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Abstract—The proportional fair scheduling (PFS) problem is 
studied in the paper. PFS is considered an attractive bandwidth 
allocation criterion in wireless networks for supporting high 
resource utilization while maintaining good fairness among 
network flows. The most challenge of a PFS problem is the lack 
of an analytic expression. By rigorously mathematical derivation, 
we obtain a closed-form expression for the throughput of PFS in 
Rayleigh fading environment. The theoretical results are 
compared with those from simulations. The derived model is 
shown to provide a high accuracy in evaluating the throughput of 
the PFS algorithm in Rayleigh fading networks. In particular, the 
expression presented here will provide great help for the system 
design of a PFS capable network. Moreover, compared with 
existing analytical results on PFS, our expression is more general 
in that we do not require the i.i.d relationship among nodes in 
our derivation. 

Keywords-proportional fair scheduling, gaussian 
approximation, rayleigh fading 

I.  INTRODUCTION 
Among various researches on wireless scheduling, the 

proportional fair scheduling (PFS) algorithm has been widely 
conceived an attractive solution as it provides a good 
compromise between the maximum throughput and node 
fairness by exploiting multi-user diversity and game-theoretic 
equilibrium in fading wireless environment. 

Since its first presence [1], there has been substantial 
interests in the PFS algorithm in wireless networks (see [2, 3, 4] 
and the references therein). Though the PFS algorithm has 
garnered so much attention and currently implemented in 3G 
wireless network for high data rate delay-tolerant services [5], 
most existing results are obtained from computer simulations. 
To the best of our knowledge, limited mathematical analysis on 
the throughput of the PFS [7-11] are obtained, either assuming 
a simplified form of the original PFS preference metric or 
assuming simple linear or logarithm rate models. In the linear 
model, the feasible rate is linearly proportional to the signal to 
interference-plus-noise ratio (SINR), while in the logarithm 
model there is a logarithmic relationship between the SINR and 
the feasible rate. These two models have their merits as they 
greatly simplify the mathematical analysis of PFS. For 
example, [7] [8] and [12] used the linear rate model, while a 
recent paper [10] used the logarithm rate model, to analyze 
PFS. The assumption of linear or logarithm rate model is a 
reasonable modeling convention. However, when examining 

throughput performance, it does not seem entirely satisfactory 
to assume such simplified models. Works by Telatar [13] and 
Smith et al. [14] suggested that the feasible rate over Rayleigh 
fading channels can be better modeled by a Gaussian 
distribution with surprisingly high accuracy. 

Moreover, most researches are assuming some kinds of i.i.d 
relationship among users/nodes in their derivations [8] [10]. 
For example, [10] assumes that node k’s SINR Sk=ck×C (∀k), 
where ck is a node-related constant and C is a distribution 
independent of all nodes (i.e., C is i.i.d for all nodes). 
Undoubtedly, these assumptions limit the use of existing 
theoretical results on PFS. 

In all, our goal is to provide formal, yet intuitive 
formulation which applies to more general scenarios without 
the limitations above, i.e., our analysis will not require the i.i.d 
relationship among nodes and also Gaussian approximation 
(GA) method is used to accurately model the feasible rate. 

The rest of the paper is structured as follows. Section II 
presents the system model and the problem formulation. The 
mathematical analysis is conducted in Section III. In Section 
IV, numerical and simulation results are presented and 
compared to validate the closed-form expression given in 
Section III followed by the conclusion in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 
Consider a single-cell system shown in Fig. 1, N mobile 

stations (denoted as nodes m1, m2, …, and mN) are randomly 
located within the cell served by a base station (BS). 

 

Figure 1.  Single-hop wireless network 



Consider the problem where these N nodes wishing to 
transmit data to the base station, and the rates of transmission 
are randomly varying. Time is divided into small scheduling 
intervals called slots. Until further notice, in each slot only one 
node is chosen to transmit. The selection of the node to 
schedule is based on a balance between the current possible 
rates and fairness. The proportional fair scheduling (PFS) [1, 2, 
9, 10] performs this by comparing the ratio of the feasible rate 
for each node to its average throughput tracked by an 
exponential moving average, which is defined as the preference 
metric. The node with the maximum preference metric will be 
selected for transmission at the next scheduling slot. This is 
described mathematically as follows. The end of slot n is called 
time n. In next time slot n+1, the instantaneous data rate of 
node j will be Rj[n+1]. Its k-point moving average throughput 
up to time n is denoted by rj;k[n], and the preference metric (PF 
metric) by Mj;k[n+1]= Rj[n+1]/rj;k[n]. 

Node i=arg maxj Mj;k[n+1]=arg maxj Rj[n+1]/rj;k[n] is 
chosen to transmit in next time slot n+1. The moving average 
throughput of node j up to time n+1 of is updated by 
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where Ij [n+1] is the indicator function of the event that node j 
is scheduled to transmit in time slot n+1. 
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By introducing utility function Uj =Log[rj], Kelly [1] had 
proved that the sum of the user utility (user satisfaction 
indicator) is maximized under the PFS criteria. It is the 
logarithm utility maximization, the multi-user diversity gains 
and the possibility to schedule bad-channel-condition nodes 
that make the PF scheduler superior to the traditional ones such 
as round-robin (RR) and opportunistic scheduler. 

As PF metric is directly related to the feasible rate R, for the 
analysis to be as accurate as possible, it is natural to assume in 
our analysis that the feasible rate over Rayleigh fading 
channels is Gaussian [14]. For single-input-single-output (SISO) 
case, the Gaussian approximation (GA) method in [14] reduces 
to the following form, 
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where W is the bandwidth, E[R] and σR are the mean value and 
the standard deviation of R, respectively. 

III. PFS: CLOSE-FORM EXPRESSION 
From (1), the expect value of the k-point moving average 

throughput of node j up to time n+1 is 
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where E(.) denotes the statistical average, rj;k[n] is the k-point 
moving average throughput of node j up to time n 

Assuming wide-sense stationary rj;k, we then have 
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Applying (2) to (6) yields 
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where Pr(Ij[n+1]=1) is the average probability that node j will 
be scheduled in time slot n+1. 

The feasible rate Rj is always greater than 0. Applying 
Bayes’s theorem, we can write (7) as 
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where fRj(.) denotes the probability density function of Rj. 

Under the PFS criteria stated earlier, 
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For statistically independent Rj among nodes, (9) can be 
written in the form 
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By use of (1), we have 
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where A[⋅] denotes the time average. 

For wide-sense stationary rj;k, we further assume it is first-
order ergodic, then 
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Therefore, for large n,k, (10) can be written as 

( )
[ ]
[ ]∏

∏

≠=

≠=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==+=+

N

jii
j

i
R

N

jii ki
kj

Rjj

x
rE
rEF

nr
nr

xFxnRnI

i

i

,1

,1 ;
;

][
][

]1[1]1[Pr
 (13) 

On substitution of (13) into (8), we obtain 
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where FRj(.) is the distribution function of Rj. 

Assuming Rj is Gaussian as described earlier, we have 
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where E[Rj], σRj are the expect value and standard deviation of 
Rj, respectively. 

For the feasible rate determined by (3) and (4), it can be 
proved that, 
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It is well-known that, with proportional fair scheduling, node j 
will expect higher mean throughput E[rj] when the mean SINRj 
is increased. So, from (3) and (4), we will have higher E[Rj] 
and σj for higher SINRj. Using (16), we then have 
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I. when all σRi (i=1, 2, …, N) are equal. 
As FRi(x)=F(0,1)((x-E[Ri])/σRi) for Gaussian Ri, where F0,1(.) is 
zero mean, unit variance standard normal distribution function, 
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(18) 
where f0,1(.) is zero mean, unit variance standard normal 
probability density function. 

II. when not all σRi (i=1, 2, …, N) are equal. 

Denote Z=maxi [(E[rj]E[Ri]-E[ri]E[Rj])/(E[ri]σRj-E[rj]σRi)], we 
will have 
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We can write (14) as 

[ ] [ ]( )

[ ]
[ ] [ ]( )

[ ]( )
[ ]
[ ] [ ]( ) dyREy
rE
rEF

yfREy

dyREy
rE
rEF

yfREyrE

N

jii jR
j

i
R

Z jR

N

jii jR
j

i
R

Z
RE jRj

ji

j

ji

jR

j j

∏

∫

∏

∫

≠=

∞

≠=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+×

+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+×

+=

,1

)1,0(

,1

)1,0(][

)(

)(

σ

σ

σ

σ
σ

 (21) 

Also, from (16), (17) and (19), it is easy to prove that 
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By (19), the first integral in the right hand of (21) is not less 
than 0. Using FRi(a) ≥ FRi(b) ∀a≥b together with (22) and (21), 
we have 
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where M=-maxi [E[Ri]/σRi] (i=1, 2, …, N). 

 We can rewrite (18) and (23) by one single expression, 
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Now we have the closed-form expression for the PFS 
throughput. This intuitive yet formal formula has the great 
practical and theoretical interests of being mathematically 
graceful and simple. 



(24) reveals a very interesting merit of PFS that has not 
been seen elsewhere in literatures: node j’s throughput is solely 
(approximately, if we ignore the effect of different M on the 
integral) determined by the network size together with its own 
channel statistics when the feasible rate is Gaussian. 

Other observations can also be made from (24). First of all, 
as E[Rj]/N is the mean throughput of node j when using round 
robin (RR) scheduling, the second item in the right hand of (24) 
is in fact the improvement of node j’s throughput when using 
PFS instead of RR scheduling. 

Obviously, PFS will provide more benefits in severe fading 
environments where σRj is large. On the other hand, PFS can be 
viewed as a RR scheduling algorithm in low-fading 
environments where σRj is relatively small compared with E[Rj]. 

Fig.2 shows that our expression given by (24) will give the 
PFS throughput very close to the existing one [10]. In addition, 
we would like to point out that the result from [10] has 
limitation in that it assumes node k’s SINR Sk=ck×C (∀k), 
where ck is a node-related constant and C is a distribution 
independent of all nodes, i.e., E[Sk]/σSk=E[C]/σC is constant for 
all nodes. Clearly, the theoretical expression presented here is 
more general as we do not require such i.i.d assumption and 
more accurate rate model is used in our derivation. 
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Figure 2.  PFS throughput  plotted from (25) (the solid line) and [10] (the 
dashed one) 

IV. VALIDITY OF THE ANALYTIC EXPRESSION BY 
COMPARISON WITH SIMULATION RESULTS 

The analytic expression for the throughput of PFS is now 
evaluated by comparing the numerical and simulation results. 
In the simulation, the initial moving average throughputs of 
nodes are randomized and we use two different methods to 
model the feasible rate Rj over Rayleigh fading channel. 

Method A) the feasible rates over Rayleigh fading channels 
are generated according to statically independent Gaussian 
distribution for different nodes, i.e., Gaussian approximation 
(GA) method, and 

Method B) standard method, i.e., Rj=W×Log[1+SINRj× |hj|2], 
where the channel gain hj for node j is a normalized complex 
Gaussian random variable. 

System parameters are: W=20 MHz bandwidth, k=500 for 
k-point moving average calculation, 15 nodes (node1~node15) 
with mean SINR equal to 2, 5, 5, 8, 10, 12, 15, 15, 16, 18, 20, 
22, 25, 25 and 28 dB, respectively. 

For simplicity, in method A, we use the notation nj[E[Rj],σRj] 
to indicate the feasible rate of node j has mean value E[Rj] and 
standard deviation σRj (in Mbps). Node j has randomized data 
rate mean E[Rj] and standard deviation σRj determined by (3) 
and (4). For the given SINR, the feasible data rates of nodes 
under method A are then characterized as:  
n1[23.2,15.0] n2[34.3,19.6] n3[34.3,19.6] n4[47.9,23.8] n5[58.1,26.3]
n6[69.1,28.5] n7[86.6,31.1] n8[86.6,31.1] n9[92.7,31.9] n10[105.0,33.1]
n11[117.7,34.1] n12[130.5,34.8] n13[150,35.6] n14[150,35.6] n15[169.7,36.1]

 

We plot in Fig. 3 the throughput of node7 and node8 (both 
with SINR=15dB). It is clear that the analytic result produces a 
accurate estimate of the PFS throughput for both simulation 
methods. The theoretical expression (24) is also validated by 
the plots that nodes of same channel statistics have the same 
mean throughput. 

0 1000 2000 3000 4000
0

2

4

6

8

10

12

N
od

e 
Th

ro
ug

hp
ut

 (M
bp

s)

Scheduling Slot

 Mean Throughput (Analysis, node7)
 Throughput (Simulation, node7, Method B)
 Throughput (Simulation, node7, Method A)
 Mean Throughput (Analysis, node8)
 Throughput (Simulation, node8, Method B)
 Throughput (Simulation, node8, Method A)

 
Figure 3.  Accuracy of the analytic expression for node throughput 

To further evaluate the theoretical formula, we plot in Fig. 4 
the throughput of nodes experienced remarkably different 
channel conditions. Node1 has the worst channel statistics in 
the network, i.e., SINR=2dB, while Node15 has the best 
channel statistics, i.e., SINR=28dB. Once again, the validity of 
(24) is justified by the perfect match between the analysis and 
simulation results for these two extreme cases. 

Both figures show that the average throughputs from 
simulation eventually converge to those determined by analytic 
expression (24). The overall conclusion from these experiments 
suggests the closed-form expressions presented in Section III 
can be used with confidence to evaluate the performance of the 
PFS algorithm in Rayleigh fading environment. The analytical 



results given in the paper will greatly facilitate the system 
design of a PFS-capable network. 
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Figure 4.  Accuracy of the analytic expression for node throughput 

V. CONCLUSIONS 
An intuitive yet formal analytic solution for the throughput 

of proportional fair scheduling in Rayleigh fading systems is 
developed. Comparison with simulations shows that our 
analysis provides an accurate estimate of the PFS throughput. 
Moreover, the theoretical results presented here are more 
general than existing ones [8] [10] in that we do not require the 
i.i.d relationship among nodes in our derivations. Being 
mathematically graceful and simple, our analysis provides 
guideline and theoretical support on system design, simulation-
based modeling and performance analysis of the PFS algorithm 
in the context of cross-layer design. The results are being 
integrated into the MEMBRANE project [15]. 
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