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Abstract—Proportional fair scheduling (PFS) provides good 
balance between throughput and fairness via multi-user diversity 
and game-theoretic equilibrium. Very little analytical work exists 
on understanding the performance of PFS. Most existing prior 
results are for networks with Rayleigh fading. In this paper, we 
provide theoretical results for PFS in general fading 
environments. The results reveal that the average throughput of 
a user solely depends on its own channel statistics when its 
instantaneous data rate is Gaussian. Based on the theoretical 
results, we analyze the PFS performance under various scenarios 
with Rayleigh and/or Rician fading, and the numerical results 
match very well with the simulation ones. To the best of our 
knowledge, this work is the first one theoretically investigating 
the PFS problem in general fading environments. 
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I.  INTRODUCTION 
In the considerable efforts to deal with the tradeoff between 

optimal system throughput and user fairness, the proportional 
fair scheduling (PFS) algorithm is proposed. Since its presence 
[1], there has been substantial interest in the PFS algorithm in 
wireless networks (see [2, 3] and the references therein). 

Though the PFS algorithm has got so much attention and 
currently implemented in 3G wireless network for high data 
rate delay-tolerant services [4], one can only see very limited 
analysis results on PFS [5-11], whose derivations typically 
assume a simple linear rate model or logarithm rate model 
and/or use a simplified form of the original PFS preference 
metric. The linear rate model is only valid for networks where 
the signal to interference-plus-noise ratio (SINR) is very small 
[5], while the logarithm rate model can only be used for single-
input-single-output (SISO) communications [8]. The use of 
linear rate model or logarithm rate model is a reasonable 
modeling convention. However, when examining throughput 
performance, it does not seem satisfactory to assume such 
simplified rate models. Moreover, all existing researches are 
assuming some kind of independent identically distributed (i.i.d) 
relationship among users in their derivations [5-9, 11]. 
Undoubtedly, these assumptions limit the use of existing 
theoretical results on PFS. 

Our previous work [12] provides an analytic expression for 
the throughput of PFS in such a scenario where the 
instantaneous data rate over a Rayleigh fading channel can be 
approximated by a Gaussian distribution [13, 14]. Different 

from the linear rate model and logarithm rate model, the 
Gaussian approximation (GA) method used in [12] applies to 
both low and high SINR cases, moreover, it can be used to 
accurately model the instantaneous data rate of a multiple-
input-multiple-output (MIMO) link over a Rayleigh/Rician 
fading channel. The main drawback of our prior work is that it 
assumes a proportional relationship between the mean and 
standard deviation of instantaneous data rate in the derivation.  

While most existing results are for Rayleigh fading 
networks, we would like to point out that a realistic network 
typically has fundamentally different fading processes in 
practice. This paper extends our prior work to such general 
fading environments. Specifically, we study the PFS problem 
in 4 different scenarios: Gaussian rate network, Rayleigh 
fading network, Rician fading, and Rayleigh+Rician hybrid 
fading network without the mathematic simplifications above. 

The rest of the paper is structured as follows. Related work 
is discussed in Section II. After that, analytical results which 
extend our prior work on PFS are presented in Section III. 
Finally, in Section IV, we present simulation results to validate 
the theoretical findings under various fading environments, 
followed by the conclusion in Section V. 

II. RELATED WORK 
Since its first presence in Kelly’s seminal paper [1], 

significant efforts has been put into the study of the PFS 
algorithm. Holtzman [5] conducted the asymptotic analysis of 
the PFS algorithm, with a result that all other things being 
equal, the user class with more fading variability gets more 
throughput. Kushner et al. [7] investigated the convergence 
property of the algorithm. They stated that the limiting 
behavior of the throughputs converges to the solution of an 
ordinary differential equation, and found the limit throughput is 
proportional to the average instantaneous rate for Rayleigh 
fading by assuming the instantaneous rate is proportional to the 
received SINR which is i.i.d for all users. Also, [11] presented 
some results on PFS for the scenario where the relative rate 
fluctuations are statistically identical, stating that each user 
would receive same amount of the time slots. 

To simplify the problem, most existing analytic results are 
assuming some kind of i.i.d relationship among users [5-9, 11]. 
For example, [6, 7] assume the SINR of each user is an i.i.d 
Exponential distribution; [8] takes the assumption similar to [6] 
that user k’s SINR Sk=ck×C (∀k), where ck is a user-related 



constant and C is an i.i.d Exponential distribution random 
variable independent of all users, and [11] assumes that the 
instantaneous data rate of user i with time-average rate Ci is 
distributed as Ri =CiYiZ, where Y, Y1, Y2, … are i.i.d copies and 
Z represent a possible correlation component with unit mean, 
and the exponentially smoothed throughput of user i scale 
linearly with the time-average rate Ci, i.e., Wi=CiVi, where the 
random variables V1,…, Vm are identically distributed. 

On the other hand, linear rate model and logarithm rate 
model are the two rate models commonly used for analyzing 
the performance of PFS. For example, [5, 6, 11] use the linear 
rate model, while [8] uses the logarithm rate model. In the 
linear rate model, the instantaneous data rate R of a user is 
linearly proportional to the received SINR, i.e, Ri = β×SINRi for 
any user i; while in the logarithm rate model, there is a 
logarithmic relationship between the received SINR and the 
instantaneous data rate, i.e., Ri∝Log2(1+β×SINRi). These two 
rate models have their merits as they greatly simplify the 
mathematical analysis of PFS. However, such simplified 
models may not be satisfactory enough to characterize the 
instantaneous data rate in practical network environments, 
especially where there are fundamentally different fading 
processes. As stated in [5], the linear rate model is usually a 
reasonable approximation for small SINR and is not accurate 
when multiple modulations or codings are used. On the other 
hand, the logarithm rate model can only be used for SISO links 
and is a very rough approximation when used for MIMO links 
[8]. In fact, works by Telatar [13] and Smith et al. [14] 
suggested that the instantaneous rate over Rayleigh or Rician 
fading channels can be better modeled by a Gaussian 
distribution with surprisingly high accuracy. Thus the Gaussian 
approximation (GA) instead of the two simplified rate models 
is used in our prior research to study the PFS performance [12]. 
The main drawback of [12] is that it assumes a proportional 
relationship between the mean and standard deviation of 
instantaneous data rate. 

It is not surprising that most studies mentioned above are 
for Rayleigh fading networks as a system with more fading 
variability will get more PFS benefits [5]. In fact, the channel 
characteristics in a realistic network should be better modeled 
as a mixture of Rayleigh and Rician fading. This paper will also 
consider such fading scenarios. 

In all, our goal is to study the PFS performance in general 
fading wireless networks without the mathematic 
simplifications used in existing researches. 

III. PFS: THEORETICAL RESULTS 
We first outline our previous results. Then we present the 

analytical expression of PFS in general fading environments. 

In [12], we have the following important result: 

In an N-user cellular network implementing the PFS 
algorithm, the average throughput of user j satisfies 
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where Pr(Ij=1|Rj=x) is the conditional probability of user j 
to be scheduled given its instantaneous data rate Rj, 
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fRi(.), FRi(.) are the probability density function (pdf) and 
cumulative distribution function (cdf) of the instantaneous 
data rate of user i, μi is the throughput of user i, E[.] is the 
statistical average, and Ij is the indicator function of the 
event that user j is scheduled to transmit in next time slot, 
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Simulations (Figure 4 and 5) have found that, in Rayleigh, 
Rician or Rayleigh+Rician hybrid fading environments, 
E[μ]/E[R] is a monotonically decreasing function of E[R], 
while E[μ]/σR is a monotonically increasing function of σR, i.e., 
σRi/σRj≤E[μi]/E[μj]≤E[Ri]/E[Rj] given 0≤E[Rj]≤E[Ri]. Denote 
E[Rj]/σRj by Mj , we have 
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and 
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If we write 
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It is easy to prove that the average throughput given by (6) 
lies between the upper and lower bounds given by (4) and (5), 
respectively. 

Now we have the closed-form expressions (4)-(6) for the 
PFS throughput. 

It is easy to prove that with GA method for Rayleigh and/or 
Rician fading environments, (6) further reduces to 
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Moreover, if user j’s instantaneous data rate Rj=cj×SINR 
(∀j), where cj is a user-related, positive constant and SINR is an 



i.i.d exponentially distributed random variable independent of 
all users, (6) can be written as. 
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In fact, (8) is the analytical result given by [6] and [8] for a 
Rayleigh fading network using the linear rate model. 

Formula (7) has the great practical and theoretical interests 
of being mathematically graceful and simple. 

(7) reveals a very interesting merit of PFS: node j’s 
throughput is solely (approximately, if we ignore the effect of 
Mj on the integral) determined by its own channel statistics 
when the instantaneous data rate is Gaussian. 

Other observations can also be made from (7): Firstly, as 
E[Rj]/N is the mean throughput of node j when using round 
robin (RR) scheduling, the second item in the right hand of (7) 
is in fact the improvement of node j’s throughput when using 
PFS instead of RR scheduling. Secondly, PFS benefits more in 
severe fading networks where σRj is large. On the other hand, 
PFS can be viewed as a RR scheduling algorithm in low-fading 
environments where σRj is relatively small compared with E[Rj]. 
Similar observations have been made by others [5, 6, 11]. 

We now conduct simulations for various fading scenarios to 
validate our theoretical results. 

IV. NUMERICAL RESULTS AND SIMULATION 
Throughout, we assume that users have independent fading 

channels. 

We run the simulations for the following scenarios: 

I the instantaneous data rate is Gaussian 

II Rayleigh fading channel, MIMO link; 

III Rayleigh fading channel, SISO link; 

IV Rician fading channel, SISO link, and 

V Rayleigh+Rician hybrid fading channel, SISO link. 

Simulation parameters are: 4000 scheduling slots, moving 
average factor k=500. For scenarios other than case I, the 
instantaneous data rate (in bps/Hz) is given by Log2(1+SINR), 
where SINR is a random variable characterized by 
corresponding fading process. 

Case I: Instantaneous data rate is Gaussian. Network size 
varies from 5 to 180 users. For each user, the instantaneous 
data rate R is a Gaussian distribution with a mean E[R] 
uniformly distributed between 1~8bps/Hz*1, and a standard 
deviation σR uniform distributed between 0~0.4E[R]*2. 

                                                           
*1 A data rate within 1~8bps/Hz corresponds to a practical modulation 
type (BPSK~256QAM). 
*2 Assumed Gaussian, R could be negative. So we set σR ≤0.4E[R] to 
ensure the probability Pr{R<0}≈0.6%. 

Case II: Rayleigh fading network of 10 users with 
average SINR=1,2,3,4,5,6,7,8,9,10 dB, respectively. 5×5 MIMO 
is used for the communication between a user and the access 
point. 

Case III:  Rayleigh fading network of 10 users with 
average SINR=1,2,3,4,5,6,7,8,9,10 dB, respectively. 

Case IV:  Rician fading: 10 users with average 
SINR=11,12,13,14,15,16,17,18,19,20 dB, respectively. 

Case V:  Rayleigh+Rician hybrid fading: 10 Rayleigh 
fading users with average SINR=1,2,3,4,5,6,7,8,9,10 dB, 
respectively, plus 10 Rician fading users with average 
SINR=11,12,13,14,15,16,17,18,19,20 dB*3. 

For cases III-V, SISO is used for the communication 
between a user and the access point (i.e., base station in cellular 
networks). 

For the simplicity of presentation, each node is numbered 
by its average SINR in cases III~V. 

The SINR of a Rayleigh fading user is an exponential 
distribution. The mean and variance of R (in bps/Hz) over a 
Rayleigh fading channel are then given by 
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where SINR  is the average received SINR. 

For a t×r MIMO link over Rayleigh fading channel, where t 
and r are the numbers of transmit and receive antennas, 
respectively, there are m=min(t,r) nonnegative singular values 
of the channel matrix, each with the same pdf [13] 
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where n=max(t,r), Lk
n-m(.) is generalized Laguerre polynomials 

of order k. We also assume that the channel information is not 
known at a sender side, i.e., sender allocates its power equally 
to all the transmit antennas. In such cases, the mean and 
variance of a MIMO link over a Rayleigh fading channel are 
given by [13] [14] 
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where )/1(log)( 2 tSINR λλω ×+= , SINR  is the average 
SINR. 

                                                           
*3 The SINR in a Rician fading area is typically larger than that in a 
Rayleigh fading area since there is a dominate component in Rician 
fading case. 



In a Rician fading environment, the SINR of a user is a 
noncentral chi-square distribution*1 [15] with two degrees of 
freedom and noncentrality parameter  ν2, where ν is the ratio of 
signal strength in dominant component over the scattered one, 
so the mean and variance of R over a Rician fading channel are 
given by 
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where I0(.) is the modified Bessel function of the first kind. 

In the simulation, we set noncentrality parameter ν2=25 for 
case IV. 

The validities of our theoretical results are illustrated in 
Figure 1~5. In these experiments, we make several important 
observations:  

(1). the PFS algorithm is bandwidth-efficient. Figure 1 
shows that it achieves a spectral efficiency of about 6~7bps/Hz 
in networks where the highest possible data rate for a user is 
8bps/Hz;  
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Figure 1.  Average overall throughput vs user number: Case I 

(Gaussian instantaneous data rate with random mean and variance) 

(2). Figure 2-5 suggest, while most existing prior results 
are for Rayleigh fading case, our analytical results apply to 
Rayleigh, Rician and hybrid fading scenarios;  

(3). While existing results only apply to low SINR region 
(linear rate model) or SISO cases (logarithm rate model), 
Figure 2-5 show that our analysis apply to both SISO and 
MIMO networks at low and/or high SINR;  

(4). Not surprisingly, Figure 3 indicates a higher average 
throughput for a Rician fading user as it has dominant 
component which results in higher SINR than a Rayleigh fading 
user. Nevertheless, it appears from Figure 4 that the throughput 
gain of PFS over RR scheduling (i.e., N×E[μ]/E[R], where N is 
the number of users in the network) under a Rayleigh fading 

                                                           
*1 The mean of a noncentral chi-square distribution with 2 degree of 
freedom and noncentrality parameter ν2 is 2+ν2. 

channel is typically higher than that under a Rician fading 
channel. From Figure 3, it is fair to predict that users with more 
fading will get more benefits with SINR being equal. 

 (5). Figure 4 and 5 show that, for the PFS algorithm in all 
three fading cases, E[μ]/E[R] is a monotonically decreasing 
function of E[R], while E[μ]/σR is a monotonically increasing 
function of σR. (From (9)-(14), it is easy to prove that σR is a 
monotonically increasing function of E[R] in Rayleigh/Rician 
fading environments);  
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Figure 2.  Average overall throughput vs user number 

Case II (5×5 MIMO, Rayleigh fading) 
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Figure 3.  Average throughput of each user 

Cases III, IV and V (Rayleigh, Rician and Hybrid fading) 
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Figure 4.  E[μ]/E[R]: monotonically decreasing with respect to E[R]:  

Cases III, IV and V (Rayleigh, Rician and Hybrid fading) 
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Figure 5.  E[μ]/σR: monotonically increasing with respect to σR 

Cases III, IV and V (Rayleigh, Rician and Hybrid fading) 

The overall conclusion from these experiments is that the 
closed-form expressions presented in Section III can be used 
with confidence to evaluate the performance of the PFS 
algorithm under general fading environments. 

V. CONCLUSIONS 
We have derived a theoretical framework to facilitate 

researches on PFS. Our contributions are summarized as 
follows. 

 We introduce a new framework to analyze PFS. It has 
the great practical and theoretical interests of being 
mathematically graceful and simple. The analytic 
framework provides very clear physical meaning of 
the PFS algorithm. 

 New exact expressions of the PFS throughput are 
developed. Simulations show that our formulas remain 
valid for general (i.e., Rayleigh, Rician and hybrid) 
fading scenarios. This is in contrast to existing 
researches that assume Rayleigh fading. 

 While existing analytic work are developed for SISO 
case, the proposed analytic framework provides an 
extension to analyze PFS in MIMO network. 

 Our contribution generalizes existing analytical results 
by removing the i.i.d restriction used in literature. 

Our analysis provides guideline and theoretical support on 
system design, simulation-based modeling and performance 
analysis of the PFS algorithm in the context of cross-layer 
design. The results are being integrated into the MEMBRANE 
project [16]. For the analysis to be more applicable, we are 
considering the extension to wireless mesh networks and also 

its extension to Nakagami fading as a general fading 
distribution. 
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