some non-concave sigmoidal function should be used to model
multimedia (real-time) applications. Moreover, wireless link j
has a cost for transmitting at a specific power depicted by
a cost function Vj(pj) that represents the cost of using the
limited power resources of the wireless medium.

The optimization of the network’s performance can be
formulated as a maximization problem of the form:

max
r,p

M∑
i=1

Ui(ri) −
L∑

j=1

Vj(pj) (14)

s. t.
∑

i∈Z(k)

ri ≤ Ck, ∀ links k

pjGjj∑
l �=j plGlj + nj

≥ γj ∀ wireless links j

where Z(k) represents the set of traffic flows passing through
link k, which can be either wired or wireless. The rates ri and
powers pj are positive variables.

The formulation of problem (14) is an extension of the
classic NUM framework described in [1]. The main advantages
of the formulation described in (14) include the removal of the
assumption for concave utility functions and the addition of
a power control constraint to incorporate the main character-
istic of the wireless medium, that is the interference among
links. The second constraint of the formulation represents the
requirement that the Signal-to-Interference plus Noise Ratio
(SINR) of each link is at least equal to a minimum accepted
value γ. This γj is also used to calculate the capacity of wire-
less link j using Cj = B·log2 (1 + γj), where B is the channel
bandwidth. It is therefore evident that the problem consists
of two distinct optimization subproblems, optimizing the rate
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allocation and the power control respectively, connected by
the objective function.

B. Distributed Solution

In order to solve the problem using a gradient based
distributed algorithm, it is necessary to form the Lagrangian
function of (14), which is:

L (r, p, λ,μ) = (15)
M∑
i=1

⎧⎨
⎩Ui (ri) − ri

⎛
⎝ ∑

l∈S(i)

λl

⎞
⎠

⎫⎬
⎭ +

K∑
k=1

λkCk+

L∑
j=1

⎧⎨
⎩μj

⎛
⎝Gjjpj − γj

∑
l �=j

Gjlpl − γjnj

⎞
⎠ − Vj (pj)

⎫⎬
⎭

where S (i) is the set of links (wireless or wires) that source
i is using to send its traffic, μj and λk are the dual variables
and K is the total number of links in the network (wired and
wireless). Then, assuming that there can be some information
exchange between the wireless links, the distributed algorithm
that can solve the dual optimization problem would consist of
equations:

λk(t + 1) = λk(t) − αλ(t)
∂L(r, p, λ,μ)

∂λk
(16)

μj(t + 1) = μj(t) − αμ(t)
∂L(r,p, λ, μ)

∂μj
(17)

r∗i (λ) = arg max

⎧⎨
⎩Ui (ri) − ri

⎛
⎝ ∑

k∈S(i)

λk

⎞
⎠

⎫⎬
⎭ (18)

p∗j (μ) = arg max

{
μj

⎛
⎝Gjjpj − γj

∑
l �=j

Gjlpl − γjnj

⎞
⎠

− Vj (pj)

}
(19)

The formulation in (14) is evidently non-concave even
though the constraints are both convex, as linear combinations
of the optimization variables, due to the lack of assumption for
concave utility function. Therefore, the distributed algorithm
consisting of equations (16)-(19) can converge to the actual
optimal solution only if Theorem 1 holds.

In order to verify that the condition in Theorem 1 holds, it
is necessary to have information regarding the continuity of
the functions r∗i (λ) and p∗j (μ). Even though the development
of a detailed procedure to determine the continuity of r∗i (λ)
and p∗j (μ) in the general case is an open research issue, it is
possible to make some assumptions to assure the existence of
these properties for this specific problem formulation. First,
the utility function of each source will be assumed to have
a sigmoidal shape. Sigmoidal utilities are ideal to model real
time applications, such as video streaming, VoIP etc, which
are responsible for the majority of network traffic in current
networks. Moreover, for sigmoidal utility functions, r∗i (λ) is
discontinuous at only one point and a heuristic has also been

�

�

�

�

� �

�

	




��

��

��

��

�

�

�

�

� �

�

	




��

��

��

Fig. 1. Network Topology

suggested for overcoming this discontinuity problem in case
that point is an optimal λ [11]. Then, we assume that the cost
function Vj (pj) is a convex function of power so that (19) is a
convex problem and therefore continuous around the optimal
μ.

Under these assumptions, the distributed algorithm in equa-
tions (16)-(19) will converge to the optimal solution if that
exists even though the formulation is non-concave. Regarding
the existence of a feasible power vector, [17] provides a
necessary and sufficient condition for the existence of a
feasible solution of the power control problem. The optimal
rates and powers can be calculated using the gradient based
iterative equations:

ri(t + 1) = ri(t) − αr(t)
∂L(r,p, λ, μ)

∂ri
(20)

pj(t + 1) = pj(t) − αp(t)
∂L(r, p,λ, μ)

∂pj
(21)

while restricting the range of the possible rates at the concave
region of the sigmoidal utility function.

C. Simulation Results

This section presents numerical results that verify the
performance and convergence of the gradient based algo-
rithm. The distributed algorithm has been simulated in various
topologies and under various interference conditions in order
to evaluate its robustness and convergence. For illustrative
purposes, Figure 1 shows an example of a simple hybrid
network with 4 source nodes, 5 intermediate and 4 destination
nodes. The links connecting the intermediate nodes are wired
while the connections to the end nodes are wireless. In other
words, links 1-4 and 9-12 are wireless while links 5-8 are
wired. The utility functions of the sources were chosen as
Ui (ri) = 1

1+e−2x+5 , the power cost functions as Vj (pj) = pj

and the gradient step sizes were α = 0.05 for all variables.
Moreover, the path-loss coefficients Gij were calculated using
the large-scale attenuation model, where each coefficient is a
decreasing function of the distance between the transmitter
and the receiver, while making sure that the necessary and
sufficient condition in [17] for the feasibility of the power
control problem is satisfied. The bandwidth B of the wireless
links used was 2 MHz. Finally, the capacity of the wireless
links was calculated as 6.9 MB/s, based on the SINR target
γj = 10dB and the channel bandwidth B. The capacity of the
wired links was assumed equal to 6.9 MB/s.
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Fig. 2. Rate Convergence

Figures 2 and 3 show the convergence of the rate and power
allocation for the specific scenario. It is clearly shown that
even though the maximization problem solved is not con-
cave, the iterative gradient based algorithm converges to the
optimal solution since the necessary and sufficient condition
in Theorem 1 holds. The convergence speed of the variables
depends on the value of the gradient step size and there exists a
trade-off between the convergence speed and the convergence
distance from the actual optimum [10]. Specifically, the greater
the gradient step size, the faster the convergence but also
the larger the convergence distance from the actual optimal
solution.
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IV. CONCLUDING REMARKS

A non-convex optimization formulation to describe the
resource allocation problem in hybrid ad-hoc networks, i.e.
networks with both wired and wireless links, was proposed.
To solve this problem, we developed a generic non-convex
optimization framework and proposed a joint rate and power
distributed gradient based algorithm together with the neces-
sary and sufficient condition for which the algorithm converges

to the optimal solution. Finally, we verified the convergence of
the algorithm and we assessed its performance by simulations.

The proposed non-convex optimization framework can be
used as a foundation for developing novel transport layer
resource allocation protocols that would operate optimally
for all range of applications. One of the key open issues
to make full use of this necessary and sufficient condition
is the development of a procedure for determining whether
this theorem holds for a general optimization problem, which
is part of our ongoing and future work. Nonetheless, the
condition in Theorem 1 shows that a family of non-convex
optimization problems can be solved distributedly using a
gradient based method.
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