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Abstract—This paper provides analytical expressions to evaluate 
the performance of a random access wireless network in terms of 
user throughput and network throughput, subject to the 
constraint of proportional fairness amongst users. The 
proportional fair scheduling (PFS) algorithm is considered an 
attractive bandwidth allocation criterion in wireless networks for 
supporting high resource utilization while maintaining good 
fairness among network flows. The most challenge of a PFS 
problem is the lack of analytic expression. Though the PFS 
algorithm has been a research focus for some time, the results are 
mainly obtained from computer simulations. It is known that a 
PFS problem is NP-hard and, until recently, there are very few 
papers which give analytic insights into the PFS algorithm. 
Typically, existing works use simplified form of the PF 
preference metric and assume simple linear model, or the given 
analytic expression is valid only for very limited cases. In this 
research, we give analytical results of the PFS algorithm by 
providing closed-form expressions for the throughput in Rayleigh 
fading networks. We use Gaussian approximation method to 
model the feasible data rate in Rayleigh fading environments. 
Results obtained from the simulation and numerical analysis 
verifies the high accuracy of the closed-form expressions given in 
the paper. In particular, the analytic expressions given here will 
provide great help for the system design of a PFS-enable 
network, not only in that it is obtained from more realistic rate 
model, but also it applies to various kinds of network scenarios. 

Keywords-proportional fair scheduling, gaussian 
approximation, rayleigh fading 

I.  INTRODUCTION 
Scheduling policy plays an important role on system 

performances such as throughput, delay, jitter, fairness and loss 
rate [1]. Different from wired cases, scheduling in wireless 
networks need to consider the unique characteristics of time-
varying and location-dependent channel status. Among various 
related researches on scheduling, the proportional fair 
scheduling (PFS) algorithm has been widely conceived as an 
attractive solution since it provides a good compromise 
between the maximum throughput and user fairness by 
exploiting multi-user diversity and game-theoretic equilibrium 
in fading wireless environment [2]. Due to its low 
implementation complexity and good performance, the PF 
scheduler has received much attention for some time [3] [4]. It 
is known that a PF problem is NP-hard [5] [6], and in most 
researches [7] [8], the results are obtained from computer 
simulations. Holtzman [9] and Kushner [10] conducted the 

asymptotic analysis of the PFS algorithm. However, none of 
the researches aforementioned provides analytic expression of 
the throughput of PFS. Recently, [4] and [11] analyzed the PFS 
algorithm with the objective of obtaining an analytic expression 
for the throughput. Using the ratio of the instantaneous signal 
to interference-plus-noise ratio (SINR) to the average SINR as 
the preference metric instead of the original PF metric of the 
ratio of the feasible rate to the average rate (or throughput), by 
assuming the SINR of user follows exponential distribution, 
[11] obtained an analytic expression for the user throughput of 
PFS. While in [4], the closed-form expression obtained is valid 
only for networks where there are large numbers of user. 
Though the analytic results given in [11] and [4] are obtained 
either for a simplified form of the original PFS preference 
metric or for large user number case,  so far as we know, the 
formulae presented in [11] and [4] are the only two closed-form 
expressions available for the throughput of the PFS algorithm. 
In this paper, we analyze the PF scheduler under more realistic 
network scenarios and derive accurate closed-form expression 
for both network throughput and user throughput without the 
limitation of [4] and [11]. 

The rest of the paper is organized as follows. In Section II, 
we recapitulate the principles of the PFS algorithm and the 
Gaussian approximation to channel throughput. Then we obtain 
analytical results in terms of mean and standard deviation of 
the user throughput and the network throughput of PFS in an 
environment with Rayleigh fading in Section III. In Section IV, 
simulations are conducted to validate the analytic expression 
for various scenarios. In particular, we show that our closed-
form formulae for the throughput of PFS provide highly 
accurate estimates of simulation results. We give a brief 
conclusion in Section V. 

II. PROPORTIONAL FAIR SCHEDULING AND GAUSSIAN 
APPROXIMATION 

In this section, we first described the principles of the PFS 
algorithm, then the Gaussian approximation [12] [13] to the 
instantaneous data rate is outlined. 

A. Proportional Fair Scheduling Criteria 
Consider a single-cell system shown in Fig. 1, N mobile 

users (denoted as users m1, m2, …, and mN) are randomly 
located within the cell served by a base station (BS). 



 

Figure 1.  Single-cell network 

Consider the problem where these N users wishing to 
transmit data from the base station to N destinations, and the 
rates of transmission are randomly varying. Time is divided 
into small scheduling intervals, called slots. Until further 
notice, in each slot only one user is chosen to transmit. In next 
scheduling slot, system will estimate the rates by estimating the 
SINR, by use of a pilot signal broadcasted periodically, with a 
very short delay. The selection of the user to schedule is based 
on a balance between the current possible rates and fairness. 
The proportional fair scheduling (PFS) algorithm [2] [4] [9] 
[10] performs this by comparing the ratio of the feasible rate 
for each user to its average throughput tracked by an 
exponential moving average, which is defined as the preference 
metric. The user with the maximum preference metric will be 
selected for transmission at the next scheduling slot. This is 
described mathematically as follows. The end of slot n is called 
time n. In next time slot n+1, the instantaneous data rate of user 
j will be Rj[n+1]. Its k-point moving average throughput up to 
time n is denoted by, and the preference metric 
by ][/]1[]1[ ;; nrnRnM kjjkj +=+ . 

User ][/]1[maxarg]1[maxarg ;; nrnRnMi kjjjkjj +=+=  is 
scheduled to transmit in next time slot n+1. From the definition 
of a k-point moving average, the moving average throughput 
user j up to time n+1 of is updated by 
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where Ij[n+1] is the indicator function of the event that user j is 
scheduled to transmit in time slot n+1. 
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Obviously, for a time-varying fading environment, when 
the user number is large, there will always be high probability 
that some users are in the good channel status. On the other 
hand, the PFS algorithm provides some sense of fairness in that 
users frequently in the bad channel status have low throughput 
which in turn tends to increase their probability of being 
scheduled. It is the logarithm utility maximization 
characteristics, the multi-user diversity gains and the possibility 
to schedule bad-channel-condition users that make the PF 
scheduler superior to the traditional ones such as round-robin 
(RR) and opportunistic scheduler. 

Though the PFS algorithm described by (1) and (2) has 
fairly low implementation complexity, it is in fact NP-hard to 
obtain its analytic solution [5]. 

B. Gaussian Approximation Method 
Though it is a common practice to assume that the 

instantaneous data rate of a user is linearly proportional to its 
SINR [11] [14], this simple linear model is unrealistic and valid 
only for very small SINR. Various works [12] [13] have shown 
that the instantaneous data rate of a user in a Rayleigh fading, 
multiple-input-multiple-output (MIMO) wireless system could 
be more accurately approximated by a Gaussian distribution. 
Simulation results presented in [13] verified that the Gaussian 
approximation itself is surprisingly accurate for virtually all 
values of t, r, where t, r are the number of transmit antennas 
and receive antennas of each user, respectively. Refer to [13], 
for single-input-single-output (SISO) case (t=r=1), we can 
formally describe the Gaussian approximation method as 
follows: The instantaneous data rate R (in bps/Hz) for a user is 
Gaussian distribution, 
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where SINR is the signal to interference-plus-noise ratio, ][RE  
and Rσ  are the mean value and the standard deviation of R, 
respectively. 

III. PFS: CLOSE-FORM EXPRESSION 
From (1), the expect value of the k-point moving average 

throughput of user j up to time n+1 is 
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And from (2), 
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where Pr(Ij[n+1]=1) is the average probability that user j will 
be scheduled in time slot n+1. 

Assuming wide-sense stationary 
jr  and applying Bayes’s 

theorem, we can write (5) as 

][; nr kj
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Under the PFS criteria presented in Section II,  
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where ][; nr kj
 is the k-point moving average throughput of user 

j up to time n. 
For statistically independent Rj, (8) can be written in the 

form 
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where A[⋅] denotes the time average. 

For wide-sense stationary 
kjr ;

, we further assume it is first-
order ergodic, then 
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Therefore, for large n,k, (9) can be written as 
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On substitution of (13) into (7), we obtain 
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Assuming Rj is Gaussian as described in Section II, 
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where E[Rj], σRj are the expect value and standard deviation of 
Rj, respectively. 

It is reasonable to guess that [ ] [ ] [ ] [ ]jiji RERErErE // =  for 
PFS, we can then write 

[ ]
[ ] [ ]( ) [ ]

[ ] 









=










+ y

RE
RE

FREy
rE
rEF

i

j

ji
Rj

Ri
jR

j

i
R σ

σ
σ )1,0(  (16) 

where F(0,1)(⋅) denotes zero mean, unit variance standard 
normal distribution function. 

Finally, substituting (16) into (15) yields 
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For the case where all users in the network have 
proportional mean and standard deviation, (17) reduces to 
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where N is the number of users in the network. 

One can verify that equation (18) complies with our 
previous guess that [ ] [ ] [ ] [ ]jiji RERErErE // = . 

Now the closed-form expressions for the user throughput 
[ ]jrE  and network throughput [ ]PFSrE of PFS are presented 
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A few observations can be made from (19). First of all, as 
E[Rj]/N is the mean throughput of user j when using round 
robin (RR) scheduling, the second item in the right hand of (19) 



is in fact the improvement of user j’s throughput when using 
PFS instead of RR scheduling. User j’s throughput gain of PFS 
over RR scheduling is 
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Obviously, PFS will benefit more in severe fading 
environments where σRj is large. On the other hand, PFS can be 
viewed as RR scheduling in low fading environments where 
σRj is very small. Interestingly, user j’s throughput is solely 
determined by network user number N and the characteristics 
of its own instantaneous data rate and thus not affected by other 
users in the network when using PFS. 

By use of (3) and (4) in (20), a plot of GPFS vs. SINR for 
various N is given in Fig. 2 (curves up to down are for N=1000, 
500, 200, 70, 20, 5 and 1, respectively). Fig. 2 shows 
GPFS∈(1.4, 2.9) for a typical network scenario where 
SINR∈(6dB, 28dB) and  N∈(20, 200). 
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Figure 2.  PFS gain vs. SINR for different number of users 

Fig. 2 indicates the PFS gain GPFS (i.e., the multi-user 
diversity gain in [11]) is dependent on both user number N and 
SINR while in [11] it is solely dependent on the user number N. 
In fact, for a good-channel-condition user (i.e., with large 
SINR), it will not benefit much from PFS as the PFS principle 
requires that it should provide compensation for the bad-
channel-condition users. Obviously, our analytic expression is 
more realistic than [11]. 

A comparison of the PFS gains between our analytic 
expression and the one provided in [11] is depicted in Fig. 3 for 
different N. A typical value of  SINR=10 dB is assumed in the 
comparison. As shown in Fig. 3, [11] (the dashed line in the 
plot) unrealistically provides an over-optimistic estimate of the 
PFS gain. 
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Figure 3.  PFS gain plotted from (20) (the solid line) and [11] (the dashed one) 

IV. VALIDITY OF THE ANALYTIC EXPRESSION BY 
COMPARISON WITH SIMULATION RESULTS 

The analytic expressions for the throughput of PFS are now 
investigated by comparing numerical and simulation results for 
various network scenarios. The instantaneous data rates of 
different users are statically independent. Initial moving 
average throughputs of users are randomized in the 
simulations. System parameters are: 20 MHz bandwidth, 
k=500. For simplicity, we use the notation nj[µ, σ] to indicate 
the instantaneous data rate of user j has mean value µ and σ (in 
Mbps), respectively. 
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Figure 4.  Accuracy of the analytic expression for overall throughput 

(Scenario I) 

A. Scenario I: 
The data rates for all users are i.i.d Gaussian distributions. 

This is the scenario that some researches [11] [14] uses to 
analyze the PFS problem. 



We plot in Fig. 4 and Fig. 5 the throughput of a 10-user 
network for some typical values of SINR. 

Both figures show that the average throughputs from the 
simulations eventually converge to those determined by 
analytic expression (19). 

To further verify the validity of our formulae, we plot as a 
reference in Fig.6 the normalized throughput (bps/Hz) vs. 
number of network users for various values of SINR. 
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Figure 5.  Accuracy of the analytic expression for user throughput (Scenario I) 
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Figure 6.  Accuracy of the analytic expression for different user number 

(Scenario I) 

B. Scenario II: 
User j has randomized data rate mean E[Rj] and 

proportional standard deviation σRj. In fact, scenario I is a 
special case of scenario II. 

The feasible data rates (in Mbps) of users are randomized 
as:  
n1[80,40] n2[40,20] n3[26,13] n4[80,40] n5[35,17.5] 

n6[28,14] n7[10,5] n8[38,19] n9[18,9] n10[45,22.5] 
     
where we assume the proportional factor is 0.5. 

Once again, Fig. 7 justifies the accuracy of equations (19) 
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Figure 7.  Accuracy of the analytic expression for overall/user throughput 

(Scenario II) 

As expected, the simulation results in scenario I and II 
indicate a high accuracy of our closed-form formulae for PFS 
since the analytic expressions are obtained when assuming a 
proportional relationship between mean and standard deviation 
of moving average throughput. 

Now we investigate the validity of the analytic expression 
under more realistic condition. 

C. Scenario III: 
User j has randomized data rate mean E[Rj] and standard 

deviation σRj expressed by equations (3) and (4). Here we do 
not require proportional relationship between the mean and 
standard deviation of throughput. 

The feasible data rates (in Mbps) of users are randomized 
as:  
n1[43.3,18.9] n2[87.3,24.0] n3[24.1,13.7] n4[34.9,16.9] n5[129,25.3] 
n6[91.8,24.2] n7[70.6,22.7] n8[37.4,17.6] n9[150,25.5] n10[27.7,14.9] 
n11[45.9,19.4] n12[78.0,23.4] n13[34.2,16.8] n14[102,24.6] n15[86.9,23.9] 
n16[49.9,20.1] n17[25.5,14.2] n18[32.5,16.3] n19[118,25.1] n20[79.4,23.5] 
n21[141,25.4] n22[27.7,14.9] n22[27.7,14.9] n24[46.3,19.5] n25[37.8,17.6] 
n26[86.0,23.9] n27[70.6,22.7] n28[77.2,23.3] n29[127,25.2] n30[108,24.8] 
n31[86.0,23.9] n32[60.0,21.6] n33[133,25.3] n34[27.7,14.9] n35[86.0,23.9] 
n36[60.0,21.6] n37[47.1,19.6] n38[90.5,24.1] n39[158.9,25.5] n40[182,25.6] 
n41[64.2,22.1] n42[36.7,17.4] n43[34.2,16.8] n44[34.2,16.8] n45[42.1,18.6] 
n46[88.2,24.0] n47[65.5,22.2] n48[90.5,24.1] n49[71.9,22.9] n50[91.8,24.2] 
     

Clearly, the given user pattern reflects the real network 
scenario where different users may experience channel 
characteristics of great difference. 

For a network with the user pattern above, the validity of 
(19) are illustrated in Fig. 8 and Fig. 9 in terms of normalized 
overall throughput and user throughput (bps/Hz). It is 
encouraging from both figures that our analytic expressions 



provide high accuracy even in scenario III which exhibits 
Rayleigh fading characteristics of a real wireless environment. 

The overall conclusion from these experiments is that the 
closed-form expressions presented in Section III through 
analytic insights can be used with confidence to evaluate the 
performance of the PFS algorithm in various Rayleigh fading 
environments. The analytical results given in the paper will 
greatly facilitate the system design of a PFS-enable wireless 
network. 
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Figure 8.  Accuracy of the analytic expression for overall throughput 

(Scenario III) 
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Figure 9.  Accuracy of the analytic expression for user throughput    

(Scenario III) 

V. CONCLUSIONS 
In this paper, we develop analytic solution for the 

throughput of proportional fair scheduling in multi-user 
Rayleigh fading systems. Comparisons with simulation results 
have validated the analytic expressions presented in Section III. 

By using Gaussian approximation to model instantaneous 
user data rate, the proposed closed-form expressions are more 
realistic than the existing one [11]. The intuitive yet formal 
formulas have the great practical and theoretical interests of 
being mathematically graceful and simple. Our theoretical 
results and findings provide guideline and analytical support on 
system design, simulation-based modeling and performance 
analysis of the PFS algorithm in the context of cross-layer 
design. 
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