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Abstract—Existing analytical work on the proportional fair
scheduling (PFS) algorithm has some limitations: 1) it requires
independent identically distributed (i.i.d) relationship among
users, 2) it uses a modified version of preference metric different
from the original one, and 3) it is only valid for single-input-
single-output (SISO) communications. This letter presents an
analytical expression for the expected throughput of PFS over
Rayleigh fading channels without the limitations above. The
derived expression can be easily evaluated, and applies to
both SISO and multiple-input-multiple-output (MIMO) cases.
In addition, existing analytic result can be derived by using our
expression in corresponding scenarios.

Index Terms—Proportional fairness, Rayleigh fading, multi-
input-multi-output.

I. INTRODUCTION

THE proportional fair scheduling (PFS) in wireless net-
works has gained lots of attention since its first present

in [1] (see [2]–[4] and the references therein) . However, one
can only see limited analysis results on PFS [5]–[7]. Assum-
ing the signal-to-noise ratio (SNR) follows an exponential
distribution, [8] obtained the average throughput of PFS for
two commonly-used rate models: linear rate model (i.e., rate
𝑅𝑖 = 𝛽 ⋅SNR𝑖 for any user 𝑖) and logarithm rate model (i.e.,
𝑅𝑖∝ log2(1+𝛽⋅SNR𝑖)). Though [8] provides valuable results,
two things should be pointed out: First, it uses a modified
PFS metric other than the original one. Second, while the
above-mentioned rate models ease the mathematical analysis,
they are not satisfactory to characterize the feasible rate. In
fact, the linear rate model is valid for very small SNR [5],
while the logarithm rate model can only be used for single-
input-single-output (SISO) links. Moreover, to simplify the
problem, most existing work [5]–[8] assume some kind of
independent identically distributed (i.i.d) relationship among
users. The i.i.d assumption and the use of a modified version
of the preference metric are the two limitations in existing
studies on PFS.

We have presented some results on PFS in previous work
[4], [9], [10]. In [4], we analyzed PFS for SISO cases. In [9]
we analyzed PFS for MIMO cases and extended to wireless
mesh networks in [10]. All our previous work has a common
limitation which requires the average moving factor 𝑘 (see
Section II) to be infinitely large. Moreover, [4] assumes (ex-
pected throughput)/(expected feasible data rate) to be constant
for all users in the analysis. Obviously, these potentially limit
the practical use of our previous results.
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For the analysis to be realistic, this letter analyzes the PFS
performance for both SISO and MIMO links over Rayleigh
fading channels without the limitations above.

II. MATHEMATICAL MODEL AND ITS VALIDITY

Consider a cellular network where there are 𝑁 users wish-
ing to transmit to the base station (BS). The PFS algorithm
is described as follows. Time is divided into small slots. In
slot 𝑚+1, the feasible rate of User 𝑗 is 𝑅𝑗 [𝑚+1]. Its 𝑘-point
moving average throughput up to slot 𝑚 is denoted by 𝜇𝑗 [𝑚],
and the preference metric by 𝑀𝑗 [𝑚+1] =𝑅𝑗 [𝑚+1]/𝜇𝑗[𝑚].
User 𝑖=argmax𝑗 𝑀𝑗 [𝑚+1] is scheduled to transmit in next
slot. The moving average throughput of User 𝑗 is updated by

𝜇𝑗 [𝑚+1] = (1− 1/𝑘)𝜇𝑗[𝑚] + 𝐼𝑗 [𝑚+1] ⋅𝑅𝑗[𝑚+1]/𝑘. (1)

where 𝐼𝑗 [𝑚+1] is the indicator function of the event that User
𝑗 is scheduled to transmit in slot 𝑚+1.

𝐼𝑗 [𝑚+ 1] =

{
1, 𝑗 is scheduled in slot 𝑚+ 1

0, else
. (2)

From (1), we have

𝐸[𝜇𝑗 [𝑚+1]] = (1−1/𝑘)𝐸[𝜇𝑗[𝑚]]+𝐸[𝐼𝑗 [𝑚+1]⋅𝑅𝑗[𝑚+1]]/𝑘.
(3)

where 𝐸[⋅] denotes the statistical average.
Assuming first-order wide-sense stationary 𝜇𝑗 and applying

Bayes’s theorem, we can write (3) as

𝐸 [𝜇𝑗 [𝑚]]=𝐸 [𝑅𝑗 [𝑚+1]∣𝐼𝑗[𝑚+1]=1]⋅𝑃𝑟 (𝐼𝑗 [𝑚+1]=1)

=

∫ ∞

0

𝑥𝑓𝑅𝑗 (𝑥)𝑃𝑟(𝐼𝑗 [𝑚+1]=1∣𝑅𝑗[𝑚+1]=𝑥)𝑑𝑥.(4)

where 𝑃𝑟(𝐼𝑗 [𝑚+1]=1) is the average probability
that User 𝑗 will be scheduled in slot 𝑚 + 1,
𝑃𝑟 (𝐼𝑗 [𝑚+1]=1∣𝑅𝑗[𝑚+1]=𝑥) is the corresponding
conditional probability and 𝑓𝑅𝑗(⋅) is the probability density
function (pdf) of 𝑅𝑗 .

From (1), we know that 𝜇𝑗 varies slowly with 𝑅𝑗 for large
𝑘, i.e., random variable 𝑅𝑗 [𝑚+1]/𝜇𝑗[𝑚] can be approximately
viewed as random variable 𝑅𝑗 [𝑚+1]/𝐸[𝜇𝑗 ]. In fact, exper-
iments have suggested that this approximation is valid for
𝑘≥ 50 with an accuracy greater than 98%. Hence we have,

𝑃𝑟 (𝐼𝑗 [𝑚+1] =1∣𝑅𝑗 [𝑚+1]=𝑥)

≈𝑃𝑟

(
∀𝑖 ∕=𝑗,

𝑅𝑖[𝑚+1]

𝐸[𝜇𝑖]
<

𝑥

𝐸[𝜇𝑗 ]

)
. (5)

For statistically independent 𝑅𝑗 ,

𝑃𝑟 (𝐼𝑗 [𝑚+1] =1∣𝑅𝑗 [𝑚+1]=𝑥)

≈𝑃𝑟

(
∀𝑖 ∕=𝑗, 𝑅𝑖[𝑚+1]<

𝐸[𝜇𝑖]

𝐸[𝜇𝑗 ]
𝑥

)
=

𝑁∏
𝑖=1,𝑖∕=𝑗

𝐹𝑅𝑖

(
𝐸[𝜇𝑖]

𝐸[𝜇𝑗 ]
𝑥

)
.(6)
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where 𝐹𝑅𝑖(⋅) is thecumulative distribution function(cdf) of𝑅𝑖.
Now we can rewrite (4) as,

𝐸[𝜇𝑗 ] =

∫ ∞

0

𝑥𝑓𝑅𝑗 (𝑥)

𝑁∏
𝑖=1,𝑖∕=𝑗

𝐹𝑅𝑖 (𝐸[𝜇𝑖]⋅𝑥/𝐸[𝜇𝑗]) 𝑑𝑥. (7)

Simulations (see Fig. 2) have found that, for PFS over
Rayleigh fading channels, 𝜎𝑅𝑖/𝜎𝑅𝑗 ≤ 𝐸[𝜇𝑖]/𝐸[𝜇𝑗 ] ≤
𝐸[𝑅𝑖]/𝐸[𝑅𝑗 ] given 0 < 𝐸[𝑅𝑗 ] ≤ 𝐸[𝑅𝑖], where 𝜎𝑅𝑖 is the
standard deviation of 𝑅𝑖. Denote 𝐸[𝑅𝑗 ]/𝜎𝑅𝑗 by 𝑀𝑗 , we have

𝐸[𝜇𝑗 ] ≥ 𝜎𝑅𝑗

∫ ∞

−𝑀𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

) ⋅ 𝑓𝑅𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

)

×
𝑁∏

∀𝑖∕=𝑗,𝐸[𝑅𝑖]<𝐸[𝑅𝑗]

𝐹𝑅𝑖

(
𝑦
𝐸[𝑅𝑖]

𝐸[𝑅𝑗 ]
𝜎𝑅𝑗 + 𝐸[𝑅𝑖]

)

×
𝑁∏

∀𝑖∕=𝑗,𝐸[𝑅𝑖]≥𝐸[𝑅𝑗]

𝐹𝑅𝑖

(
𝑦𝜎𝑅𝑖 +

𝜎𝑅𝑖

𝜎𝑅𝑗

𝐸[𝑅𝑗 ]

)
𝑑𝑦. (8)

𝐸[𝜇𝑗 ] ≤ 𝜎𝑅𝑗

∫ ∞

−𝑀𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

) ⋅ 𝑓𝑅𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

)

×
𝑁∏

∀𝑖∕=𝑗,𝐸[𝑅𝑖]≥𝐸[𝑅𝑗]

𝐹𝑅𝑖

(
𝑦
𝐸[𝑅𝑖]

𝐸[𝑅𝑗 ]
𝜎𝑅𝑗 + 𝐸[𝑅𝑖]

)

×
𝑁∏

∀𝑖∕=𝑗,𝐸[𝑅𝑖]<𝐸[𝑅𝑗]

𝐹𝑅𝑖

(
𝑦𝜎𝑅𝑖 +

𝜎𝑅𝑖

𝜎𝑅𝑗

𝐸[𝑅𝑗 ]

)
𝑑𝑦. (9)

Since 𝐹𝑅(⋅) is non-decreasing and 𝜎𝑅𝑖/𝜎𝑅𝑗 ≤𝐸[𝑅𝑖]/𝐸[𝑅𝑗 ]
given 0<𝐸[𝑅𝑗]≤𝐸[𝑅𝑖], we can prove that (10) lies between
the lower and upper bounds given by (8) and (9),

𝜎𝑅𝑗

∫ ∞

−𝑀𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

) ⋅ 𝑓𝑅𝑗

(
𝑦𝜎𝑅𝑗 + 𝐸[𝑅𝑗 ]

)

×
𝑁∏

𝑖=1,𝑖∕=𝑗

𝐹𝑅𝑖 (𝑦𝜎𝑅𝑖 + 𝐸[𝑅𝑖]) 𝑑𝑦. (10)

This is our approximation of the expected PFS throughput.
Smith and McKay et al. [11], [12] have pointed out that the

feasible rate of a SISO or MIMO link over Rayleigh fading
channels can be modeled by a Gaussian distribution with
surprisingly high accuracy. We will show in the following that
such property turns (10) into a simple closed-form expression.

It is known that for a Gaussian distributed random variable
𝑍 with expect value 𝐸[𝑍] and standard deviation 𝜎𝑍 , we have,

1) 𝑓𝑍(𝑧) = 𝑓(0,1) ((𝑧 − 𝐸[𝑍])/𝜎𝑍) /𝜎𝑍 ,
2) 𝐹𝑍(𝑧) = 𝐹(0,1) ((𝑧 − 𝐸[𝑍])/𝜎𝑍).

where 𝑓(0,1)(⋅) and 𝐹(0,1)(⋅) are the pdf and cdf of zero mean,
unit variance standard normal distribution, respectively.

As stated earlier, the feasible rate in a Rayleigh environment
can be approximately modeled by a Gaussian distribution.
With the above two properties we can rewrite (10) as

𝐸[𝜇𝑗 ] ≈
∫ ∞

−𝑀𝑗

(
𝑦𝜎𝑅𝑗 +𝐸[𝑅𝑗]

) ⋅ 𝑓(0,1)(𝑦)⋅ 𝑁∏
𝑖=1,𝑖∕=𝑗

𝐹(0,1)(𝑦)𝑑𝑦

= 𝐸[𝑅𝑗 ]/𝑁 ⋅
(
1−[

𝐹(0,1)

(−𝐸[𝑅𝑗 ]/𝜎𝑅𝑗

)]𝑁)
+ 𝜎𝑅𝑗

∫ ∞

−𝑀𝑗

𝑦𝑓(0,1)(𝑦)⋅
[
𝐹(0,1)(𝑦)

]𝑁−1
𝑑𝑦. (11)

Unlike existing work, our analysis replaces the requirement
for an identical distribution with the assumption of a Gaussian
distribution, but note that independence is still necessary.

Formula (11) has a very clear physical meaning: the first
item in the right-hand side (RHS) represents the average
throughput from round-robin (RR) scheduling, 𝐸[𝑅𝑗 ]/𝑁 (note[
𝐹(0,1)

(−𝐸[𝑅𝑗 ]/𝜎𝑅𝑗

)]𝑁 ≈ 0), while the second item repre-
sents the average throughput from fading variability.

We now conduct simulations for various fading scenarios
to verify our theoretical results. Simulation setups are

1) Simulation parameters: 4000 scheduling slots, moving
average factor 𝑘 = 500.

2) A network of 10 users with average SNR=1, 2, ⋅ ⋅ ⋅ , 10
dB, respectively, where users have independent Rayleigh
fading. For the simplicity of presentation, each user is
numbered by its average SNR. We consider two cases.
Case I: SISO is used between a user and the BS.
Case II:5×5 MIMO is used between a user and the BS.

According to [13], for a 𝑡×𝑟 MIMO link over Rayleigh
channel, where 𝑡 and 𝑟 are the numbers of transmit and receive
antennas, there are 𝑚=min(𝑡, 𝑟) nonnegative singular values
of the channel matrix, each with the same pdf

𝑝(𝜆)=
1

𝑚
⋅
𝑚−1∑
𝑖=0

𝑖!𝜆𝑛−𝑚𝑒−𝜆
[
𝐿𝑛−𝑚
𝑖 (𝜆)

]2
/(𝑖+𝑛−𝑚)!. (12)

where 𝑛=max(𝑡, 𝑟), 𝐿𝑛−𝑚
𝑘 (⋅) is generalized Laguerre poly-

nomials of order 𝑘. Each nonnegative singular value corre-
sponds to a parallel/independent channel. In the simulation,
we assume each sender allocates its power equally to all the
transmit antennas and we generate the feasible rate of a MIMO
link by 𝑅=𝑚⋅log2(1+SNR⋅𝜆/𝑡), where SNR is the average
SNR, 𝜆 is a random variable with the pdf given by (12).

We use (11) to numerically calculate the average throughput
of PFS, where 𝐸[𝑅] and 𝜎𝑅 are determined by [11], [13]

𝐸[𝑅] = 𝑚

∫ ∞

0

𝜔(𝜆)𝑝(𝜆)𝑑𝜆. (13)

𝜎2
𝑅 = 𝑚

∫ ∞

0

𝜔2(𝜆)𝑝(𝜆)𝑑𝜆−
𝑚−1∑
𝑖=0

𝑚−1∑
𝑗=0

𝑖!𝑗!

(𝑖+𝑛−𝑚)!(𝑗+𝑛−𝑚)!

×
(∫ ∞

0

𝜆𝑛−𝑚𝑒−𝜆𝐿𝑛−𝑚
𝑖 (𝜆)𝐿𝑛−𝑚

𝑗 (𝜆)𝜔(𝜆)𝑑𝜆

)2

.(14)

where 𝜔(𝜆)=log2(1 + SNR⋅𝜆/𝑡).
Figs. 1 and 2 depict the simulation and theoretical results

for Case I. Fig. 1 validates that both our analytical expression
and the existing result [8] provide accurate estimate of the
PFS throughput for SISO cases.

Fig. 2 shows that, for PFS over Rayleigh fading channels,
it satisfies 𝜎𝑅𝑖/𝜎𝑅𝑗 ≤𝐸[𝜇𝑖]/𝐸[𝜇𝑗 ]≤𝐸[𝑅𝑖]/𝐸[𝑅𝑗 ], given 0<
𝐸[𝑅𝑗 ]≤ 𝐸[𝑅𝑖] (from (13) and (14), it is easy to prove that
both 𝐸[𝑅] and 𝜎𝑅 are monotonically increasing function of
average SNR). In addition, Fig. 2 indicates that the throughput
gain of PFS over RR scheduling (i.e., gain𝐺=𝑁⋅𝐸[𝜇]/𝐸[𝑅]∝
𝜎𝑅/𝐸[𝑅] according to (11), where𝑁 is the number of users in
the network) for a bad-channel user (low 𝐸[𝑅]) is higher than
a good-channel user (high 𝐸[𝑅]). Mathematically, by using
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Fig. 1. PFS throughput (Case I: SISO).
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Fig. 2. 𝐸[𝜇]/𝐸[𝑅],𝐸[𝜇]/𝜎𝑅 w.r.t SNR.

(13) and (14) one can prove 𝜎𝑅/𝐸[𝑅] decreases with 𝐸[𝑅] in
Rayleigh fading environments to explain this phenomenon. To
put it simple: in RR scheduling, bad-channel users will suffer
from very low throughput, whereas PFS, through multi-user
diversity, compensates bad-channel users by ‘stealing’ some
throughput benefits from good-channel users.

Fig. 3 depicts the simulation and theoretical results for Case
II. Fig. 3 shows that our analytic formula also applies to
MIMO cases while the existing result under the logarithm rate
model [8] is not satisfactory in such scenarios. The difference
is due to the fact that while the logarithm rate model can be
used to describe the feasible rate of a SISO link, it is not
accurate in modeling the feasible rate of a MIMO link [13].

III. CONCLUSIONS

This work derives mathematical models for the PFS
throughput under Rayleigh fading environments. The ana-
lytical expressions are validated by simulations. Moreover,
comparisons between our result and the existing one are given,
which suggest that our results apply to both SISO and MIMO
links while the existing result is only valid for SISO cases.
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Fig. 3. PFS throughput (Case II: MIMO).
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