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Connectivity in Selfish, Cooperative Networks
Erwu Liu, Qinqing Zhang, and Kin K. Leung

Abstract—This paper studies the connectivity of large cooper-
ative ad hoc networks. Unlike existing work where all nodes are
assumed to transmit cooperatively, the cooperative network we
consider is realistic as we assume that not all nodes are willing to
collaborate when relaying other nodes’ traffic. For such selfish,
cooperative network, we use stochastic geometry and percolation
theory to analyze the connectivity and provide an upper bound
of critical node density when the network percolates.

Index Terms—Selfish node, cooperative network, connectivity.

I. INTRODUCTION

WHILE connectivity [1] is arguably the most critical
performance metric for a wireless network to function

well, one can not assume that any two nodes keep connected
at all times due to fading, mobility, etc. Among various
approaches for connectivity in wireless networks, cooperative
communication shows great potential. The rationale for the
extraordinary interest in exploiting cooperative techniques
in wireless networks is very clear, as demonstrated by the
high volume of publications in recent years [1]–[4], show-
ing concrete advantages and potentials of cooperation. The
challenges of achieving cooperation are not just technical but
indeed multi-disciplinary, involving for instance understanding
individual and social behavioral patterns and their impact
on the performance of a wireless network. An important
point is that, in addition to the purely technical cooperation,
user’s decision on joining such a network and its manner to
cooperate are integral parts of the whole cooperative process
[5], and thus new aspects related to user selfishness will
come into the scene. Putting these together, it is of great
interest to investigate the connectivity in cooperative networks
with selfish nodes. Unfortunately, for cooperative networks,
the connectivity problem and selfish behavior are separately
considered [1], [5]–[7].

Our objective is to quantify the connectivity for cooper-
ative ad hoc networks with user selfishness. As a first-step,
this letter asymptotically studies the connectivity problem of
cooperative networks with 𝑝-Selfishness (a simple model for
selfish behavior, detailed in Section II), and provides an upper
bound of critical node density for such systems to percolate.

II. SYSTEM MODEL

Ad hoc nodes are randomly located and full connectivity
of the whole network is generally not possible. Practically,
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Fig. 1. Cooperative networks: 𝑘-collaborative cluster.

it is often sufficient for the network operator to ensure that
some fraction of nodes instead of all nodes in the network
are connected, whose occurrence in infinite large networks is
mathematically defined as percolation [8]. By Kolmogorov’s
zero-one law, a network of infinite size will percolate once the
node density 𝜆 or node range 𝑟 is above some threshold. The
density (or range) threshold for percolation to occur is called
the critical density (or range), denoted by 𝜆𝑐 (or 𝑟𝑐).

Now consider a cooperative ad hoc network shown in Fig. 1.
We assume that 𝑘 nodes 𝑛0 ∼ 𝑛𝑘−1 transmit to Node 𝑛𝑘 in
a cooperative manner. These 𝑘 nodes form a 𝑘-collaborative
cluster. Because of cooperative transmission, the distance be-
tween 𝑛𝑘 and 𝑛𝑖(𝑖=0∼𝑘−1) could be greater than node range
𝑟. Node 𝑛𝑘 and 𝑘 − 1 nodes out of 𝑛0∼𝑛𝑘−1 together form
another 𝑘-collaborative cluster and will reach Node 𝑛𝑘+1. In
most works on cooperative transmission, it is assumed that
all nodes in a cluster are willing to cooperatively transmit
at all time. This is not true especially when nodes have some
intelligence or social characteristic such as self-awareness. For
example, nodes may become selfish in relaying other nodes’
traffic and would not cooperatively transmit at some time. Our
task is to analyze the 𝑘-collaborative connectivity problem for
a cooperative network with selfish behavior. To be specific, we
want to answer the question how many nodes are needed in
each cluster for percolation to occur in a cooperative network
with selfishness.

For achievability for cooperative ad hoc networks, we
use the distributed frequency-shift keyed (FSK) cooperation
method [1], which does not require phase coherence at the
transmitters and represents a worst case of cooperation that
achieves only power summing. Refer to Fig. 1, nodes are
distributed across an infinite region according to a Poisson
Point Process (PPP) with node density 𝜆 > 0. 𝑘-collaborative
connectivity for such network is defined as the existence of
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Fig. 2. 𝑘-collaborative cluster with 𝑝-selfishness: worst-case cooperation.

one cluster chain containing an infinite number of connected
clusters, each of which has 𝑘 nodes cooperatively transmitting
in a selfish manner.

We assume that each node transmits with power 𝑃𝑡 and
denote the received power at reference distance 𝑑0 as 𝑃0.
Let 𝑟 be the node range, 𝑃𝑟 be the minimum receiving
power required for successful receive. Using the modified Friis

propagation model [9], we have 𝑃𝑟 =𝑃0×
(

𝑟
𝑑0

)−𝛼

, where 𝛼

is the path loss exponent 1. For any Node 𝑘 to successfully
receive, the receiving power 𝑃𝑘 should be greater than 𝑃𝑟.
We use 𝑑𝑖,𝑗 to denote the distance between two nodes 𝑛𝑖 and
𝑛𝑗 , and 𝑃𝑖,𝑗 the power at Node 𝑛𝑗 received from Node 𝑛𝑖.
Refer to Fig. 1, with node cooperation, the received power at
Node 𝑛𝑘 depends on the power received from each branch
and also on the selfish pattern of nodes. As a first step, this
letter considers a simple model to describe selfish behavior.
With this model, a node in a 𝑘-collaborative cluster will
cooperatively transmit with a fixed probability 𝑝 when relaying
other nodes’ traffic. This model is likewise used in [6] to study
cooperation in ad hoc networks, and we call it 𝑝-Selfishness
throughout the letter. With 𝑝-Selfishness, the extreme case of
𝑝 = 0 corresponds to the non-cooperative scenario and 𝑝 = 1
the traditional cooperative scenario, respectively. Without loss
of generality, we assume that Node 𝑛𝑘−1 has data for Node
𝑛𝑘 and it transmits to 𝑛𝑘 with probability 1 while all other
nodes in the cluster cooperate with 𝑛𝑘−1 and transmit to 𝑛𝑘

with probability 𝑝. Since we are using the distributed FSK
scheme [1] for node cooperation, the received power 𝑃𝑘 at
Node 𝑛𝑘 is simply the power sum of all branches,

𝑃𝑘 = 𝑃𝑘−1,𝑘 +

𝑘−2∑
𝑖=0

𝑃𝑖,𝑘

= 𝑃0 ×
(
𝑑𝑘−1,𝑘

𝑑0

)−𝛼

+
𝑘−2∑
𝑖=0

𝑝× 𝑃0 ×
(
𝑑𝑖,𝑘
𝑑0

)−𝛼

. (1)

Now consider the worst case of cooperative transmission
in a cluster. This corresponds to the one that produces the
minimum power at 𝑛𝑘. Refer to Fig. 2, ∀𝑖 = 0 ∼ 𝑘− 2, with
triangle inequality, we have 𝑑𝑖,𝑘 ≤∑𝑘−2

𝑖=0 𝑑𝑖,𝑖+1 + 𝑑𝑘−1,𝑘. So

1The path loss exponent 𝛼 is experimentally determined, and is typically
in the range of 2 to 5 depending on propagation environment. For example,
𝛼=2.0 is for free space, 2.5∼3.0 for rural areas, 3.0∼4.0 for urban areas,
and 4.0∼5.0 for dense urban areas.

for a cluster of any topology, the received power 𝑃𝑘 satisfies

𝑃𝑘 ≥ 𝑃0 ×
(
𝑑𝑘−1,𝑘

𝑑0

)−𝛼

+

𝑘−2∑
𝑖=0

𝑝× 𝑃0 ×
(∑𝑘−1

𝑚=𝑖 𝑑𝑚,𝑚+1

𝑑0

)−𝛼

= 𝑃𝐿
𝑘 . (2)

where 𝑃𝐿
𝑘 is the power at Node 𝑛𝑘 received from the linear

topology cluster shown in Fig. 2.
Define a positive 𝑑𝑐 so that 𝑑𝑐 ≥ max𝑖=0,⋅⋅⋅ ,𝑘−1 𝑑𝑖,𝑖+1. We

have,

𝑃𝐿
𝑘 ≥ 𝑃0 ×

(
𝑑𝑐
𝑑0

)−𝛼

+

𝑘−2∑
𝑖=0

𝑝× 𝑃0 ×
(∑𝑘−1

𝑚=𝑖 𝑑𝑐
𝑑0

)−𝛼

= 𝑃0 ×
(
𝑑𝑐
𝑑0

)−𝛼

×
(
1 +

𝑘−2∑
𝑖=0

𝑝× (𝑖 + 2)−𝛼

)
. (3)

Obviously, if 𝑃𝑟=𝑃0×
(

𝑑𝑐

𝑑0

)−𝛼

×
(
1+
∑𝑘−2

𝑖=0 𝑝×(𝑖+2)−𝛼
)
,

we will have 𝑃𝑘 ≥ 𝑃𝐿
𝑘 ≥ 𝑃𝑟, i.e., the 𝑘-collaborative cluster

with 𝑝-Selfishness can cooperatively transmit to Node 𝑛𝑘

successfully. We thus have

𝑑𝑐 = 𝑟 ×
(
1 +

𝑘−2∑
𝑖=0

𝑝× (𝑖 + 2)−𝛼

) 1
𝛼

. (4)

According to [8], we have the following definition,

Definition 1 the critical node density 𝜆𝑐 is given by

𝜆𝑐 = 𝑖𝑛𝑓{𝜆 : 𝜃(𝜆) > 0}
where 𝜃(𝜆) is the probability that an infinitely large path
exists, given node density 𝜆.

Equivalently, Definition 1 tells that if an infinitely large path
exists with non-zero probability, then the network percolates.

Next we state two existing lemmas before presenting our
result.

From percolation theory, we have the following important
lemma on connectivity [10]

Lemma 1 (Scale Property) A 2-dimensional network with a
range 𝑟 and a node density 𝜆 has the same connectivity
properties as a 2-dimensional network with a range 𝑎 ⋅ 𝑟
(𝑎 > 0) and a node density 𝜆

𝑎2

On the other hand, based on stochastic geometry [11], [10]
provides the following lemma.

Lemma 2 (PPP Distance) If nodes are distributed according
to a PPP with node density 𝜆, the probability that the distance
𝑑 between a node and its nearest neighbor is less than 𝑅 is

𝑃𝑟𝑜𝑏{𝑑 ≤ 𝑅} = 1− 𝑒−𝜋𝑅2𝜆 (5)

Using Lemma 1 and Lemma 2, together with Definition 1,
we then obtain an upper bound of node density for the
considered network to percolate,
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Fig. 3. Critical density in cooperative networks with 𝑝-selfishness.

Theorem 1 For a 𝑘-collaborative network with 𝑝-Selfishness,
the critical node density is bounded by

𝜆∗
𝑐 ≤ 𝜆𝑐(

1 +
∑𝑘−2

𝑖=0 𝑝× (𝑖+ 2)−𝛼
) 2

𝛼

. (6)

where 𝜆𝑐 is the critical node density for the non-cooperative
network.

Proof: Refer to Fig. 1, for a given node 𝑛0 in the coop-
erative network of infinite size, we find its nearest neighbor
𝑛1 on the right side of 𝑛0. Similarly, we find 𝑛2 for 𝑛1,
⋅ ⋅ ⋅ , until we find 𝑛𝑘 for 𝑛𝑘−1. Nodes 𝑛0 ∼ 𝑛𝑘−1 form
a 𝑘-collaborative cluster to 𝑛𝑘. Given a positive 𝑑𝑐 defined
by (4), ∀𝑖 = 0, ⋅ ⋅ ⋅ , 𝑘 − 1, we denote by 𝐸𝑖 the event that
𝑑𝑖,𝑖+1 ≤ 𝑑𝑐 and 𝑛𝑖+1 is on the right side of 𝑛𝑖. We then have
𝑃𝑟𝑜𝑏{𝐸𝑖} = 1

2𝑃𝑟𝑜𝑏{𝑑𝑖,𝑖+1 ≤ 𝑑𝑐}. Applying Lemma 2, we
have

𝑃𝑟𝑜𝑏{𝐸0

∩
𝐸1 ⋅ ⋅ ⋅

∩
𝐸𝑘−1} =

(
1

2

)𝑘 (
1− 𝑒−𝜋𝑑𝑐

2𝜆
)𝑘

.(7)

As mentioned earlier, (4) and 𝑑𝑐 ≥ max𝑖=0,⋅⋅⋅ ,𝑘−1 𝑑𝑖,𝑖+1 to-
gether ensure that the 𝑘-collaborative cluster (of any topology)
with 𝑝-Selfishness transmits to 𝑛𝑘. If 𝑛𝑘+1 is within a distance
𝑑𝑐 away from 𝑛𝑘, we will have 𝑑𝑐 ≥ max𝑖=1,⋅⋅⋅ ,𝑘 𝑑𝑖,𝑖+1. Ob-
viously, 𝑛1, 𝑛2, ⋅ ⋅ ⋅ , 𝑛𝑘−1 and 𝑛𝑘 will further form a new 𝑘-
collaborative cluster that can transmit to 𝑛𝑘+1. This procedure
continues and an infinite cluster chain containing the given
node 𝑛0 appears almost surely. With (7), we know that the
infinite cluster chain appears with non-zero probability. This
indeed makes the network percolative by Definition 1.

Let 𝑟∗ be the effective range of the cluster. Since 𝑑𝑐 is
obtained for the worst-case cooperation and represent the
effective range of the linear topology cluster, we have 𝑑𝑐 ≤ 𝑟∗.
Let 𝜆∗

𝑐 be the critical node density for the 𝑘-collaborative
network to percolate. By using the scale property (Lemma 1),
we have

𝜆∗
𝑐 = 𝜆𝑐 × (𝑟/𝑟∗)2 ≤ 𝜆𝑐 × (𝑟/𝑑𝑐)

2. (8)

where 𝜆𝑐 is the critical node density for the non-cooperative
network to percolate.

Substituting (4) into (8) completes the proof.

III. NUMERICAL RESULTS

We numerically evaluate the critical density for a 𝑘-
collaborative network to percolate. In the experiment, the
critical density for the non-cooperative network is normalized
to be 1. We plot in Fig. 3 the upper bound of the critical
density for various 𝑘 and path loss exponent 𝛼.

Fig. 3 verifies that node cooperation helps decrease system
cost in terms of decreased node density, and when cooperation
instead of selfishness dominates, i.e., cooperation probability
𝑝>0.5, the number of nodes needed in a cooperative network
will be less than 77% of what is needed in a non-cooperative
network, for the configuration: 𝑘=20, 𝛼=2.0.

IV. CONCLUSIONS

We analyzed the connectivity of 𝑘-collaborative network
with selfishness. Unlike traditional work on cooperative net-
works, we do not assume that all nodes would like to transmit
cooperatively when relaying other nodes’ traffic. Specifically,
we model nodes in such a way that each node cooperatively
transmits with 𝑝-Selfishness. We then use stochastic geometry
and percolation theory to study the connectivity of such
system. Finally, we provide an upper bound of critical node
density for the considered network.
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