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On the Study of Network Coded AF Transmission
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Abstract—In this paper, the performance of the network coded
amplify-forward cooperative protocol is studied. The use of
network coding can suppress the bandwidth resource consumed
by relay transmission, and hence increase the spectral efficiency
of cooperative diversity. A distributed strategy of relay selection
is applied to the cooperative scheme, which can reduce system
overhead and also facilitate the development of the explicit
expressions of information metrics, such as outage probability
and ergodic capacity. Both analytical and numerical results
demonstrate that the proposed protocol can achieve large ergodic
capacity and full diversity gain simultaneously.

Index Terms—cooperative diversity, network coding, multiple
access channels, ergodic and outage capacities.

I. I NTRODUCTION

COOPERATIVE transmission offers a new dimension to
mitigate the detrimental effects of multi-path fading by

exploiting signals transmitted through direct and relay paths
[1]–[3]. However, such relay transmission consumes extra
bandwidth resource, which implies that the use of cooperative
diversity typically results in the loss of system throughput.
On the other hand, network coding has been independently
developed in the context of wired communications and shown
with the superior capability to increase system throughput[4],
[5]. Hence it is nature to study the combination of network
coding and cooperative diversity.

Network coded cooperative diversity has been previously
studied in [6], where traditional network coding in [4] was
applied. The idea of applying physical layer network coding
[5] to cooperative multiple access channels (MAC) has been
briefly discussed in our previous work [7] without analytical
results. The aim of this correspondence is to provide a better
understanding for such network coded cooperative MAC. A
distributed strategy of relay selection is first applied to the
proposed transmission protocol, which not only reduces the
system overhead, but also makes the explicit analytical results
feasible. Then the system robustness, in terms of outage
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probability and diversity gain, is evaluated for the proposed
scheme, which shows its ability to achieve the full diversity
gain. Furthermore, the upper and lower bounds are developed
for the achievable ergodic capacity, which demonstrates that
the proposed scheme can achieve larger ergodic capacity than
existing transmission schemes. Such balanced performanceis
due to the use of network coding, where one relay transmission
can serve more than one source node simultaneously. As a
result, the bandwidth resource consumed by relay transmission
is reduced and the spectral efficiency of cooperative transmis-
sion is significantly improved, particularly in terms of ergodic
capacity.

II. PROTOCOL DESCRIPTION ANDDATA MODEL

Consider a communication scenario whereM sources
transmit data to a common destination with the help ofL
relays, which is an important building block for wireless
communications. Time division duplex is applied here due
to its simplicity, and the spectral efficiency of the developed
protocol can be further improved by using more advanced
multiple access techniques.

At the first time slot, all sources broadcast their messages
simultaneously. Hence at this time slot, the destination receives
yD1 =

∑M

m=1 hmDsm + n1, where sm is the message
transmitted from themth source,n1 is the additive Gaussian
noise at the destination andhmD is the coefficient for the
channel between themth source and the destination. In this
paper, all wireless channels are assumed to be independent
identical Raleigh fading. At the same time, each relay receives

yRn
=

M
∑

m=1

hmRn
sm + nRn

, n ∈ {1, . . . , L}. (1)

So after this first transmission, all relays received a mixture
of theM transmitted messages. The key idea of the proposed
protocol is to introduce the idea of network coding into
cooperative networks, where one relay transmission can help
more than one source simultaneously.

Due to the dynamic nature of radio propagation, the con-
nection of one relay with the destination and sources varies,
which is critical to the system performance. Assume thatM−1
relays have been selected to participate into cooperative,where
the details for relay selection will be discussed at the end of
this section. The amplify-forward strategy is used here for
relay transmission. During the nextM − 1 time slots, the
selected relays will take their turns to forward the mixtureto
the destination,

yD(l+1) = hRlD ˆyRl
+ nl+1, l = 1, . . . ,M − 1, (2)
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where ˆyRl
= yRl

/βl, βl =

√

∑M

m=1 |hmRl
|2 + 1/ρ andρ is

denoted as signal-to-noise ratio (SNR). Note thatβ0 is defined

as β0 =
√

∑M
m=1 |hmD|2. It is assumed that the number of

relays is larger than(M − 1).
So afterM time slots, the observations at the destination

can be expressed as

y = DHs + n,

wherey =
[

yD1 · · · yDM

]T
, s =

[

s1 · · · sM

]T
, D =

diag{β0, hR1D, . . . , hRM−1D},

H =











h1D/β0 · · · hMD/β0

h1R1
/β1 · · · hMR1

/β1

...
...

...
h1RM−1

/βM−1 · · · hMRM−1
/βM−1











and n =











n1

n2 + hR1DnR1
/β1

...
nM + hRM−1DnRM−1

/βM−1











.

Note that the matrixH is not a regular Gaussian random
matrix. Each of its row is normalized, and more importantly,
the use of different relay selection strategies also has the
impact on the distribution ofH.

The sum-rate achieved by the proposed transmission proto-
col can be written as

I =
1

M
log det{IM + ρDHH

H
D

H
C

−1} (3)

≈ log ρ +
1

M
log det{DH

DC
−1} +

1

M
log det{HH

H}, (4)

where the high SNR assumption is applied,C = diag{1, 1+
|hR1D|2/β2

1 , · · · , 1 + |hRM−1D|2/β2
M−1}, and

log det{DHDC−1} =
1

M
log β2

0

M−1
∏

l=1

|hRlD|2β2
l

|hRlD|2 + β2
l

. (5)

As discussed previously, the choice of the selected relays is
crucial to the system performance. With the assumption of full
channel state information (CSI), a centralized strategy can be
easily developed by enumerating all possible choices of relays
and choosing theM − 1 ones which give the largest value
of the sum rate1 in (3). Although such an optimal strategy
shall maximize the ergodic sum-rate, it could cause too much
system overhead, which motivates the following distributed
strategy.

A. Distributed Relay Selection Strategy

Instead of the full CSI assumption, it is reasonable to
assume that each relay has the knowledge to its incoming and
outgoing channel information. Such local CSI can be obtained
by asking theM sources and the destination to broadcast pilot
symbols, which consumes(M + 1) extra time slots. Ideally
each relay should make a decision whether to participate into
cooperation only based on its local CSI. And the key question

1Although the system robustness is not used as the criterion for relay
selection, the proposed two relay selection strategies canprovide the full
diversity gain as shown in the next section.

is how such distributed decisions can maximize the overall
system throughput in (3).

Consider that the expression of the sum-rate can be approx-
imated as (4) at high SNR. The factorlog det{DHDC−1}
plays an important role for the sum-rate, and a good relay
selection strategy should be able to yield a large value for the
following variable

log
M−1
∏

l=1

|hRlD|2β2
l

|hRlD|2 + β2
l

=
M−1
∑

l=1

log
|hRlD|2β2

l

|hRlD|2 + β2
l

.

Hence the value of
|hRlD |2β2

l

|hRlD|2+β2
l

can be used as the criterion
for each relay to make its decision whether to be involved
in cooperation. In specific, a distributed strategy of relay
selection to achieve a large value of the sum-rate can be easily
implemented as the following [2]. Each relay will calculateits
carrier sensing backoff time inversely proportional to thevalue
|hRlD |2β2

l

|hRlD|2+β2
l

which is a function of its local CSI. Then during
theM−1 time slots following the initial source broadcasting,

the M − 1 relays with the largest value of
|hRlD |2β2

l

|hRlD |2+β2
l

can
be selected for relay transmission, which ensures to obtaina
large value of the system throughput. In the rest of this paper,
the use of such a distributed relay selection strategy will be
assumed since it can significantly simplify the developmentof
explicit analytical results.

B. Optimality of the Source NumberM

A nature question for the proposed protocol is how many
sources and relays should be invited for network coded co-
operative transmission. Intuition is that the more relays we
have, the better quality relay we can find and hence the
better performance we can obtain. However, the relationship
between the number of sources and the system performance
is not that straightforward. On one hand, with more sources
participating, one relay transmission can serve more sources
due to the use of network coding. On the other hand, a large
number ofM makes it difficult to find a relay which can have
good connections with the multiple sources simultaneously.
This resembles the so-called “channel hardening" effect in
MIMO systems where the increase of transceiver antennas
could reduce the obtainable multi-user diversity. To answer
this question, the following conjecture is provided.

Conjecture 1: The sum-rate achieved by the proposed
transmission protocol can be maximized where there are only
two sources participating cooperation.
We are yet to find a formal proof of this, although our
simulations indicate that it is the case. In Fig. 1, the sum rate
is shown as a function of the number of sources participating
in cooperation. The number of relays is fixed asL = 10 and
only M − 1 relays will be opportunistically used. As can be
seen from Fig. 1, the ergodic sum rateE{I} is always inversely
proportional toM for all SNR. In practice, the fact thatM = 2
is optimal is beneficial since the system complexity can be
reduced significantly.

III. O UTAGE PROBABILITY AND DIVERSITY GAIN

As discussed in the previous section, the optimal number
of sources to participate into transmission isM = 2, and
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hence in the rest of this paper, the scenario withM = 2
sources andL relays will be focused. The aim of this section
is to evaluate the system robustness achieved by the proposed
protocol, where two information theoretic metrics will be used,
outage probability and diversity gain respectively.

Note that the addressed communication scenario can be
viewed as one type of multiple access channels. And following
the same definition in [8], [9], the outage event can be defined
as

O ,
⋃

A

OA, (6)

where the union is taken over all possible subsetsA ⊆ {1, 2},
andOA can be defined as

OA ,

{

I(sA;y|sAc ,H = H,D = D) ≤
∑

i∈A

Ri

}

. (7)

Furthermore, define|A| as the number of users inA. Note
that the symmetric system is of interest in this paper, which
means|A|R =

∑

i∈ARi. Since only the two-user scenario is
considered here, the mutual information can be written as

IAi
= log

[

1 + ρ

(

|hiD|2 +
|hRD|2|hiR|

2

|hiR|2 + |hRD|2

)]

, i ∈ {1, 2},

and IA3
= log det{I + ρDHHHDHC−1},

where IAn
= I(sAn

;y|sAc
n
,H = H,D = D). In this

paper, we use the special symbol
.
= to denote exponential

equality [8], i.e., f(ρ)
.
= ρn to denote lim

ρ→∞

log f(ρ)
log ρ

= n. The

following theorem provides the diversity gain and the high-
SNR approximation for the outage probability achieved by the
proposed transmission protocol.

Theorem 2: Assume that all CSI are i.i.d Raleigh fading.
For the scenario with two sources andL relays, the outage
probability of the proposed network coded transmission pro-
tocol can be approximated at high SNR as

P (O)
.
=

1

ρL+1
. (8)

Proof: The proof for this theorem can be accomplished
in two steps. For the first step, it will be proved thatP (IA3

≤
2R) ≤ 1

ρL+2 . And then it is to prove thatP (IAi
≤ R)

.
= 1

ρL+1

for i = 1, 2.
Define γ =

|h1,R|2+|h2,R|2

|h1,R|2+|h2,R|2+|hR,D|2 . So firstly rewrite the
expression ofIA3

as
Define a complex variable asw = h1,Dh2,R − h2,Dh1,R,

and further denote its real and imaginary parts asw = a+ jb.
Then we can obtain

|h1,D|2|h2,R|
2 + |h2,D|2|h1,R|

2 − 2R{h∗1,Dh2,Dh1,Rh
∗
2,R}

= R{ww∗} = a2 ≥ 0.

By using such a fact, the mutual information can be lower
bounded as

IA3
≥ log

[

1 + ρ(|h1,D|2 + |h2,D|2)

ρ
|h1,R|

2 + |h2,R|
2

|h1,R|2 + |h2,R|2 + |hR,D|2
|hR,D|2

]

.

Using this lower bound of the mutual information, the outage
probability can be upper bounded as

P (IA3
< 2R) ≤ P

(

x+ y <
22R − 1

ρ

)

, (10)

where x = β2
0 and y =

|hRD|2β2
1

|hRD|2+β2
1

. Since x is a sum of
four i.i.d. Gaussian variables, its distribution is the Chi-square
function with4 degree of freedom,fx(x) = xe−x. The density
function of y is more complicated as it is a function of an
exponentially distributed variabley1 = |hRD|2 with fy1

=
e−y1 , and another Chi-square distributed variabley2 = β1

with fy2
(y2) = y2e

−y2 .
Giveny = y1y2

y1+y2
, the density function of the variabley can

be found as

P (y) =

∫ ∞

y

y2e
−y2

[

1 − e
−

y2y

y2−y

]

dy2 +

∫ y

0

y2e
−y2dy2

= 1 − 2y2e−2y[K−1(2y) + K−2(2y)],

whereK1(x) is the modified bessel function of the second
kind with first order. After applying relay selection, the relay
with the largest value of the criterion|hRD|2β2

1

|hRD|2+β2
1

will be
chosen. Hence the use of the relay selection strategy changes
the density function of the variabley as

P (y) = {1 − 2y2e−2y[K−1(2y) + K−2(2y)]}
L. (11)

Defineα = 22R−1
ρ

. Now the outage probability can be finally
upper bounded as

For large SNR, we haveα→ 0. And for small value ofx,
the bessel functions can be approximated asK2(x) ≈

2
x2 and

K1(x) ≈
1
x

. Further utilizing the fact thatK−n(x) = Kn(x),
the following approximation can be obtained as

P (IA3
< 2R) ≤

∫ α

0

x
{

1 − e−2(α−x)
}L

dx (13)

≈
2LαL+2

(L + 1)(L+ 2)

.
=

1

ρL+2
.

which completes the first step of this proof.
On the other hand, it is obvious thatP (IA1

< R) =
P (IA2

< R) due to the system symmetry. So in the following,
we only focus on the outage probabilityP (IA1

< R), which
can be shown that

IL,A1
= log

[

1 + ρ

(

|h1D|2 +
|hRD|2|h1R|

2

|h1R|2 + |hRD|2

)]

.(14)

Definez = z1z2

z1+z2
wherez1 = |hRD|2 andz2 = |h1R|

2. Since
both z1 andz2 are i.i.d. exponentially distributed, the PDF of
z can be shown as

P (z) =

∫ ∞

z

e−z1

[

1 − e−
z1z

z1−z

]

dz1 +

∫ z

0

e−z1dz1 (15)

= 1 −

∫ ∞

z

e−z1e−
yz

z1−z dz1 = 1 − 2ze−2zK1(2z).

After applying relay selection, the outage probability is

P (IL,A1
≤ R) = P

(

x+ z < 2R − 1
)

=

∫ α

0

e−x
[

1 − 2(α− x)e−2(α−x)K1(2α− 2x)
]L

dx.
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IA3
= log

[

1 + ργ|hR,D|2 + ρ(|h1,D|2 + |h2,D|2) +
ρ2|hR,D|2

|h1,R|2 + |h2,R|2 + |hR,D|2
(9)

× (|h1,D|2|h2,R|
2 + |h2,D|2|h1,R|

2 − 2R{h∗1,Dh2,Dh1,Rh
∗
2,R})

]

.

P (IA3
< 2R) ≤

∫ α

0

xe−x
{

1 − 2(α− x)2e−2(α−x)[K−1(2α− 2x) + K−2(2α− 2x)]
}L

dx. (12)

With the high SNR assumption, the bessel function can be
approximated asK1(x) ≈

1
x

, which results

P (IL,A1
) ≈

∫ α

0

e−x
[

1 − e−2(α−x)
]N

dx (16)

≈

∫ α

0

[2(α− x)]
N
dx = 2L α

L+1

L+ 1

.
=

1

ρL+1
.

The overall outage probabilityP (O) shall be bounded as
the following

1

ρL+1

.
= P (OA) ≤ P (O) ≤

∑

A

P (OA)
.
=

1

ρL+1
. (17)

And the proof for Theorem 2 is completed.
The key message delivered by Theorem 2 is that the full
diversity gainL + 1 can be achieved by the proposed trans-
mission protocol, which is also achievable by many existing
cooperative protocols in [2], [9]. Then the question is whether
the proposed protocol can offer any other benefits while
maintaining the full diversity property, which is answeredin
the next section.

IV. EROGOTIC CAPACITY

Definition 1: Ergodic capacity is the long-term data rate
that a system can support, i.e.,

Ce =

∫ ∞

0

IfI(I)dI,

wherefI(·) is the probability density function (PDF) of the
mutual informationI.
In the following theorem the ergodic capacity based on sum
rate will be provided for the proposed protocol.

Theorem 3: Assume all channels are i.i.d. Raleigh fad-
ing. The ergodic capacity achieved by the proposed network
coded cooperative transmission protocol can be bounded as

E{ID} +
1

2

(

L
∑

k=1

Ck
L(−1)k log 4k

)

≤ E{I} (18)

≤ E{ID} +
1

2

(

L
∑

k=1

Ck
L(−1)k log k

)

.

where E{ID} ≈ log ρ − C log e is the ergodic capacity
achieved by direct transmission.

Proof: Following the previous discussion, the ergodic
capacity achieved by the proposed transmission protocol can
be approximated at high SNR as

E{I} ≈ log ρ+
1

2
E{log det[DHDC−1]} (19)

+
1

2
E{log det[HHH ]}

which is a function of two variables,log det[DHDC−1] and
log det[HHH ].

The exact expression for the ergodic capacity will be
difficult, and hence we will be focusing on developing the
upper bound and lower bound of the capacityE{I}, which
can be accomplished in two steps. First the expectation of
1
2E{log det[DHDC−1]} is evaluated, which can be written
as

1

2
E{log det[DH

DC
−1]} = E

{

1

2
log β

2

0 +
1

2
log

|hRD |2β2

1

|hRD |2 + β2

1

}

.

Note β0 is Chi-square distributed with4 degree of freedom,
and hence we can haveE

{

1
2 log β2

0

}

= 1
2ψ(2) log e. Define

z =
|hRD|2β2

1

|hRD |2+β2
1

and its CDF has been developed in the
previous section

P (z) =
{

1 − 2z2e−2z[K1(2z) + K2(2z)]
}L

. (20)

By using the factorK1(2z) ≥ 0 for z ≥ 0, this CDF can be
upper bounded as

P (z) ≤
{

1 − 2z2e−2zK2(2z)
}L

. (21)

Recall that the Bessel function can be expressed as the
following integral

K2(z) =
z2Γ(1

2 )

22Γ(5
2 )

∫ ∞

1

e−zt(t2 − 1)
3
2 dt, (22)

which can be lower bounded as

K2(z) ≥
z2

3!!

∫ ∞

1

e−zt(t− 1)3dt = 2
e−z

z2
, (23)

where the inequality follows the assumptiont ≥ 1. Applying
this simplified form to (21), the CDF ofz can be finally upper
bounded asP (z) ≤

{

1 − e−4z
}L

.
To obtain the lower bound, observe that the Bessel function

can be expressed as the integral form

K2(z) =
z2

8

∫ ∞

0

e−t− z2

4t

t3
dt (24)

which provides the following inequality

K2(z) ≤
z2

8

∫ ∞

0

e−
z2

4t

t3
dt =

2

z2
, (25)

where the inequality follows the assumptione−t ≥ 1 for t ≥ 0.
Following the similar step, the bessel function with first order
can be upper bounded asK2(z) ≤

1
z
. By using the bounds of

the bessel functions, the CDF can be bounded as
{

1 − e−4z
}L

≥ P (z) ≥
{

1 − e−2z(1 + z)
}L

. (26)
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An observation is that the lower bound of the CDF is still not
helpful to obtain the explicit expression. A simple inequality
1 + z ≤ ez holds for z ≥ 0, which can further simplify the
bounds of the CDF as

{

1 − e−4z
}L

≥ P (z) ≥
{

1 − e−z
}L

, (27)

since1 + z ≤ ez for z ≥ 0. As can be seen from (27), both
the upper and lower bounds share the same structure, which
will simplify the following development. Furthermore, both
two bounds resembles the CDF of the largest value amongL
i.i.d. exponentially distributed variables.

Following the similar steps in [7], the expectation of the
variablelog z can be bounded as

f(4) ≤ E{log z} ≤ f(1) (28)

wheref(·) is defined as

f(λ) =

∫ ∞

0

λLe−λz(1 − e−λz)L−1 log zdz. (29)

By applying binomial expansion, we can have

f(λ) = log e

L
∑

k=1

Ck
L(−1)k[C + lnλk]. (30)

Utilizing the fact that
∑L

k=1 C
k
L(−1)k = −1, the expectation

of log z can be bounded as

−C log e+

L
∑

k=1

Ck
L(−1)k log 4k ≤ E{log z} (31)

≤ −C log e+

L
∑

k=1

Ck
L(−1)k log k.

And evidently the difference of the upper and lower bound is
f(1) − f(4) = 2.

The expectation of the variablelog det{HHH} can be
obtained in an explicit expression as the following. Different
to regular random matrices, each row ofH is normalized,
and furthermore the elements for the second row is no longer
Gaussian distributed because of relay selection. The relayR is

chosen since it has the largest value of
|hRlD|2β2

l

|hRlD |2+β2
l

among the
L relay candidates. This implicit structure ofH has the impact
on its distribution and hence complicates the calculation.

An important observation is that the relay selection criterion
|hRlD |2β2

l

|hRlD |2+β2
l

is only a function of the norm of each row, and
not directly related with each element. Since each row of
H has been normalized, the effect of relay selection on the
distribution has been removed. Hence construct two2 × 1
vectors,v1,v2, whose elements are i.i.d. Raleigh distributed.
The density function of the determinantdet[HHH ] is the same
as the following determinant

det[D̄H̄H̄H ]

where H̄ =
[

vH
1 vH

2

]

, D̄ = diag{α1, α2} and αn =
1/vnvH

n . Note thatH̄H̄H is the classical Complex Random
Wishart Matrix whose determinant has the following distribu-
tion [10]

det{H̄H̄H} ∼

2
∏

i=1

ui, (32)

whereui are independent to each other andui ∼ χ2
2i.

By using such a result, the addressed expectation can be
evaluated as

E{log det[HHH ]} = E{log det[D̄H̄H̄H ]} (33)

= E{log

2
∏

i=1

αi} + E{log det[H̄H̄H ]}

Note that αi is Chi-square distributed with4 degree of
freedom. Together using the distribution in (32), we can have

E{log det[HHH ]} = −

∫ ∞

0

z log ze−zdz (34)

+

∫ ∞

0

log xe−xdx = log e[ψ(1) − ψ(2)].

Note thatψ = −C. Combining (31) and (34), the proof is
completed.

The capacity difference between the proposed protocol and
direct transmission can be bounded as

1

2

(

L
∑

k=1

C
k

L(−1)k log 4k

)

≤ E − ED ≤
1

2

(

L
∑

k=1

C
k

L(−1)k log k

)

.

Provided that there are enough number of relays, the lower
bound of the difference can be positive, and hence the ergodic
capacity larger than that of direct transmission can be achieved
by the proposed scheme.

V. NUMERICAL RESULTS

In this section, the performance of the proposed transmis-
sion protocol is evaluated by using Monte-Carlo simulations.
The performance of direct transmission and the best-relay
scheme [2] is also shown for comparison. OnlyM = 2
sources are involved in user cooperation and all channels are
assumed i.i.d. Raleigh fading. In Fig. 2, the outage probability
is shown as a function of SNR, where the number of relays
is set asL = 2 and the targeted per user data rate is set as
R = 4 bits/s/Hz. As can be seen from the figure, for practical
SNR range, the proposed scheme can achieve smaller outage
probability than two comparable schemes. Furthermore, the
use of the distributed relay selection strategy does not cause
large performance penalty compared with the optimal one. In
Fig. 3, the ergodic capacity achieved by the four schemes is
shown as a function of SNR, where the number of the relays is
set asL = 2 andL = 10. Consistent to our analytical results,
both the two proposed network coded cooperative schemes
can achieve larger ergodic capacity than direct transmission,
whereas the existing cooperative scheme can only realize
a faction of the capacity achieved by direct transmission.
The reason for such significant gain of ergodic capacity is
that the use of network coding ensures the suppression of
bandwidth resource wasted by relay transmission. In specific,
one single relay transmission can serve more than one source
nodes simultaneously, and hence the spectral efficiency of
cooperative diversity can be improved substantially.
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Fig. 1. The ergodic sum rate vs the number of sources participating
cooperation. The number of relays isL = 10.

VI. CONCLUSION

In this paper, we provided detailed analytical performance
evaluation for the proposed network coded cooperative multi-
ple access channels. With the help of the distributed relay se-
lection strategy, the explicit expressions of the outage probabil-
ity and ergodic capacity can be obtained. Both analytical and
numerical results demonstrated that the proposed cooperative
protocol can achieve larger ergodic capacity while maintaining
the property of full diversity gain.
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