
 

  
Abstract—We investigate the proportional fair scheduling (PFS) 

algorithm, with the objective of obtaining an analytic expression 
for it. In this paper, we derive a closed-form expression for the 
throughput of PFS in wireless networks. The theoretical results 
from analysis are compared with those from simulations. The 
analytic model is shown to provide a high accuracy in evaluating 
the throughput of the PFS algorithm in Rayleigh fading 
environment. 
 

Index Terms—proportional fair scheduling, analytic expression, 
rayleigh fading 
 

I. INTRODUCTION 
Works have shown that the scheduling policy can 

significantly affect system performances such as throughput, 
delay, jitter, fairness and loss rate in wired and wireless 
networks [1]. Different from wired ones, scheduling in wireless 
networks needs to consider the unique characteristics of 
time-varying and location-dependent channel status. Among 
various related researches on wireless scheduling, the 
proportional fair scheduling (PFS) algorithm is an attractive 
solution providing good balance between the maximum 
throughput and node fairness in a fading environment. In his 
works on the bandwidth sharing among the elastic flows [2], 
Kelly derived a rate-allocation vector maximizing the sum of 
user utility that is known as the PF bandwidth allocation. Since 
Kelly introduced the concept of PFS, the PFS algorithm in 
wireless communication networks has garnered much attention 
[3]-[6] and currently implemented in 3G wireless for high data 
rate delay-tolerant services [7].It is known that a PF problem is 
NP-hard and it is also hard to obtain a close-to-optimal solution 
[8]. Until now, researchers [4][5][6][9] mainly rely on computer 
simulations to assess the performance of the PFS algorithm.  In 
this paper, we focus on mathematical analysis for the node 
throughput of PFS. 

The remainder of the paper is organized as follows. Section II 
presents the system model and the problem formulation. The 
mathematical analysis is conducted in Section III: An analytic 

model is derived for the throughput of PFS under Rayleigh 
fading environments. In Section IV, numerical and simulation 
results are presented and compared to validate the closed-form 
expression given in Section III. The paper is concluded in 
Section V. 
 

II. SYSTEM MODEL AND PROBLEM FORMULATION 
For a wireless network shown in Fig. 1, we focus on the link 

scheduling for node 0 which has radio link connections to its 
neighboring nodes m1, m2, …, and mN. Traffic is collected at 
node 0 before forwarding to the wired Internet. 

 
Fig.1. Slot-based scheduling in wireless network 

 
Consider the problem where these nodes (m1, m2, …, and mN) 

wishing to transmit data in the network (i.e., uplink 
transmission), and the rates of transmission are randomly 
varying due to channel fluctuations. Time is divided into small 
scheduling intervals called slots. In next scheduling slot, the 
system will estimate the rates by estimating signal to 
interference-plus-noise ratio (SINR), by use of a pilot signal 
broadcasted periodically, with a very short delay. The selection 
of the node to schedule is based on a balance between the 
current possible rates and fairness. The PFS algorithm performs 
this by comparing the ratio of the feasible rate for each node to 
its average throughput tracked by an exponential moving 
average, which is defined as the preference metric. The node 
with the maximum preference metric will be selected for 
transmission at the next scheduling slot. The PFS criteria can be 
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described formally as follows. The end of slot n is called time n. 
In next time slot n+1, the instantaneous data rate of node j will 
be Rj[n+1]. Its k-point moving average throughput up to time n 
is denoted by rj;k[n], and the preference metric (PF metric) by 
Mj;k[n+1]= Rj[n+1]/rj;k[n]. By definition, the k-point moving 
average rj;k[n] is defined as the average of its values in last k 
slots, rj;k[m] (m=n-k, n-k+1, …n-1). 

 Node i=arg maxj Mj;k[n+1]=arg maxj Rj[n+1]/rj;k[n] is chosen 
to transmit in next time slot n+1. The moving average 
throughput of node j up to time n+1 of is updated by 

k
nR

nInr
k

nr j
jkjkj

]1[
]1[][11]1[ ;;

+
×++⎟

⎠
⎞

⎜
⎝
⎛ −=+     (1) 

where Ij [n+1] is the indicator function of the event that node j is 
scheduled to transmit in time slot n+1. 
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By introducing user utility function Uj =Log[rj], Kelly [2] had 
proved that the sum of the user utility (user satisfaction 
indicator) is maximized under the PFS criteria. Obviously, for a 
time-varying fading environment, when the node number is 
large, there will always be high probability that some nodes are 
in the good channel status. On the other hand, the PFS provides 
some sense of fairness, in that nodes frequently in the bad 
channel status have low throughput which in turn tends to 
increase their probability of being scheduled. It is the logarithm 
utility maximization characteristics, the multi-user diversity 
gain and the possibility to schedule bad-channel-condition 
nodes that make the PF scheduler superior to the traditional 
ones such as round-robin (RR) and opportunistic scheduler. 

Though the PFS algorithm described by (1) and (2) has fairly 
low implementation complexity in that each scheduling slot 
requires only N addition operations and 2N+1 multiplication 
operations for given N nodes, it is in fact NP-hard to obtain its 
analytic solution [8]. Basically, there are two models commonly 
used to simplify the analysis of PFS: Linear model and 
logarithm model [10][11]. In the linear model, the feasible rate 
is linearly proportional to the SINR, while in the logarithm 
model, there is a logarithmic relationship between the SINR and 
the feasible rate. Different from these two common-used rate 
models, P. J. Smith [12] states that in a Rayleigh fading 
environment, the feasible rate R could be approximated by a 
Gaussian distribution with surprisingly high accuracy. For 
single-input-single-output (SISO) case, it reduces to 
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where E[R] and σR are the mean value and the standard 
deviation of R. 

As PF metric is directly related to the feasible rate R, for our 
analysis to be as accurate as possible, it is natural for us to 

assume in our analysis that the feasible rate over Rayleigh 
fading channels is Gaussian [12]. 
 

III. CLOSED-FORM EXPRESSION FOR PFS THROUGHPUT 
From (1), assuming wide-sense stationary rj, the expected 

value of the k-point moving average throughput of node j up to 
time n+1 is 
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Applying (2) to (5) yields 
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where Pr(Ij [n+1]=1) is the average probability that node j will 
be scheduled in time slot n+1. 

With Bayes’s theorem, we can write (6) as 
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where Pr(Ij[n+1]=1| Rj[n+1]=x) is the conditional probability 
that node j will be scheduled in time slot n+1, given that the 
feasible rate of node j in time slot n+1 took on the value x, fRj(.) 
the probability density function of Rj. 

Under the PFS criteria presented in Section II, for statistically 
independent Rj and wide-sense stationary, first-order ergodic rj;k 
, it holds for large n,k that 
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where rj;k[n] is the k-point moving average throughput of node j 
up to time n, FRj(.) the distribution function of Rj. 

For Gaussian distribution Rj as described in Section II, on 
substitution of (8) into (7), we obtain 
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where E[Rj], σRj are the expect value and standard deviation of 
Rj, respectively. 

From (3) and (4), one can prove that σRj>σRi and 
E[Rj]/σRj>E[Ri]/σRi if E[Rj]>E[Ri]. Obviously, with proportional 
fair scheduling, node j will have higher mean throughput E[rj] 
for higher E[Rj] and σj. We then have 
(E[rj]E[Ri]-E[ri]E[Rj])/(E[ri]σRj-E[rj]σRi)<0 for all σRj≠σRi. So 
when all σRi (i=1,2,…,N) are equal, with the fact 
FRi(x)=F(0,1)((x-E[Ri])/σRi) for Gaussian Ri, where F0,1(.) is zero 



 

mean, unit variance standard normal distribution function 
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 (10) 
where f0,1(.) is zero mean, unit variance standard normal 
probability density function. 
Denote Z=arg maxi [(E[rj]E[Ri]-E[ri]E[Rj])/(E[ri]σRj-E[rj]σRi)], 
it is easy to verify that  
Z≥(E[rj]E[Ri]-E[ri]E[Rj])/(E[ri]σRj-E[rj]σRi)≥-E[Rj]/σRj and, 
Z≤-arg maxi [E[Ri]/σRi]. So when not all σRi are equal, (9) can 
be written as 
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As the first integral in the right hand of (11) is not less than 0, 
we have 
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On the other hand, as (E[ri]/E[rj])×(yσRj+E[Rj])≥ (yσRi+E[Ri]) 
for any y≥Z≥(E[rj]E[Ri]-E[ri]E[Rj])/(E[ri]σRj-E[rj]σRi), we then 
have 
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wher M=-arg maxi [E[Ri]/σRi] (i=1,2,…,N). 
 Obviously, (10) and (13) can be described by the same 
expression, 
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 We now have the closed-form expression for the mean 
throughput of a node in the PFS-capable network. 
 (14) states that PFS will benefit more in severe fading 
environments where σRj is large. On the other hand, PFS can be 
viewed as RR scheduling in no-fading environments where σRj 
is very small. In addition, (14) reveals a very interesting merit of 
PFS that has not been seen elsewhere in literatures: node j’s 
throughput is solely determined by the network size together 
with the first order statistics of its own feasible rate. 
 One would notice that most theoretical results in literatures 
[10] [11] are obtained with the assumption that there are some 
kinds of i.i.d relationship among nodes. For example, [11] 
assumes that node k’s SINR Sk=ck×C (∀k), where ck is a 
node-related constant and C is a distribution independent of all 
nodes (i.e., C is i.i.d for all nodes). Clearly, our theoretical 
results are more general as we do not rely on the i.i.d 
assumption in the derivation. 
 

IV. NUMERICAL AND SIMULATION RESULTS 
We now evaluate the validity of the expression given by (14) 

under various scenarios. 
In the simulation, the feasible rates over Rayleigh fading 

channels are generated according to statically independent 
Gaussian distribution for different nodes and the initial moving 
average throughputs of nodes are randomized. System 
parameters are: 20 MHz bandwidth, k=500 for k-point moving 
average calculation. 

For simplicity, we use the notation nj[E[Rj],σRj] to indicate 
the feasible rate of node j has mean value E[Rj] and standard 
deviation σRj.  

 
Scenario A: 

For any j, node j has randomized data rate mean E[Rj] and 
small standard deviation σRj. The feasible data rates (in Mbps) 
of nodes are characterized as: 
n1[80,0.6], n2[40,0.2], n3[22,0.1], n4[90,0.8], n5[35,0.3], 



 

n6[32,0.2], n7[25,0.2], n8[38,0.4], n9[18,0.3], n10[20,0.3] 
 
This case corresponds to the scenario where the fading effect 

could be neglected. One can verify that if we apply round robin 
(RR) scheduler to the nodes as above, node 1 will have a 
throughput of about 80/10=8.0 Mbps. The accuracy of (14) is 
shown in Fig. 2. As stated earlier in Section III, both numerical 
and simulation results in Fig.2 indicate the PFS algorithm is in 
fact a RR scheduling algorithm in this scenario. 
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Fig.2. Accuracy of our analytic expression (scenario A) 

 
Scenario B: 

For any j, node j has randomized data rate mean E[Rj] and 
proportional standard deviation σRj. In fact, most researches [10] 
[11] use assumptions similar to this scenario in there derivations. 
For example, [11] assumes that node k’s SINR Sk=ck×C (∀k), 
where ck is a node-related constant and C is a distribution 
independent of all nodes. It is obvious that [11] assumes a 
proportional relationship between the mean and standard 
deviation of SINR Sk, i.e., E[Sk]/σSk=E[C]/σC is constant for all 
nodes. One can verify by numerical calculation that our 
expression given by (14) will give throughput result very close 
to the existing one given by [11] in this scenario. 
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Fig.3. Accuracy of our analytic expression (scenario B) 

We then plot in Fig.3 the throughput from numerical analysis 
and simulation. The feasible data rates (in Mbps) of nodes are 
characterized as: 
n1[80,40],  n2[40,25],  n3[18,9], n4[80,40],  n5[35,17.5], 
n6[28,14],  n7[20,10],  n8[28,14], n9[18,9],  n10[20,10] 
where σRj/E[Rj]=0.5 proportional factor is assumed. 

As expected, the simulation results in scenario A and B 
indicate a high accuracy of our analytic expression for PFS.  

We would like to point out that, in wireless networks, feasible 
data rate depends largely on user location, channel fading 
characters, modulation schemes, etc., so the assumption of 
scenario A and B may not fully reflect the data rate pattern in a 
real wireless network. For the analysis to be complete, we 
investigate the validity of (14) in more general cases. 
 
Scenario C: 

For any j, node j has randomized data rate mean E[Rj] and 
standard deviation σRj given by (3) and (4). 

To test the analytic expression under different load and SINR, 
we change the number of nodes from 1 to 50, i.e., incrementally 
add in the nodes characterized as follows, with the SINR of node 
1 fixed at 0.8 dB,10.8 dB and 20.8 dB, respectively. 

The feasible rates (in mega nats per second, 1 nat=1.443 bit) 
of node 1 are n1[13.5,9.2], n1[43.3,18.9], and n1[85.1,23.8] for 
SINR= 0.8 dB,10.8 dB and 20.8 dB, respectively. The feasible 
rates of other nodes are randomized as:  
n2[87.3,24.0], n3[24.1,13.7], n4[34.9,16.9], n5[129,25.3], 
n6[91.8,24.2], n7[70.6,22.7], n8[37.4,17.6], n9[150,25.5], 
n10[27.7,14.9], n11[45.9,19.4], n12[78.0,23.4], n13[34.2,16.8], 
n14[102,24.6], n15[86.9,23.9], n16[49.9,20.1], n17[25.5,14.2], 
n18[32.5,16.3], n19[118,25.1], n20[79.4,23.5], n21[141,25.4], 
n22[27.7,14.9], n23[34.9,16.9], n24[46.3,19.5], n25[37.8,17.6], 
n26[86.0,23.9], n27[70.6,22.7], n28[77.2,23.3], n29[127,25.2], 
n30[108,24.8], n31[86.0,23.9], n32[60.0,21.6], n33[133,25.3], 
n34[27.7,14.9], n35[86.0,23.9], n36[60.0,21.6], n37[47.1,19.6], 
n38[90.5,24.1], n39[158.9,25.5],n40[182,25.6], n41[64.2,22.1], 
n42[36.7,17.4], n43[24.4,13.8], n43[34.2,16.8], n45[42.1,18.6], 
n46[88.2,24.0], n47[65.5,22.2], n48[90.5,24.1], n49[71.9,22.9], 
n50[91.8,24.2] 
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Fig.4. Accuracy of our analytic expression (scenario C) 



 

We plot in Fig.4 the normalized throughput (nat/s/Hz) of 
node 1 obtained from numerical analysis and simulations.  

Once again, Fig. 4 justifies the accuracy of equation (14) for 
different SINR and node number. 

The overall conclusion from these experiments is that the 
closed-form expressions presented in Section III can be used 
with confidence to evaluate the performance of the PFS 
algorithm under various Rayleigh fading environments. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we develop analytic solution for the throughput 

of proportional fair scheduling in Rayleigh fading environment. 
It is shown through simulations that our analytic expression 
provides an accurate estimate of the throughput of PFS. 
Moreover, our theoretical results are more general than existing 
ones [10] [11] in that we do not assume i.i.d relationship among 
nodes in our derivations. The results are being integrated into 
the MEMBRANE project [13].  

Here we only considered the single-link PFS and one-hop 
network, multi-link PFS algorithms in MIMO antenna equipped 
networks and multi-hop environments will be the next stage of 
our research. 
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