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Abstract—In this paper, the performance of the network coded
amplify-forward cooperative protocol is studied. The use 6
network coding can suppress the bandwidth resource consurde
by relay transmission, and hence increase the spectral effency
of cooperative diversity. A distributed strategy of relay slection
is applied to the cooperative scheme, which can reduce syste
overhead and also facilitate the development of the expliti
expressions of information metrics, such as outage probality
and ergodic capacity. Both analytical and numerical resuls
demonstrate that the proposed protocol can achieve large godic
capacity and full diversity gain simultaneously.

Index Terms—cooperative diversity, network coding, multiple
access channels, ergodic and outage capacities.

I. INTRODUCTION

probability and diversity gain, is evaluated for the progubs
scheme, which shows its ability to achieve the full diversit
gain. Furthermore, the upper and lower bounds are developed
for the achievable ergodic capacity, which demonstratas th
the proposed scheme can achieve larger ergodic capacity tha
existing transmission schemes. Such balanced perforniance
due to the use of network coding, where one relay transnmissio
can serve more than one source node simultaneously. As a
result, the bandwidth resource consumed by relay trangmiss

is reduced and the spectral efficiency of cooperative trisism
sion is significantly improved, particularly in terms of eclic
capacity.

Il. PROTOCOLDESCRIPTION ANDDATA MODEL

OOPERATIVE transmission offers a new dimension to Consider a communication scenario wheké sources

mitigate the detrimental effects of multi-path fading byransmit data to a common destination with the helpZLof
exploiting signals transmitted through direct and relathpa relays, which is an important building block for wireless
[1]-[3]. However, such relay transmission consumes extg@mmunications. Time division duplex is applied here due
bandwidth resource, which implies that the use of cooperatito its simplicity, and the spectral efficiency of the develdp
diversity typically results in the loss of system throughpuprotocol can be further improved by using more advanced
On the other hand, network coding has been independentiyitiple access techniques.
developed in the context of wired communications and shownAt the first time slot, all sources broadcast their messages

with the superior capability to increase system througiupjt

[5]. Hence it is nature to study the combination of network,, = ZM

coding and cooperative diversity.

simultaneously. Hence at this time slot, the destinatiorives
m—1 hmpsm + n1, where s,, is the message
transmitted from thenth sourcepn; is the additive Gaussian

Network coded cooperative diversity has been previoustpise at the destination and,,p is the coefficient for the
studied in [6], where traditional network coding in [4] washannel between thexth source and the destination. In this
applied. The idea of applying physical layer network codingaper, all wireless channels are assumed to be independent
[5] to cooperative multiple access channels (MAC) has begifentical Raleigh fading. At the same time, each relay reei

briefly discussed in our previous work [7] without analytica
results. The aim of this correspondence is to provide a bette
understanding for such network coded cooperative MAC. A
distributed strategy of relay selection is first applied he t
proposed transmission protocol, which not only reduces tﬁ'
system overhead, but also makes the explicit analyticaltes
feasible. Then the system robustness, in terms of out
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the details for relay selection will be discussed at the end o
this section. The amplify-forward strategy is used here for
relay transmission. During the next/ — 1 time slots, the
selected relays will take their turns to forward the mixttoe

the destination,
I=1,...,M—1, (2)

Yp@+1) = hr,DYR, + Nit1,
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whereyr, = yr, /B 31 = 2%21 |hmr, |2 +1/p andpis is how such distributed decisions can maximize the overall
denoted as signal-to-noise ratio (SNR). Note thais defined system throughput in (3).

, - Consider that the expression of the sum-rate can be approx-
asfB = \/SM_|hpl2. It is assumed that the number of .
relaﬁ;;s is Ia%g:gr_tlh[ar(u]\?'— 1) ! ! N imated as (4) at high SNR. The facttrg det{D”DC~1}

So after M time slots, the observations at the destinatiogwﬁgiti{;‘: ;rt?gtoertan;hrgllﬁ dfg; :;estl:)m-i:aal‘;eé ?z:rdeavgl(zl(()e(rjferre![ay
can be expressed as ! legy y g
following variable

y = DHs+n, M—1 M—1

in cooperation. In specific, a distributed strategy of relay

. , tog [] mplBr 5~ oy oA
Wherey: [yDl yD]W] , S = [Sl SM] [ D: 1—1 h’RzD|2+612 1=1 |hRLD|2+ﬁl2
d|ag{ﬁOahR1Da---ahRMle}' |h |22
R DI|"Py iteri
hap /B harn/ o Hence the value ofm can be used as the criterion
him | hari, /51 for each relay to make its decision whether to be involved

: : : selection to achieve a large value of the sum-rate can bly easi
PRy /By-1 = AMRy . /By implemented as the following [2]. Each relay will calculéte
carrier sensing backoff time inversely proportional to ¥h&ie

ni 2 52
ng + hr,png, /B % which is a function of its local CSI. Then during

the' M — 1 time slots following the initial source broadcasting,

232
the M — 1 relays with the largest value qﬁ% can

o ) be selected for relay transmission, which ensures to olatain
Note that the matrixH is not a regular Gaussian randonarge value of the system throughput. In the rest of this pape
matrix. Each of its row is normalized, and more importantlyhe yse of such a distributed relay selection strategy veill b

the use of different relay selection strategies also has thesumed since it can significantly simplify the developnodnt
impact on the distribution oH. . explicit analytical results.

The sum-rate achieved by the proposed transmission proto-
col can be written as

and n =

nar 4+ MRy DRy [ Bri—1

B. Optimality of the Source Numbad

— 1 HH~—1
T = y7logdet{lnr + pDHH"DZC "} (3) A natyre question for the proposed protocol is how many
~ log p + ilogdet{DHDcfl} n ilogdet{HHH}, (4) sSources and rela_ys_should be inyited for network coded co-
M operative transmission. Intuition is that the more relays w
_ o _ _ have, the better quality relay we can find and hence the
where the high SNR assumption is applietl= diag{1, 1+ better performance we can obtain. However, the relatignshi

\hr,p|?/B%,- - 1+ |hgy_D?/B3—1}, and between the number of sources and the system performance
) o1 9 2 is not that straightforward. On one hand, with more sources
log det{DDC!} = — log 32 H LWIQ_ (5) Participating, one relay transmission can serve more gsurc
M =1 R DI* + B due to the use of network coding. On the other hand, a large

glumber ofM makes it difficult to find a relay which can have
ood connections with the multiple sources simultaneously
his resembles the so-called “channel hardening" effect in

As discussed previously, the choice of the selected refay
crucial to the system performance. With the assumption lbf flg,

channel state information (CSI), a centralized strategylma . .
(CS]) v MIMO systems where the increase of transceiver antennas

easily developed by enumerating all possible choices aj/sel . . . :
y P y galp y could reduce the obtainable multi-user diversity. To answe

and choosing thel/ — 1 ones which give the largest value . ) : . . ;
this question, the following conjecture is provided.

of the sum ratein (3). Although such an optimal strate ) ;
shall maximize the érg)godic sur%-rate, it couldpcause too ngzchcont]ec_ture 1. The sum-rate gctueved by the proposed
system overhead, which motivates the following distriUutetransm'Ss'on prot_o_col can be maX|m|zed where there are only
strategy. two sources participating cooperation. _
We are yet to find a formal proof of this, although our

o ) simulations indicate that it is the case. In Fig. 1, the suta ra
A. Distributed Relay Selection Strategy is shown as a function of the number of sources participating

Instead of the full CSI assumption, it is reasonable i@ cooperation. The number of relays is fixed las= 10 and
assume that each relay has the knowledge to its incoming amdy M — 1 relays will be opportunistically used. As can be
outgoing channel information. Such local CSI can be obthinseen from Fig. 1, the ergodic sum r&t€l} is always inversely
by asking thelM sources and the destination to broadcast pilptoportional toM for all SNR. In practice, the fact thatl = 2
symbols, which consumeg\/ + 1) extra time slots. Ideally is optimal is beneficial since the system complexity can be
each relay should make a decision whether to participate imeduced significantly.
cooperation only based on its local CSI. And the key question

I1l. OUTAGE PROBABILITY AND DIVERSITY GAIN
1Although the system robustness is not used as the critedorrefay

selection, the proposed two relay selection strategies ptawide the full As discussed 'n_the preymus SeCt'qn'_the_Opt'mal number
diversity gain as shown in the next section. of sources to participate into transmissioni§ = 2, and
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hence in the rest of this paper, the scenario with= 2 Using this lower bound of the mutual information, the outage
sources and. relays will be focused. The aim of this sectiorprobability can be upper bounded as

is to evaluate the system robustness achieved by the prpose 92k _ 1

protocol, where two information theoretic metrics will beedl, P(I4, <2R) < P (x +y< — ) , (10)
outage probability and diversity gain respectively. p

the same definition in [8], [9], the outage event can be defin
as

Note that the addressed communication scenario can bﬁ: 9 lhep|? 62 . .
viewed as one type of multiple access channels. And foIIgWiW erex = fy andy = hrp]2+87 Sincez is a sum of
% ri.i.d. Gaussian variabies, its distribution is the Shuare

unction with4 degree of freedony,, (z) = xe~*. The density
~ function of y is more complicated as it is a function of an
0= UOA’ 6) exponentially distributed variablg; = |hrp|? with f,, =
A e~ ¥, and another Chi-square distributed variable = 3,
where the union is taken over all possible subséts {1,2}, with f,,(y2) = yae™¥2.
and O 4 can be defined as Giveny = -2¥2 " the density function of the variabjecan

y1+y2
be found as

2 ! T(sq; cH=HD=D)< . (7 o _ w2y v
O.A { (SA7Y|SA ) ) ) = Z R } ( ) P(y) — / erfyg |:1 —e y227yj| dyg +/ y2€7y2dy2
y 0

€A

Furthermore, definéA| as the number of users iAd. Note = 1-2y% [K_1(2y) + K _2(2y)],
that the symmetric system is of interest in this paper, Whichh
means|A|R = .. , R;. Since only the two-user scenario isl\zn

considered here, the mutual information can be written as

ere K;(z) is the modified bessel function of the second
d with first order. After applying relay sele2ct2ion, thdaye
with the largest value of the criteriOFI\,'L’;%gfﬁl2 will be

h th 2 L 1
Ta = log [1 +p <|hiD|2 n |hrp|*|hir| )] ic{1,2), chosen.Hence the use of the relay selection strategy change

|hir|? + |heD|? the density function of the variable as
and Z4, = logdet{I + pDHH”D?C™1}, P(y) ={1 - 2y%e " 2[K_1(2y) + K_»(2y)]}t. (11)
where 74, = Z(sa,;ylsa:,H = H,D = D). In this Definea = 22"-1 Now the outage probability can be finally

paper, we use the special symbélto denote exponential upper bounded as
equality [8],i.e, f(p) = p" to denote lim % =n. The For large SNR, we have — 0. And for small value ofz,
p—00

following theorem provides the diversity gain and the highl® bessell functions can be approximatedasz) ~ = and
SNR approximation for the outage probability achieved ey tH<1(2) ~ 3. Further utilizing the fact thak () = K (z),

proposed transmission protocol. the following approximation can be obtained as
Theorem 2: Assume that all CSl are i.i.d Raleigh fading. o ez ¥
For the scenario with two sources aidrelays, the outage P(la; <2R) < /o 55{1 —¢ } dx (13
probability of the proposed network coded transmission pro oL L+2 1
tocol can be approximated at high SNR as ~ S = el
1 . . .
P(O) = pEeE (8) which completes the first step of this proof.

On the other hand, it is obvious thd(l4, < R) =
Proof: The proof for this theorem can be accomplishe® (14, < R) due to the system symmetry. So in the following,

in two steps. For the first step, it will be proved tHa{Z 4, < we only focus on the outage probabilify(4, < R), which

2R) < —rw. And then itis to prove thaP(Z4, < R) = &  can be shown that

fori=1,2.

hrpl?|hir|?

i — _ hnPiihel i i Z — og |14 p (Jhupf2 + LrroIE AT,

Definey = i amim o SO firstly rewrite the LA g p | |hipl nl + [haol? (14)

expression off 4, as _ _
Define a complex variable a8 = hy pho g — ho,phi,p, Definez = 22 wherez; = |hrp|* andz; = [k z|*. Since

and further denote its real and imaginary partsias a + jb. bothzi andz, are i.i.d. exponentially distributed, the PDF of

Then we can obtain z can be shown as

/ e *t {1 — 67;11—’22} dz —|—/ e *'dz; (15)
z 0

1 —/ e e A dy =1 — 2z¢” 2K (22).

\h1,0*|ha,r|* + |h2,p|?|h1,r|* — 2R{R} pha.ph1,rRPS R} P(2)
= R{ww*} =a® > 0.

By using such a fact, the mutual information can be lower
bounded as After applying relay selection, the outage probability is

Ta;, > log[l+ p(lh1pl?+ |he,pl?) P(Ipa, <R)=P(z+z<2f-1)

|ha,r|* + |h2,r|* 2] /0‘ - e L
: : h . - 1[1_2 — z)e 20K (20 — 2 } dz.
|h1,R|2+|h2,R|2+|hR,D|2| R7D| ) € (Oé I)e 1( (6] CC) €T
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2 2
p7lher,D
Ta, = log {1 + pYlhe,ol* + p(lh1,p|* + |ho,p|?) + e |i|12 R|2|+ TP 9)
x (|h1,p1?|h2,r|? + |h2,p|?|h1,R|* — 2R{} ph2,ph1 RIS R})] -
a L
P(I4, <2R) < / xe " {1 —2(a— )% 2K _ (200 — 22) + K_»(200 — 296)]} dzx. (12)
0

With the high SNR assumption, the bessel function can kich is a function of two variabledpg det( D DC~!] and

approximated a¥; (z) ~ 2, which results log det[HH].
« N The exact expression for the ergodic capacity will be
P(Ira) = / e ” [1 —6‘2(“‘1)} da (16) difficult, and hence we will be focusing on developing the
0

N upper bound and lower bound of the capad@tZ}, which
~ / [2(a — )]V dw = 27 -~ _— _ can be accomplished in two steps. First the expectation of
0 L+1  pttt 3E{logdet[DF¥DC™']} is evaluated, which can be written
The overall outage probability?(O) shall be bounded as as
the following

aL"'l ] 1

202
%8{log detDDC ]} = £ {% log B2 + % log M} _

—1 1 hrpl|2 2
7 = PO <PO)<)Y P(OA)= . (A7) o L 2 [haoP? 5
r A P Note 3, is Chi-square distributed with degree of freedom,
And the proof for Theorem 2 is completed. m and heace\\?’\é? can haw{llog 33} = 1v(2)loge. Define
RD 1

The key message delivered by Theorem 2 is that the full = Thno P+ 57

diversity gainL + 1 can be achieved by the proposed trangrevious section
mission protocol, which is also achievable by many existing 5 9. I
cooperative protocols in [2], [9]. Then the question is Vhieet P(z) = {1-2%%[Ki(22) + K2(22)]}. (20)

the proposed protocol can offer any other benefits Whi|g,=y using the factoi (2z) > 0 for z > 0, this CDF can be
maintaining the full diversity property, which is answeriad upper bounded as

the next section.

and its CDF has been developed in the

P(z) < {1- 2z26_22K2(2z)}L . (21)
IV. EROGOTIC CAPACITY

Definition 1: Ergodic capacity is the long-term data rat
that a system can support, i.e.,

ecall that the Bessel function can be expressed as the
ollowing integral

Co = /OO Tf7(T)dT Ko(z) = er(é) /OO eH(2 —1)%dt,  (22)
e 0 ) 2 F(i) 1
where fz(-) is the probability density function (PDF) of thewhich can be lower bounded as
mutual informationZ. 42 oo o—?
In the following theorem the ergodic capacity based on sum Ks(z2) 30 et —1)%dt = 2— (23)
.. 1

rate will be provided for the proposed protocol.
Theorem 3: Assume all channels are i.i.d. Raleigh fadwhere the inequality follows the assumptio 1. Applying
ing. The ergodic capacity achieved by the proposed netwdfks simplified form to (21), the CDF of can be finally upper
coded cooperative transmission protocol can be bounded d®unded asP(z) < {1 —e %7} ",
To obtain the lower bound, observe that the Bessel function

L
1 k k can be expressed as the integral form
E{In} + 3 (; Cr(-1) log4k> < &{1} (18) xp integ

22 [ et
K06) = & /0 ot (24)

L
< E&{Ip}+ L < E C’Z(—l)hogk) :
2 . . N .
k=1 which provides the following inequality
where E{Zp} =~ logp — Cloge is the ergodic capacity ) 2
. : - 25 [Cew 2
achieved by direct transmission. Ky(z) < _/ dt — (25)
= 35,

Proof: Following the previous discussion, the ergodic 22

t3 22’
capacity a_chieved by _the proposed transmission protoe®! Ganere the inequality follows the assumptierf > 1 for ¢ > 0.
be approximated at high SNR as Following the similar step, the bessel function with firstier
- 1 Ham 1 can be upper bounded &, (z) < % By using the bounds of
€42}~ logp + 25{10gdet[D DC} (19) the bessel functions, the CDF can be bounded as

—l—%é‘{logdet[HHH]} {1- e_4Z}L >Pz)>{1—e 1+ z)}L . (26)
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An observation is that the lower bound of the CDF is still navherew; are independent to each other and~ 3.

helpful to obtain the explicit expression. A simple inedtyal By using such a result, the addressed expectation can be
1+ 2z < €* holds forz > 0, which can further simplify the evaluated as

bounds of the CDF as

{1- e—4z}L > P(z) > {1- e—z}L’ 27 E{logdet[ A} = 5{10gd2et[]_)I:II:IH]} (33)
sincel + z < e* for z > 0. As can be seen from (27), both = &f{log [ [ e} + £{log det[HH"]}
the upper and lower bounds share the same structure, which i=1

will simplify the following development. Furthermore, ot ) ) o )
two bounds resembles the CDF of the largest value amiondNote that a; is Chi-square distributed witht degree of
i.i.d. exponentially distributed variables. freedom. Together using the distribution in (32), we canehav
Following the similar steps in [7], the expectation of the o
variablelog z can be bounded as g{1ogdet[HHH]} = _/ zlog ze *dz (34)
0

f(4) < Eflog 2} < f(1) (28)
where f(-) is defined as

+ /000 logze™"dz = loge[ty(1) — ¥(2)].

FO) = /OO ALe (1 — e )L og 2dz. (29) Note thatyy = —C. Combining (31) and (34), the proof is
0 completed. ]
By applying binomial expansion, we can have The capacity difference between the proposed protocol and
direct transmission can be bounded as

L
fo) = 1ogeZCf(—1)k[C+1n/\k]- (30) L L
=1 % (Z cﬁ(—l)’“log4k> <E—Ep< % (Z Cr(—1)"log kz) :

k=1 k=1

Utilizing the fact thaty",_, C%(—1)F = —1, the expectation

of log » can be bounded as Provided that there are enough number of relays, the lower

L bound of the difference can be positive, and hence the ergodi
—Cloge+ Y CF(—1)*log4k < E{log 2} (31) capacity larger than that of direct transmission can besxeki
k=1 by the proposed scheme.
L
< —Cloge+ Y Cf(-1)Flogk.
k=1 V. NUMERICAL RESULTS

And evidently the difference of the upper and lower bound is
f)—f4)=2. In this section, the performance of the proposed transmis-

The expectation of the variablvgdet{HH} can be sion protocol is evaluated by using Monte-Carlo simulation
obtained in an explicit expression as the following. Difflet The performance of direct transmission and the best-relay
to regular random matrices, each row Hf is normalized, scheme [2] is also shown for comparison. Only = 2
and furthermore the elements for the second row is no long®iurces are involved in user cooperation and all channels ar
Gaussian distributed because of relay selection. The felay assumed i.i.d. Raleigh fading. In Fig. 2, the outage prditabi

chosen since it has the largest valu V';‘ zljliﬁgz among the is shown as a function of SNR, where the number of relays
R; D - .
L relay candidates. This implicit structure Bf has the impact iS Set asL = 2 and the targeted per user data rate is set as

on its distribution and hence complicates the calculation. [ = 4 bits/s/Hz. As can be seen from the figure, for practical

An important observation is that the relay selection ciorer SNR range, the proposed scheme can achieve smaller outage
|hg,p|*B7 OProbability than two comparable schemes. Furthermore, the

rl]’gﬁ[de\frﬂéi?ﬂ Isr;r;ltye; \fl\llj:r:: tlé)gcsf et:weemr;%rtm Soi];:j(:eha::(;lw’row use of the distributed relay selection strategy does nosecau
H has begn normalized, the effect of r.elay selection on the ", performanc_e penalty comp_ared with the optimal one. I.n
distribution has been re’moved Hence construct gve 1 9. 3, the ergod_|c capacity achieved by the four schemes S
' . . . hown as a function of SNR, where the number of the relays is
vectors,vy, v, whose elements are i.i.d. Raleigh dIStrIbUteCi’et asL = 2 and L = 10. Consistent to our analytical results,
';'2ethdee?jllglv\t?nngcz(;r:e(?zihneacri]tetermmahit[HH is the same both the_ two proposed n_etwork (_:oded coqperative schemes
can achieve larger ergodic capacity than direct transomissi
detDHH?| whereas the existing cooperative scheme can only realize
_ "1 e ) a faction of the capacity achieved by direct transmission.
where;{ = [vit v, D = diagia;,a2} and an = The reason for such significant gain of ergodic capacity is
1/,V"Vn' Not.e thatHH * is the classical Complgx Ra_nd(_)mthat the use of network coding ensures the suppression of
Wishart Matrix whose determinant has the following distrib . 4vidth resource wasted by relay transmission. In specifi

tion [10] 9 one single relay transmission can serve more than one source
det {HFH"} ~ H“l (32) nNodes simultaneously, and hence the spectral efficiency of
i cooperative diversity can be improved substantially.
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