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Abstract—This paper is concerned with the analysis of pro-
portionally fair scheduling (PFS), and we provide an analytical
approximation for the PFS throughput over Rayleigh fading
channels.

Though quite accurate, the ordinary differential equation
(ODE) analysis, typically used to analyze the PFS throughput,
is highly time-consuming when there are lots of users. On
the other hand, due to the intricate interplay among these
ODE equations, the ODE analysis generally fails to provide a
closed-form approximation for estimating the PFS throughput
unless with simplified models such as the linear rate model to
characterize channel capacity.

Our aim is to provide a novel framework to evaluate PFS in
Rayleigh fading without the above-mentioned limitations. To put
our work on a firm base, we use results of stochastic approx-
imation in the analysis and take the Gaussian approximation
for capacity modeling for fading channels. Simulations validate
this approach and show that our analytic result provides highly
accurate estimate of the PFS throughput.

Compared to existing studies, our work advances the state
of the art in three ways. First, it goes beyond the linear rate
model and applies to the commonly used Shannon rate model.
Second, it provides accurate estimate of the PFS throughput
without the need for the time-consuming ODE analysis. Third,
it provides a unified closed-form expression for estimating the
PFS throughput for both the linear rate model and the Shannon
rate model. It is interesting to note that our analysis provides
the same result as existing studies when assuming the linear rate
model. More importantly, our formula is intuitive yet easy to
evaluate numerically.

Index Terms—Proportionally fair scheduling, Rayleigh fading,
ordinary differential equation (ODE) analysis, Gaussian approx-
imation.

I. INTRODUCTION

THROUGHPUT and fairness are the two crucial yet
conflicting performance metrics in wireless scheduling.

In efforts to deal with the tradeoff between throughput and
fairness, the utility-based approach has received significant
attention and is widely adopted in resource scheduling [1]–
[3]. The objective of a utility-based scheduling algorithm is
to maximize the overall utility, where utility represents user
satisfaction. Proportional fairness (PF) and max-min fairness
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(MMF) are the two most used fairness criteria in utility-
based scheduling. It is believed that MMF is less efficient
than PF [4], [5], a criterion that was introduced by Kelly to
communication networks [6] and is the most known utility-
based allocation. In this paper, we are concerned with the
analysis of proportionally fair scheduling (PFS) in wireless
networks.

Since its presence [6], the PFS algorithm has aroused con-
siderable interest [5], [7]–[13]. To date, PFS is the most cited
algorithm that provides excellent balance between throughput
and fairness, and is currently implemented in 3G networks
[14].

Nevertheless, due to the lack of an analytic expression for
the PFS performance, the investigation of PFS has usually
been performed using simulation. Until recently, one can only
see limited results on PFS [7], [8], [10], [11], [15]. These
studies make simplifications about signal propagation, fading,
or the MAC layer to facilitate analysis. For example, [11]
investigates the PFS algorithm with a modified PFS metric
instead of the one used in current 3G networks [14]. To
simplify the analysis, most research assumes a linear rate
model for channel capacity [7], [11], [16]. With such model,
channel capacity is proportional to the signal-to-noise ratio
(SNR). The use of the linear rate model is a reasonable
modeling convention [7], [11], [16]; however, when examining
throughput performance, it does not seem entirely satisfactory
to assume such simplification. In fact, the linear rate model is
valid only for small SNR [16], and could be fairly inaccurate
in typical fading environments.

To the best of our knowledge, the most useful tool in analyz-
ing the PFS throughput over fading channels is the ordinary
differential equation (ODE) analysis [7]. The ODE analysis
uses standard results from stochastic approximation theory
[17] and reveals that the throughput of PFS converges weakly
to the unique equilibrium solution of a mean ODE of the
related PFS problem. Though quite accurate in quantifying the
PFS throughput under general rate model, the ODE analysis
involves solving N ODE equations (see Section II for details)
if there are N users in the networks. When there are lots of
users, the ODE analysis will be very time-consuming, and only
become applicable for off-line processing. This rules out the
possibility of using the ODE analysis in on-line algorithms for
cross-layer design. On the other hand, the ODE analysis fails
to provide a closed-form expression for estimating the PFS
throughput unless with simplified rate models. For example,
[7] conducts the ODE analysis for PFS over Rayleigh fading
channels, and only provides the analytic formula for the case
of the linear rate model. Apart from this, no other closed-form
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solution has been reported in the literature. This hinders the
applicability of the ODE analysis, and thus calls for further
study on PFS, including its characteristics, fundamental cause,
and attainable performance, in a realistic fading environment.

Our objective is to develop a framework to analyze PFS
in Rayleigh fading channels, without the aforementioned
limitations. We expect that our analysis would help deeper
understanding of the PFS problem, apply to more general
fading cases, and serve as a theoretical base for PFS-related
studies.

To put our work on a solid base, we use results of the
ODE analysis and stochastic approximation [7], [17]. By using
the Gaussian approximation [18], [19] for capacity modeling,
we derive a novel mathematical tool to quickly estimate the
PFS throughput in Rayleigh fading environments. In particular,
we provide closed-form expressions for evaluating the PFS
throughput, without the need for the time-consuming ODE
analysis.

A preliminary version of this paper has appeared in the
conference proceedings [20]. The drawbacks are that we
required the tracking parameter ε to be infinitely small and
we assumed (average throughput)/(average data rate) to be
constant for all users. In this paper we do not have these
limitations.

We should point out that, like most prior work [7], [8], [10],
[11], [15], this paper focuses on the throughput allocation
of PFS for single-channel systems. For PF in multi-channel
systems, one can refer to [12], [13] where Liew and Zhang
analyze airtime usage among users in multi-channel scenarios
and find that PF achieves equal “equivalent” airtime allocation
in such systems [12]. In the future we will consider PFS
in multi-channel systems, and would like to investigate this
interesting property in our research.

The rest of the paper is as follows. In Section II, we review
the related work. In Section III, we introduce the notation
and conventions, outline the PFS algorithm, and then provide
lemmas to proceed to Section IV, where we present the
analytic framework together with closed-form approximation
to quantify the PFS throughput. In Section V, we present
simulation results to corroborate our models in Rayleigh
fading environments. In Section VI, we conclude the paper.
To keep the flow of exposition, all related proofs are presented
in the Appendices.

II. RELATED WORK

The concept of PF is not new. Decades ago, the model
of utility maximization together with logarithmic utility in
consumption of good were introduced in Microeconomics
[21] for price policy. Kelly [6] applied such methodology in
communication networks and derived a scheduling algorithm
called PFS that maximizes the sum of user utility, wherein
utility U(μ) = ln(μ) is a concave function of throughput μ
and provides a good representative for user satisfaction of
elastic services. Since then, for its excellent tradeoff between
throughput and fairness, PFS has gained considerable attention
in the literature and is currently implemented in 3G networks
[14].

To evaluate the PFS performance for users with different
fading characteristics, Holtzman [16] conducts the asymptotic

analysis of PFS, with a result that the user class with more
fading variability gets more throughput. In [7], Kushner and
Whiting investigated the convergency of the algorithm. They
state that the limiting behavior of the throughput converges to
the solution of an ordinary differential equation, and find that
the limit throughput is proportional to the average instanta-
neous rate for Rayleigh fading by assuming the instantaneous
rate is proportional to the SNR which is i.i.d. for all users.
Also, Borst [8] presents results on PFS for the scenario where
the relative rate fluctuations are statistically identical, stating
that each user would receive the same amount of time slots.

We note that most existing work assumes some kind of
linear relationship between channel capacity and SNR and we
call this a linear rate model. For example, [8] assumes that
the data rate of user i with time-average rate Cj is distributed
as Rj = CjYjZ , where Y1, Y2, . . . are i.i.d copies, and Z
represents a possible correlation component with unit mean,
and the exponentially smoothed throughput of user j scales
linearly with the time-average rate Cj , i.e., Wj = CjVj , where
the random variables V1, V2, . . . are identically distributed.

Assuming i.i.d. SNR and using the rate model R=β ·SNR
where β is a constant, [22] provides the mean throughput per
time slot of a user in an N -user cellular network,

TS ·E[μ] = β ·TS/N
N∑

k=1

1

k
. (1)

where TS is slot duration and μ denotes throughput.
With the linear rate model, analytic result similar to (1) was

independently obtained in [7]. While this rate model has its
value in making the analysis tractable in prior studies, it is
not always satisfactory to assume such simplified rate model
when examining the PFS performance. For example, the linear
rate model is valid only in small SNR region and could be
fairly inaccurate for real fading scenarios [16]. Apparently,
new analysis with more accurate models such as the Shannon
rate model is favorable.

Among theoretical work on PFS, the ODE analysis [7] has
its unique merit in that it not only applies to the linear rate
model but applies to other rate models as well, which in turn
provides accurate estimate of the PFS throughput in real fading
scenarios. In [7], Kushner and Whiting proved that, given an
N -user cellular network, under any initial condition the PFS
throughputs of users converge weakly to the set of limit points
of the solution of a particular set of N ODEs. Theoretically, by
solving these N ODEs one can estimate the PFS throughput
with high accuracy. In practice, the ODE analysis is quite time-
consuming (if not time-prohibited) in typical cellular network
configurations where N > 5, especially because the ODEs
involved are nonlinear and interplay with each other in an
intricate manner. Hence, this method is only applicable for
off-line PFS analysis. In general, the ODE analysis fails to
produce analytical expressions for the PFS throughput, unless
with simplified rate models. As a result, [7] only provides for
the linear rate model a closed-form result (similar to (1)) for
the PFS throughput. At the time of developing this paper, there
is no further work on the ODE analysis for rate models other
than the linear one.

In the next section, we first provide the necessary back-
ground before we go into the detailed analysis.
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III. PFS ALGORITHM AND LEMMAS

We begin with the notation and assumptions used through-
out the paper.

A. Notation and Conventions

For an N -user single-channel cellular network, we consider
the problem where these N users want to transmit data to the
BS. The rates of transmission are randomly varying due to
channel fluctuations. The channel behavior is stationary and
ergodic [23]; this translates into the standard assumption in
the literature that each user has infinite backlog of data to
transmit. We use E[·] and σ to denote the statistical average
and standard deviation. Let Rj be the instantaneous data rate
of user j and μj be its throughput (refer to Section IV for
the formal definition). For each user j, we assume that its
instantaneous data rate Rj is an independently distributed,
stationary random variable with mean E[Rj ] and standard
deviation σRj , and its throughput μj is first-order wide-sense
stationary with mean E[μj ].

We consider time-division-multiple-access (TDMA) net-
works where time is divided into small scheduling intervals
called slots and the network resource is shared amongst users
via disjoint time slots. The end of slot t is called time t. In
next time slot t+1, the instantaneous data rate of user j will
be Rj [t+1]. Its throughput up to time t is denoted by μj [t].
Like most prior studies, we adopt an independent Rayleigh
flat fading model in the analysis: each user experiences
independent Rayleigh fading, and the channel coefficient keeps
constant during a slot but varies from slot to slot and from user
to user. Unlike other studies on PFS, we use the well-known
Shannon formula instead of the linear rate model to predict
data rate (in bps/Hz), i.e., Rj = log2(1 + SNRj) where SNRj

is user j’s SNR determined via measurements based on a pilot
signal. Since the time between measurement and prediction is
short, fairly accurate predictions is possible.

B. Preliminaries and Lemmas

We first outline the criteria of the PFS algorithm.
Consider an N -user single-channel cellular network in an

independent Rayleigh fading scenario. At each slot, the BS
schedules one user for data transmission in a TDMA fashion.
The selection of a user to schedule is based on a balance
between the current possible rates and fairness. According to
the PFS algorithm used in current 3G networks [14], PFS [6]
performs this by comparing the ratio of the instantaneous data
rate for each user to its throughput, which is defined as the
preference metric Mj [t+1] = Rj [t+1]/μj[t]. The user with
the maximum preference metric is selected for transmission,
i.e., the PFS algorithm schedules at next slot the user i that
maximizes in

argmax
j≤N

{Rj [t+1]/μj[t]} . (2)

It is known that the PFS algorithm above maximizes the
overall utility

∑
i U(μi) where U(μi) = ln(μi) is the utility

function defined for elastic flows [6]. This property makes PFS
very attractive and has indeed spurred the studies on network
utility maximization (NUM) [1]–[3].
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Fig. 1. σR vs. E[R]: Rayleigh fading

Next, we provide some lemmas to proceed to the analysis
of PFS.

In [6], Kelly provided the following formal definition of PF
and we should stick to this definition in the analysis.

Definition 1 A vector of throughputs x = (xs, s ∈ S) is
proportionally fair if it is feasible and if for any other feasible
vector x∗, the aggregate of proportional changes is zero or
negative: ∑

s∈S

(x∗
s − xs)/xs ≤ 0. (3)

Since the PFS preference metric is directly related to
instantaneous data rate R, we investigate the characteristics
of R and find that

Lemma 1 For a Rayleigh fading channel, the standard de-
viation of instantaneous data rate, σRj , is monotonically
increasing, concave with regard to the statistical average
E[Rj ].

Proof: Refer to Appendix A.
For reference, we plot in Fig. 1 σR v.s. E[R], which clearly

justifies the above lemma.
We now investigate the impacts of both E[R] and σR on

average throughput E[μ]. By Lemma 1, σR w.r.t. E[R] is
monotonically increasing concave in Rayleigh fading. Using
the concavity of σR together with Definition 1, we have the
following inequality

Lemma 2 In a Rayleigh fading network, given E[Rj ] ≤
E[Ri] for two users i, j, we have σRi/σRj ≤ E[μi]/E[μj] ≤
E[Ri]/E[Rj ], under the proportional fairness criterion (3)

Proof: Refer to Appendix B.

Remark 1 According to Lemma 1, the standard deviation of
channel capacity is an increasing function of the statistical
average. Let say initially users i and j have the same channel
quality, resulting in the same average throughput for both
users. Now we improve the channel quality of user i so that
it is slightly better than that of user j, i.e., the average
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channel capacity of user i increases from E[Ri] = E[Rj ]
to E[Ri] = E[Rj ] + ΔE[Rj ], and the standard deviation
increases from σRi =σRj to σRi = σRj +ΔσRj , respectively.
Obviously user i has slightly higher average throughput, i.e.,
E[μRi ] = E[μRj ]+ΔE[μRj ]. Using Lemma 2 we then have
ΔσRj/σRj ≤ ΔE[μRj ]/E[μRj ] ≤ ΔE[Rj ]/E[Rj]. In other
words, with proportional fairness, the relative increase in
the average throughput of a user is bounded by the relative
increases in the standard deviation and average of its link
capacity.

For stationary Ri, Kushner and Whiting [7] have provided
the following two lemmas for PFS,

Lemma 3 Assume the PFS algorithm (2). For any initial
condition, user throughput μi[t] (1≤ i≤N ) converges weakly
to the set of limit points of the solution of the ODE

θ̇i = h̄i(θ)− θi, 1≤ i≤N. (4)

where h̄i(θ) is user i’s average data rate conditional on the
event Ri/θi > Rj/θj, ∀j �= i

h̄i(θ) = E[Ri|Ri/θi > Rj/θj, ∀j �= i, 1 ≤ j ≤ N ]. (5)

Lemma 4 Assume the PFS algorithm (2). The limit point of
(4), denoted as θ̄i � θi(∞), is unique, irrespective of the
initial condition, and equals average throughput E[μi]. So the
process μi[t] converges to E[μi] as t → ∞.

These two lemmas show that μi[t] weakly converges to
a unique asymptotically stable limit point θ̄i = E[μi] of
the ODE. Obviously, given an initial condition {θi(0), i =
1, 2, . . . , N}, by solving (4) one could obtain θi(1), θi(2), . . .,
and the average throughput of user i is simply E[μi] = θ̄i =
θi(∞).

Remark 2 For analytical tractability, most analytic work
investigates the PFS problem under the linear rate model,
which results in inaccurate estimate of E[μ] in real fading
scenarios. By Lemmas 3 and 4, theoretically one can apply
the ODE analysis to obtain the average PFS throughput E[μi]
with high accuracy for any rate model. However, the ODE
analysis requires solving N ODEs. Moreover, the nonlinear
terms {h̄i(θ), 1 ≤ i ≤ N} in these ODEs depend on all N
users and their expressions are typically not easily (if not
impossible) obtained for a given rate model. Accordingly,
Kushner and Whiting in [7] provided for mean throughput
E[μi] the analytic expression (similar to (1)) only for the
linear rate model wherein h̄i(θ) can be explicitly evaluated.

Regarding the problems of the ODE analysis, in analyzing
PFS we do not try to find the explicit solution to the ODEs (4)
for the Shannon rate model. Instead, we use the above findings
of PFS (i.e., convergence property of througput μ) and results
from stochastic approximation, together with advances in rate
modeling for fading channels, to derive analytic expressions
for E[μ] estimate under the Shannon rate model in Rayleigh
fading environments. To end this section, we present the last
lemma we use in the analysis

Lemma 5 Let Yk(x) be a non-negative, monotonically
non-decreasing function of x (k = 1, 2, . . . , N ). If 1).
ai, aj , bi, bj, ci, cj are all positive (∀i, j = 1, 2, . . . , N ), and
2). ci/cj ≤ bi/bj ≤ ai/aj , ∀ai ≥ aj , then ∀x ≥ 0 and
∀j=1, 2, . . . , N , we have

∏
∀i�=j

Yi

(
bi
bj

·x
)

≤
∏

∀ai≥aj∧i�=j

Yi

(
ai
aj

·x
) ∏

∀ai<aj∧i�=j

Yi

(
ci
cj

·x
)
.

(6)

∏
∀i�=j

Yi

(
bi
bj

·x
)

≥
∏

∀ai≥aj∧i�=j

Yi

(
ci
cj

·x
) ∏

∀ai<aj∧i�=j

Yi

(
ai
aj

·x
)
.

(7)

Proof: Refer to Appendix C.

IV. PFS: ASYMPTOTIC ANALYSIS

We start with a definition of throughput. One general
definition of the throughput for user j up to time t is the
sample average

μj [t] =

t∑
m=1

Rj [m] · Ij [m]

t
. (8)

where Ij [t+1] is the indicator function of the event that user
j is scheduled to transmit in slot t+1, i.e., Ij [t+1]=1 if user
j is scheduled at time t+1 and is zero otherwise

Let ε=1/(t+1), (8) can be written in the recursive form

μj [t+1]=μj[t]+ε·(Ij [t+1]·Rj[t+1]−μj[t]) . (9)

Owing to the boundedness of the Rj [t], the throughput ac-
cording to (9) is bounded. Alternative definitions of throughput
are also possible, which allow the use of values other than
1/(t+1) in the recursive representation.

The value of ε is chosen to balance the needs of estimating
throughput with the ability to track changes in the channel
characteristics. In general, ε should be small enough to provide
an acceptable measure of the throughput. Since (9) is of the
stochastic approximation form, according to stochastic approx-
imation theory [17], we have: when the tracking parameter ε
in (9) is small and constant, the path converges to the solution
to a deterministic ordinary differential equation. On the other
hand, according to [7], one would not usually want to use
(9) with the variable step size ε = 1/(t+1) since a few
bad values of the noise in the early stages can mess up the
behavior of the sample path for a long time to come, and
such robustness considerations require a larger discounting of
past values than 1/(t+1) provides. Regarding these, the PFS
algorithm in current 3G networks [14] uses in (9) a constant
step size ε = 1/k, where k is typically greater than 50 to
provide an acceptable measure of the throughput. With (9),
the throughput of user j is then updated by

μj [t+1]=

(
1− 1

k

)
μj [t]+Ij [t+1] · Rj [t+1]

k
. (10)
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For first-order wide-sense stationary μj , applying Bayes’
theorem in (10), we have

E [μj [t]] = E [Rj [t+1]|Ij[t+1]=1]Pr (Ij [t+1]=1)

= Pr (Ij [t+1]=1)·
∫ ∞

0

x·fRj (x|Ij [t+1]=1)dx

=

∫ ∞

0

x·fRj(x)·Pr (Ij [t+1] = 1|Rj[t+1] = x) dx. (11)

where Pr(Ij [t+1] = 1) is the probability that j will be
scheduled in slot t+1, Pr(Ij [t+1] = 1|Rj [t+1]= x) is the
conditional probability with respect to the event Rj [t+1]=x,
and fRj (·) is the probability density function (pdf) of Rj .
According to the PFS criterion (2), the conditional probability
is given by

Pr (Ij [t+1]=1|Rj[t+1]=x)

= Pr

(
x

μj [t]
>

Ri[t+1]

μi[t]
,∀i �=j, 1≤ i≤N

)
. (12)

Let “→” denote weak convergence. Slutsky’s theorem [24]
tells that Xi ·Yi → Xi ·C and Xi/Yi →Xi/C, if sequences
Xi → X (X is a random variable) and Yi → C (C is
a constant and C �= 0). According to Lemma 4, μi[t] →
E[μi] and μj [t] → E[μj ] as t → ∞. Since both E[μi]
and E[μj ] are constants, with Slutsky’s theorem we have
Ri[t+1] ·μj [t]/μi[t]→ Ri ·E[μj ]/E[μi] as t→∞. With the
definition of weak convergence, we have

lim
t→∞Pr

(
Ri[t+1]·μj[t]

μi[t]
<x,∀i �=j, 1≤ i≤N

)

= Pr

(
Ri ·E[μj]

E[μi]
<x,∀i �=j, 1≤ i≤N

)
. (13)

Taking the limit on both sides of (12) and using (13), we
have

lim
t→∞Pr (Ij [t+1]=1|Rj[t+1]=x)

= Pr

(
Ri ·E[μj]

E[μi]
<x,∀i �=j, 1≤ i≤N

)
. (14)

Since Ri and Rj (∀i �= j) are independently distributed
random variables, (14) can be rewritten as

lim
t→∞Pr (Ij [t+1]=1|Rj[t+1]=x)

=
∏
∀i�=j

FRi (E[μi]·x/E[μj]) . (15)

where FRi(·) is the cumulative distribution function (cdf) of
data rate Ri.

Combining (11) and (15), we have

E[μj ] = lim
t→∞E[μj [t]]

=

∫ ∞

0

xfRj (x)
∏
∀i�=j

FRi (E[μi]·x/E[μj]) dx. (16)

To obtain an explicit expression for average throughput
E[μj ], we need to know the pdf and cdf of data rate Rj in
(16). Researchers [18], [19], [25], [26] have revealed that R
can be modeled by a normal distribution in various fading sce-
narios. This is called the Gaussian approximation for channel
capacity. While most work on the Gaussian approximation

is for multiple-input-multiple-output (MIMO) links, Smith
et al [19] points out that, the Gaussian approximation is
quite respectable even for single-input-single-output (SISO),
Rayleigh fading links.

Using (16), Definition 1 and Lemmas 1-5 together with the
Gaussian approximation for link capacity in Rayleigh fading
channels, we are able to provide our main results in the
following

Theorem 1 With the Shannon rate model, for user j (∀j =
1, 2, . . . , N ) in an independent Rayleigh fading N -user cellu-
lar network, its average PFS throughput is estimated by

E[μj ]=
E[Rj ]

N
+σRj ·

∫ ∞

−mj

y ·ρ(y)·φ(y)N−1dy. (17)

where mj =E[Rj ]/σRj , ρ(·) and φ(·) are the pdf and cdf
of zero mean, unit variance standard normal distribution,
respectively. E[Rj ] and σRj are the mean and standard
deviation of Rj

E[Rj ] =

∫ ∞

0

log2
(
1 + SNRj · λ

)× e−λdλ. (18)

σ2
Rj

=

∫ ∞

0

(
log2

(
1+SNRj · λ

))2× e−λdλ− (E[Rj ])
2 . (19)

where SNRj is the average SNR of user j.

Proof: Refer to Appendix D.
From (18) and (19), mj depends solely on SNRj . Define

A(N, SNR) the PFS gain under average SNR,

A(N, SNR)=N ·
∫ ∞

−mj

y ·ρ(y)·φ(y)N−1dy. (20)

We can then rewrite (17) in the form

E[μj ]=
1

N
·{E[Rj ]+σRj ·A(N, SNR)

}
. (21)

With (18) and (19), we plot in Fig. 1 σRj w.r.t. E[Rj ],
which justifies that mj →∞ when SNRj →∞. We remove
mj in (20) by letting SNRj →∞ and define A(N) the PFS
gain under infinite large average SNR,

A(N)=A(N,∞)= N ·
∫ ∞

−∞
y ·ρ(y)·φ(y)N−1dy. (22)

Using (20) and (22), we plot in Fig. 2 A(N) and A(N, SNR)
with respect to network size (N= 1∼50) for various SNR.

It is clearly that A(N) and A(N, SNR) are indistinguishable
for any SNR when N>5. We thus have

Corollary 1 With the Shannon rate model, for user j (∀j=
1, 2, . . . , N ) in an independent Rayleigh fading N -user cellu-
lar network, its average PFS throughput is estimated by

E[μj ]=
1

N
·{E[Rj ]+σRj ·A(N)

}
. (23)

where E[Rj ], σRj and A(N) are given by (18), (19), and
(22), respectively.
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Remark 3 By (23), we have

E[μj ]

σRj

=
1

N
·{mj+A(N)} , E[μj ]

E[Rj ]
=

1

N
·
{
1+

1

mj
·A(N)

}
.

(24)
Since E[R] is a monotonically increasing function of SNR.

From Figs. 3 and 4, one can easily verify that E[μ]/σR w.r.t.
E[R] is monotonically increasing, and E[μ]/E[R] w.r.t. E[R]
is monotonically decreasing. This agrees with the statements
of Lemma 2.

Remark 4 Though we consider Rayleigh fading channels in
the analysis, we would like to point out that our results
may also apply to other fading environments. Indeed, in our
analysis, we rely on the following two assumptions: 1). the
Gaussian approximation of link capacity in a fading channel,
and 2). the increasing concavity of σR w.r.t E[R].

Researchers have revealed that the Gaussian approximation
holds for various scenarios such as Rayleigh flat fading [19],
Rayleigh frequency-selective fading [26], Rayleigh semicor-
related flat fading [18], [25], and Rician fading [18] etc.
Specifically, for the Rician fading case, the SNR of user j is a
noncentral chi-square distribution [27] with two degrees and
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Fig. 4. E[μ]/E[R] vs. SNR

a noncentrality parameter ν2, where ν is the ratio of signal
strength in dominant component over the scattered one. The
average and standard deviation of user j’s capacity are then
given by

E[Rj ] =

∫ ∞

0

I0

(
ν
√
λ
)
· e

−(λ+ν2)/2

2
·log2

(
1+

SNRj ·λ
2 + ν2

)
dλ.

(25)

σ2
Rj

=

∫ ∞

0

(
log2

(
1+

SNRj×λ

2+ν2

))2

dλ

× I0

(
ν
√
λ
)
· e

−(λ+ν2)/2

2
− (E[Rj ])

2 . (26)

where I0(·) is the modified Bessel function of the first kind.
Using (25) and (26), one can verify the increasing concavity

of σR w.r.t E[R] for Rician fading channels. Since the Gaus-
sian approximation and increasing concavity are both valid
for the Rician fading case, our results apply to such scenarios
directly. Specifically, Lemma 1, Lemma 2, and Theorem 1
are all true for Rician fading channels, with E[Rj ] and σRj

replaced by (25) and (26), respectively. In the future, we
would like to investigate the application of our results in other
scenarios such as log-normal fading.

Theorem 1 (or Corollary 1) provides a closed-form approx-
imation for the PFS throughput with the Shannon rate model.
Interestingly, our analysis also applies to the linear rate model
case. To be specific, we have

Theorem 2 With the linear rate model Rj=β·SNRj , for user
j (∀j=1, 2, . . . , N ) in an independent Rayleigh fading N -user
cellular network, its average PFS throughput is estimated by

E[μj ] =
E[Rj ]

N
·

N∑
k=1

1

k
. (27)

where E[Rj ]=β ·SNRj , SNRj is the average SNR of user j.

Proof: Refer to Appendix E.

Remark 5 We would like to point out that (27) provides the
same result independently obtained in other studies [7], [22]
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for the linear rate model. The difference is that our analysis
only requires Rayleigh fading to be independent, while prior
research [7], [22] requires Rayleigh fading to be independent
and identically distributed (i.i.d.) for all users.

Since σRj = E[Rj ] in the linear rate model for Rayleigh
fading, Theorem 1 and Theorem 2 can merge,

Theorem 3 For user j (∀j=1, 2, . . . , N ) in an independent
Rayleigh fading N -user cellular network, its average PFS
throughput is estimated by

E[μj ]=
1

N
·{E[Rj ]+σRj ·A(N)

}
. (28)

where the PFS gain A(N) is given by

A(N)=

{
N ·∫∞

−∞y ·ρ(y)·φ(y)N−1dy, Shannon rate model∑N
k=2

1
k , linear rate model

.

(29)

Theorem 3 is our result for the PFS throughput in Rayleigh
fading scenarios, and applies to both the Shannon rate model
and the linear rate model. Built upon stochastic approximation
theory and recent results on rate modeling, Theorem 3 pro-
vides a unified, mathematically elegant solution to evaluate
the performance of PFS over Rayleigh fading channels.

Since E[μRj ]=E[Rj ]/N with simple TDMA (i.e., round-
robin scheduling), formula (28) has a very clear physical
meaning: the first item in the right-hand side (RHS) represents
the average throughput from simple TDMA scheduling, while
the second item represents the average throughput from fading
variability. This translates into the fact that users with more
fading variability (i.e., larger σR) get more average throughput,
a property first observed in [16] for PFS.

Equation (28) also tells that, given the data rate statistics
of a Rayleigh fading channel, the PFS throughput is solely
determined by A(N). We plot in Fig. 5 the PFS gain w.r.t.
network size for both rate models. We can see that, while
both rate models can be used in the analysis when N≤5, one
should stick to the Shannon rate model for N>5 wherein the
linear rate model would overestimate the PFS gain.

Note that, according to (29), numerical calculation is still
required to get the PFS gain A(N) for the Shannon rate model.
By using logarithmic fitting, a more convenient form can be
obtained for A(N) in this case. Specifically, we have the
following approximation for A(N) in the Shannon rate model

A(N) ≈ 0.67464 + 0.39702 ln(N − 0.83526). (30)

Obviously, (30) is of closed form and can be evaluated
easily. Fig. 5 also plots A(N) using (30), and it shows that
the two A(N) curves from the Shannon rate model and
logarithmic fitting are virtually indistinguishable. Indeed, the
above fitting provide provides high accuracy, with a relative
error of less than 1.1% for N=10∼200.

V. SIMULATIONS

In the following, we present two simulation scenarios. We
adopt the following setup used in the CDMA 1xEV-DO system
[14]: stationary Rayleigh fading with constant and white
external noise; 1.67 ms slot duration; the doppler frequency
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Fig. 5. PFS gain vs. network size

spread is 60 Hz, this corresponds to ∼ 7 ms coherence time
and will actually simulate a block fading channel, i.e., the
channel changes to another implementation every four slots.
In the first scenario, we evaluate the convergence of PFS with
different tracking parameter ε for a two-user network. In the
second scenario, we evaluate our analytic results for a more
realistic setup (N =50). For both scenarios, the data rate of
user j is generated by Rj =W · log2[1+SNRj · |hj |2], where
W is the bandwidth, and the channel gain hj for user j is a
normalized complex Gaussian random variable.

A. Scenario 1: two-user network

Like [7], we consider a network of two users with their
mean rates 572 and 128 bits/slot, respectively. These rates cor-
respond to very low average SNRs of −5.3 dB and −12.5 dB
with a bandwidth W =1 MHz.

To track changes in the channel statistics while provide a
acceptable measure of throughput, the tracking parameter ε
should be small enough. In the first example, we set ε=0.001
while in the second example it is 0.00025. The simulation runs
for 20000 slots and the results are shown in Fig. 6. We can see
that a smaller value of ε enables better estimate of throughput,
while a larger value of ε is able to track changes in the channel
characteristics. Fig. 6 also shows that the algorithm converges
after about 3000 slots with ε = 0.001, and 12000 slots with
ε= 0.00025. This indicates that the convergence time of the
PFS algorithm is in a order of 1/ε slots. In both examples,
the simulation results match well with our analysis. Note that
for the same setup, the user throughputs in equilibrium of the
ODE [7] are 429 and 96 bits/slot with the linear rate model.
Not surprisingly, these values are very close to our analysis
results shown in Fig. 6, since the average SNRs of users are
very low in the setting and it does not matter using either the
linear rate model or the Shannon rate model.

B. Scenario 2: 50-user network

As shown in Fig. 7, in this scenario 50 users are located in
an area of 1.0×1.0 km2. Users are numbered n1∼n50, from
up to down and left to right. The BS is located at the center
of this area.
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We assume that the bandwidth is W =10 MHz. The average
SNR (in dB) of user j is a distance-related constant determined
by the path loss model, SNRj = SNRd0 − 10·α·log10[dj/d0],
where α is the path exponent, dj is the distance between user
j and the BS, and SNRd0 is the average SNR at the reference
distance d0. In the simulation, we have ε=0.001, α=3.5, d0=
100 m, and SNRd0 =28 dB. With the above setting, the average
SNR of user varies widely from 0.71 dB to 22.7 dB, which
is representative for real fading environments. The simulation
runs for 8000 slots.

With the topology shown in Fig. 7, n3 and n30 are the
worst and the best users, respectively. Fig. 8 illustrates the
PFS throughputs for n3, n30, and a medium user n16. Ac-
cording to the simulation setting, we can calculate and have
SNR3 = 0.71 dB, SNR16 = 10.3 dB, and SNR30 = 22.7 dB.
By Theorem 3, these average SNRs correspond to theoret-
ical throughputs of 0.49 Mbps, 1.2 Mbps, and 2.14 Mbps,
respectively. A direct comparison between simulation and
analysis is more clearly illustrated in Fig. 9 where we plot
the average throughput for all users. The throughput gap
between the simulation and analysis could be further decreased
with smaller tracking parameter ε, at the price of longer
convergence time.

To quantitatively evaluate the accuracy of our analysis, we
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perform 200 simulation runs with different seeds and for each
simulation, we record for the average throughput the difference
between the analysis approximation and simulation, which is
plotted in Fig. 10 in terms of relative error. It reveals that
that the probability that the relative error is less than 10.0% is
98.3%. Another way for measuring this gap is to use interval
estimate. From statistics, it is known that 95% confidence
interval is ±Zc · σ /

√
n , where Zc = 1.96 is the z-score

associated with the 95% confidence level, σ is normalized the
standard deviation of the relative error between the analysis
and simulation, and n is the number of simulation (n= 200
in our case). This 95% confidence interval is used to estimate
the gap between our analysis and simulation. Our experiments
show that the gap is about ±6.3%. Obviously both methods
validate the adequacy of our analysis approximation.

These results strongly suggest that our asymptotical anal-
ysis provides accurate estimate of the PFS throughput over
Rayleigh fading channels.

VI. CONCLUSIONS

This paper considers the PFS problem and has derived a
theoretical framework to facilitate studies on PFS.
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Built upon stochastic approximation theory, our analysis
provides accurate estimate of the PFS throughput in realistic
fading channels.

Unlike prior research which either uses the linear rate model
or turns to the off-line ODE analysis, the closed-form formula
presented here has the practical and theoretical interest: it
holds for both the linear rate model and the Shannon rate
model, while ruling out the need for highly time-consuming
ODE analysis.

Being mathematically graceful, simple and accurate, our
results and findings provide guideline and analytical support
on system design, simulation-based modeling and performance
analysis of the PFS algorithm in the context of cross-layer
design.

Though this work is promising, there are still lots of
challenges we did not address in this paper. For example,
throughout this paper, we focused on PFS in single-channel
cellular networks. In addition, channels are assumed to be
Rayleigh flat fading (note that our results apply to Rican fading
as well). Moreover, the analysis uses continuous data rate and
each user has infinite backlog of data for transmission. In real
application, user buffers could be empty at some slots and a
user might transmit at only one of a discrete set of data rates.
In future work, we will explore these issues and would like
to extend PFS to the ad-hoc and/or multi-channel networks,
in more general fading scenarios.

APPENDIX A
PROOF OF LEMMA 1

In a Rayleigh fading channel, the SNR of user j is an
exponentially distributed variable. Using the Shannon capacity
formula, we have the mean and variance of user j’s instanta-
neous data rate

E[Rj ] =

∫ ∞

0

log2
(
1 + SNRj · λ

)× e−λdλ. (31)

σ2
Rj

=

∫ ∞

0

(
log2

(
1+SNRj · λ

))2 × e−λdλ− (E[Rj ])
2
. (32)

where SNRj is the average SNR of user j.
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With (31) and (32), one can obtain the expressions for dσR

dE[R]

and d
dE[R]

(
dσR

dE[R]

)
after tedious manipulation. The details of

mathematical reasoning are not necessary for the development
of the proof. Instead, with Figs. 11, 12 and 13, we know
E′[R]= dE[R]

dSNR
>0, σ′

R= dσR

dSNR
>0, and d

dSNR

(
dσR

dSNR
/ dE[R]

dSNR

)
<0.

By the chain rule for derivatives, we have dσR

dE[R] =
dσR

dSNR
/ dE[R]

dSNR

and d
dE[R]

(
dσR

dE[R]

)
= d

dSNR

(
dσR

dSNR
/ dE[R]

dSNR

)
/ dE[R]

dSNR
. It is then easy

to verify that dσR

dE[R] > 0 and d
dE[R]

(
dσR

dE[R]

)
< 0. With the

properties of the first and second derivative tests, we conclude
that σR w.r.t. E[R] is increasing, concave.

APPENDIX B
PROOF OF LEMMA 2

For a well-designed scheduling algorithm in fading environ-
ments, one can readily verify that larger average data rate E[R]
(i.e., better average channel quality) produces larger average
throughput E[μ∗]. On the other hand, Holtzman [16] has
shown that users with more fading variability get more average
throughput, i.e., larger σR produces larger E[μ∗]. In wireless
networks, it is easy to justify that both channel fluctuation
(i.e., σR) and average channel quality (i.e., E[R]) contribute
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to average throughput E[μ∗]. Without lost of generality, a
very small increase in average throughput can be written as
ΔE[μ∗]=f∗·E[R]·ΔSNR+g∗·σR·ΔSNR where f∗>0, g∗>0
represent the weights of E[R] and σR, respectively.

In an N -user cellular network, let say users i, j in PFS are
provided average throughputs of E[μi] and E[μj ]. We assume
E[μi]≥E[μj ].

Now we consider a particular scheduling algorithm S∗: it
simply schedules all other users (k = 1, 2, . . . , N, k �= i, j)
in the same slots allocated for them in PFS, and it allocates
for user i some slots which previously belonged to user j
in PFS. In such way, S∗ will allocate an increased average
throughput of to user i, and a decreased average throughput
to user j, while keeping all other users’ average throughputs
unchanged. Let say in S∗ the average throughputs for users
i, j are E[μi] +ΔE[μ∗

i ] and E[μj ]−ΔE[μ∗
j ], respectively.

Obviously S∗ is different from PFS. With the definition of
proportional fairness (Definition 1) and after straightforward
algebraic manipulation, we have

ΔE[μ∗
j ]

E[μj ]
≥ ΔE[μ∗

i ]

E[μi]
. (33)

Lemma 1 shows that
σRi

E[Ri]
≤ σRj

E[Rj ]
. Since ΔE[μ∗

i ]
ΔE[μ∗

j ]
=

f∗·E[Ri]+g
∗·σRi

f∗·E[Rj]+g∗·σRj
, we have

ΔE[μ∗
i ]

ΔE[μ∗
j ]
≥ σRi

σRj

. (34)

Combining (33) and (34), we obtain

E[μi]

E[μj ]
≥ σRi

σRj

. (35)

Similarly, if S∗ allocates a decreased average throughput of
E[μi]−ΔE[μ∗

i ] to user i, and an increased average throughput
of E[μj ]+ΔE[μ∗

j ] to user j, while keeping all other users’
average throughputs unchanged. Following the same steps as
above, we will have

E[μi]

E[μj ]
≤ E[Ri]

E[Rj ]
. (36)

Putting together (35) and (36) completes the proof.

APPENDIX C
PROOF OF LEMMA 5

Proof: Let B =
∏

∀i�=j Yi(bi·x/bj). Since ci/cj≤bi/bj≤
ai/aj (∀ai >aj), for non-negative, monotonically increasing
Yk(·) (∀k = 1, 2, . . . , N ), we have

B2 ≤
∏

∀ai≥aj∧i�=j

Yi

(
ai
aj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
bi
bj

·x
)

×
∏

∀ai≥aj∧i�=j

Yi

(
bi
bj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
ci
cj

·x
)

= B ×
∏

∀ai≥aj∧i�=j

Yi

(
ai
aj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
ci
cj

·x
)
. (37)

B2 ≥
∏

∀ai≥aj∧i�=j

Yi

(
ci
cj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
bi
bj

·x
)

×
∏

∀ai≥aj∧i�=j

Yi

(
bi
bj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
ai
aj

·x
)

= B ×
∏

∀ai≥aj∧i�=j

Yi

(
ci
cj

·x
) ∏
∀ai<aj∧i�=j

Yi

(
ai
aj

·x
)
. (38)

This completes the proof.

APPENDIX D
PROOF OF THEOREM 1

By Lemma 2, we have
σRi

σRj
≤ E[μi]

E[μj ]
≤ E[Ri]

E[Rj ]
if E[Rj ] ≤

E[Ri], and
σRi

σRj
≥ E[μi]

E[μj ]
≥ E[Ri]

E[Rj ]
if E[Rj ] ≥ E[Ri]. Let

al =E[Rl], bl = μRl
, and cl = σl (l= i, j). Since FRi(x) is

non-negative, non-decreasing with respect to x, by applying
Lemma 5 we have∏

∀i�=j

FRi

(
E[μi]

E[μj ]
·x
)

≤
∏

∀E[Ri]≥E[Rj]∧i�=j

FRi

(
E[Ri]

E[Rj ]
·x
)

×
∏

∀E[Ri]<E[Rj]∧i�=j

FRi

(
σRi

σRj

·x
)
.(39)

∏
∀i�=j

FRi

(
E[μi]

E[μj ]
·x
)
≥

∏
∀E[Ri]<E[Rj]∧i�=j

FRi

(
E[Ri]

E[Rj ]
·x
)

×
∏

∀E[Ri]≥E[Rj]∧i�=j

FRi

(
σRi

σRj

·x
)
.(40)

Define mj=E[Rj ]/σRj . Substituting (39) and (40) in (16)
and after some algebra, we have

E[μj ] ≤ σRj ·
∫ ∞

−mj

(
y ·σRj + E[Rj ]

)·fRj

(
y ·σRj + E[Rj ]

)
×

∏
∀E[Ri]≥E[Rj]∧i�=j

FRi

(
y ·E[Ri]

E[Rj ]
·σRj + E[Ri]

)

×
∏

∀E[Ri]<E[Rj]∧i�=j

FRi

(
y ·σRi+

σRi

σRj

·E[Rj ]

)
dy.(41)
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E[μj ] ≥ σRj ·
∫ ∞

−mj

(
y ·σRj + E[Rj ]

)·fRj

(
y ·σRj + E[Rj ]

)
×

∏
∀E[Ri]<E[Rj]∧i�=j

FRi

(
y ·E[Ri]

E[Rj ]
·σRj + E[Ri]

)

×
∏

∀E[Ri]≥E[Rj]∧i�=j

FRi

(
y ·σRi+

σRi

σRj

·E[Rj ]

)
dy.(42)

With Lemma 2, we have
σRi

σRj
≤ E[Ri]

E[Rj ]
if E[Rj ] ≤ E[Ri],

and
σRi

σRj
≥ E[Ri]

E[Rj]
if E[Rj ] ≥ E[Ri]. Since FRi(x) w.r.t. x

is monotonically non-decreasing, it is easy to prove that the
following expression lies between the bounds given by (41)
and (42),

σRj ·
∫ ∞

−mj

(
y ·σRj + E[Rj ]

)
fRj

(
y ·σRj + E[Rj ]

)
×
∏
∀i�=j

FRi (y ·σRi + E[Ri]) dy. (43)

We can then use (43) to estimate E[μj ]. Next we apply
results on rate modeling to further simplify (43).

Smith et al. [19] have revealed that data rate R over
Rayleigh fading channels can be accurately modeled by a
normal distribution, i.e., approximately R ∼ N (E[R], σ2

R).
When assuming the Shannon rate model for R, E[R] and σR

are determined by (31) and (32), respectively. For normally
distributed Ri

fRi(x)=
1

σRi

·ρ
(
x−E[Ri]

σRi

)
, FRi(x)=φ

(
x−E[Ri]

σRi

)
.(44)

Substituting (44) into (43) yields

E[μj ] =
E[Rj ]

N
· (1− (φ(−mj))

N
)

+ σRj ·
∫ ∞

−mj

y · ρ(y) · φ(y)N−1dy. (45)

Since (φ(−mj))
N � 1, (45) further reduces to

E[μj ]=
E[Rj ]

N
+σRj ·

∫ ∞

−mj

y ·ρ(y)·φ(y)N−1dy. (46)

This completes the proof.

APPENDIX E
PROOF OF THEOREM 2

In Appendix D (the proof of Theorem 1), we have provided
an intermediate result for the estimated mean throughput with
any rate model,

E[μj ] = σRj ·
∫ ∞

−mj

(
y ·σRj + E[Rj ]

)·fRj

(
y ·σRj + E[Rj ]

)
×
∏
∀i�=j

FRi (y ·σRi + E[Ri]) dy. (47)

When we assume the linear rate model for R over indepen-
dent Rayleigh fading channels, i.e., Rj =β ·SNRj where β is
a positive constant and SNRj is an exponentially distributed
random variable with the mean SNRj ,

fRj (x) =

{
1

β·SNRj
· e−x/(β·SNRj), x ≥ 0

0, x < 0
. (48)

FRj (x) =

{
1− e−x/(β·SNRj), x ≥ 0

0, x < 0
. (49)

Since Rj is also an exponentially distributed random vari-
able, we have

E[Rj ] = σRj = β · SNRj . (50)

Using (50) and applying variable substitution, (47) can be
rewritten as

E[μj ] =

∫ ∞

0

x · fRj(x) ×
∏
∀i�=j

FRi

(
σRi

σRj

· x
)
dx. (51)

With (48), (49), and (50), by applying variable substitution
in (51), we have

E[μj ] =

∫ ∞

0

(β · SNRj)·y ·e−y ·(1−e−y
)N−1

dy

= β · SNRj ·
∫ 1

0

{− ln(1−x)}·xN−1dx

= β · SNRj ·
∫ 1

0

( ∞∑
k=1

xN+k−1

k

)
dx

= β · SNRj ·
∞∑
k=1

1

k·(k+N)

=
β · SNRj

N
·
∞∑
k=1

(
1

k
− 1

k+N

)

=
β · SNRj

N
·

N∑
k=1

1

k
=

E[Rj ]

N
·
N∑

k=1

1

k
. (52)

where the Maclaurin series expansion of ln(1−x) [28] is used
to obtain the third equality.

This completes the proof.
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