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ABSTRACT
We study blind estimation of transmission power of a node
based on received power measurements obtained under wire-
less fading. Specifically, the setup consists of a set of moni-
tors that measure the signal power received from the trans-
mitter, and the goal is to utilize these measurements to es-
timate the transmission power in the absence of any prior
knowledge of the transmitter’s location or any statistical dis-
tribution of its power. Towards this end, we exploit spatial
diversity in received-power measurements and cooperation
among the multiple monitoring nodes; based on theoreti-
cal analysis we obtain the Maximum Likelihood (ML) es-
timate, derive fundamental geometrical insights and show
that this estimate is asymptotically optimal. Finally, we
provide numerical results comparing the performance of the
estimators through simulations and on a data-set of field
measurements.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wireless
communication—power estimation, localization

General Terms
Theory, Design, Performance, Algorithms

Keywords
Cooperative monitoring, Power estimation, Maximum like-
lihood, Wireless, Sensor network, Mobile ad-hoc network

1. INTRODUCTION
Estimation of transmission power has far-reaching appli-

cability in event detection in sensor networks, monitoring
of wireless networks, user detection in cognitive radio sys-
tems and power-aware design of mobile ad-hoc networks. In
sensor networks, consider for example, a region where the
sensor nodes are deployed to detect transient events, such
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as an explosion. Since each sensor node can only measure
the received power at its location, they would need to com-
bine these measurements to estimate the power emitted at
the source, which can then be utilized to make an event
decision. Naturally, a priori, the location of the event is un-
known and assuming any statistical prior knowledge might
not be possible.

In wireless networks, the transmission power used by the
nodes has ramifications in the operation of the entire net-
work [1]. One important component in ensuring a proper
and desired operation of such networks is monitoring the
transmission power to detect abnormal or malicious behav-
ior of nodes that can cause excessive signal interference. In
such situations, monitors can be deployed as part of the reg-
ular nodes or as special nodes to estimate and monitor the
transmission power behavior of other nodes. Power estima-
tion may also be used to support power-aware operations
in wireless networks such as transmission power control,
medium-access control, routing etc., when correct transmis-
sion power information of the nodes is not readily available,
either due to mis-configuration or device heterogeneity (e.g.,
lack or incompatible methods of transmit power indication).
Transmission power estimation also has applicability in cog-
nitive radio scenarios where secondary users need to detect
the presence of primary users in their surroundings to avoid
causing interference [8].

In this paper, we study “blind” estimation of transmission
power based on received-power measurements at multiple co-
operative monitoring/sensor nodes. By blind, we mean that
we do not assume any prior knowledge, statistical or other-
wise, of the location of the transmitter or its transmit power.
A key contribution of our work is to show that utilizing the
spatial diversity in received-power measurements at multiple
monitors, we can construct efficient blind estimators. More
specifically the results are as follows – we obtain theoret-
ical results for the Maximum Likelihood (ML) estimation
under wireless Lognormal signal fading, and draw geomet-
rical conclusions from the analysis; the geometric pictures
help elucidate the problem and spell out various interesting
and surprising insights. Furthermore, we show analytically
that as the number of monitors increases the obtained esti-
mate converges to the actual transmit power. As part of the
numerical analysis, we present a simplified algorithm based
on simple pairwise cooperation among the monitors that is
amenable to a distributed implementation, and study the
performance of various schemes through simulations and on
a data-set of field measurements.

The power estimation problem that we consider is fairly



unique from much of the research work in wireless and sensor
networks, and its significant complexity arises from the fact
that neither the transmit-power nor the transmitter location
is known a-priori. In related work in sensor networks, coop-
erative node localization has been extensively studied [2–5],
wherein, the goal is to locate the positions of the nodes in
the network. Here, the nodes transmit with known power
and compute pair-wise distances based on the received signal
strength; these inter-distances are then combined together
to locate the nodes. While this body of work is mainly con-
cerned with node localization, our focus is on estimating the
transmission power with the additional absence of location
information. Though as a consequence of our analysis, we
also provide the location estimate of the transmitter; fur-
thermore, we draw the following insightful observation ap-
plicable to the setting of node localization (Corollary III.3):
In the absence of transmission power information, and even
under no wireless fading, the location of a transmitter cannot
be uniquely determined if the monitors (even infinite number
of them) lie on an arc of a circle or a straight line that does
not pass through the actual transmitter location.

In other areas related to wireless network monitoring,
there have been studies on Markov model based data fusion
with the goal of estimating the sensor field [6, 7]; however,
our work is different and more specialized to power estima-
tion under Lognormal fading. The power estimation prob-
lem that we consider also significantly differs from power-
control problems studied in the literature on wireless and
cellular networks [9–11]. The latter is a coordinated effort
between the base station and the wireless node to reduce
interference, while in our case there is no coordination as-
sumed and the monitors independently measure the received
signal strengths to estimate the transmit power.

In preliminary work in [12], we studied the geometric as-
pects of cooperative power estimation with up to three mon-
itors under non-fading and deterministic signal propagation
model. This paper provides a more thorough investigation
of the problem under wireless fading, giving a formal estima-
tor design, geometrical insights, asymptotic optimality and
numerical results based on a data-set of field measurements.

2. SYSTEM MODEL
We consider a wireless network consisting of N “moni-

tors”, where each monitor represents a wireless-node in a
MANET environment or a sensor-node in a sensor network.
Let T be the set of “transmitters” whose transmit-power is
to be estimated; a transmitter refers to a physical node in a
MANET environment or an event location in a sensor net-
work field. We assume that the monitors can distinguish
the signals of various transmitters; for example, in a sensor
network, assuming that events occur at distinct times the
power received from the events is easily distinguishable in
time. In wireless networks with multiple transmitters, we
consider situations where device identifiers of the transmit-
ters are available through standard MAC, IP, or higher layer
protocols (but the transmit power information is unknown
or can be incorrect due to mis-configuration, incompatibility,
or even malicious behavior). For our purposes, it therefore
suffices to focus the mathematical analysis on the canonical
single-transmitter multiple-monitor scenario.

Let P denote the (unknown) transmit power and di be the
distance between the transmitter and monitor node i (i =
1, . . . , N). A priori, the value of P and the location of the

transmitter are unknown; hence, the distances {di}N
i=1 are

unknown. Furthermore, we do not make any assumptions
about the statistical characteristics (e.g., mean, variance,
distribution, etc.) of the transmission power P and the lo-
cation of the transmitter, since assigning any a-priori distri-
butions would not be meaningful. Let Pi denote the received
power level at node i; this quantity is a random variable due
to wireless fading. The uppercase notation Pi will denote the
random variable while the lowercase pi will denote a specific
measured value. An implicit practical assumption through-
out is that pi > Rth, where Rth is a positive constant for
the minimum power level required to receive a signal.

For the signal propagation model, we consider the stochas-
tic Lognormal fading model [1,13]. Let d0 be some reference
distance from the transmitter and p0 be the received power
level at that distance. The received power at node i at dis-
tance di from the transmitter is then given as1,

ln

(

Pi

p0

)

= −α ln

(

di

d0

)

+ Wi (1)

where α > 1 is the path-loss exponent and Wi ∼ N (0, σ2) is
an independent zero mean Gaussian random variable with
variance σ2. We note that the ML estimator presented in the
later sections does not require the value of σ to be known,
however, it requires the value of α. In practice, α ∈ [2, 4]
depending on the environment and can be estimated for the
monitoring field by the monitors themselves through mea-
surements of signal strength between them.

Rewriting (1), we get,

ln Pi = ln
(

d−α
i (p0d

α
0 )
)

+ Wi (2)

= ln(kP ) + ln(d−α
i ) + Wi (3)

where, assuming d0 is close to the transmitter, (p0d
α
0 ) is pro-

portional to the transmit power P and is taken as p0d
α
0 =

kP . Note that by taking Wi = 0, the above model reduces
to the deterministic power-law propagation model [1]. The
justification for the above propagation model is as follows.
First, since we are concerned with average signal power level,
we consider large-scale fading model as opposed to short-
term fading which is used primarily for analysis at the data-
bit level (eg. Rayleigh and Rician fading). Lognormal fad-
ing model is a widely studied long-term fading model and
although simplistic in nature, it provides a good approxi-
mation for practical fading scenarios [14]. Additionally, it
is also a tractable model which lends itself to analysis and
provides fundamental insights for the estimation problem.

Now given only individual measurements and since the
distance to the transmitter is unknown, each monitor node i
can make a simple guess that the transmit power P ≥ pi, as-
suming no fading happened. Furthermore, since we are con-
cerned with measuring the power level of an event in a sensor
field or monitoring misbehaving, ill-configured or malicious
transmitters, monitor i cannot directly know these quanti-
ties but must rely only on the received power measurements.
In this work, we show that utilizing cooperation and joint
power measurements {Pi}N

i=1, the monitoring nodes can im-
prove the estimation of transmit power P , thereby, usefully
exploiting the spatial diversity in these measurements.

1Lognormal fading model is commonly defined in terms of
log10 (dB scale) but for mathematical convenience we choose
the natural logarithm.
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Figure 1: Two monitor scenario.

3. TWO MONITOR SCENARIO
We begin first with the two monitor case. Although a sim-

ple scenario, analyzing this setup serves two purposes. First,
it provides fundamental insights and a valuable understand-
ing of the estimation problem, and second, the estimator
obtained for this case can be utilized to construct a “light-
weight”distributed algorithm for transmit-power estimation
under more general scenarios; this aspect is discussed later
in Section 5.3.

Consider the setup shown in Figure 1, where we have a
transmitter T and two monitor nodes 1 and 2. As mentioned
earlier, the transmit power P and the transmitter location
is unknown; hence, the distances d1 and d2 between the
transmitter and nodes 1 and 2 respectively are unknown.
Nodes 1 and 2 measure received-power levels p1 and p2 and
can exchange this information among them. We assume that
the distance d12 between nodes 1 and 2 is known2. Using
(3), we obtain,

ln(P1) = ln(kP ) − ln(dα
1 ) + W1 (4)

ln(P2) = ln(kP ) − ln(dα
2 ) + W2 (5)

From the above equations, we see that the power estimation
problem is a non-linear, Gaussian, non-random parameter
estimation problem for which a valid, unbiased, minimum-
variance estimate does not exist [15]. Therefore, in the rest
of the work, we seek Maximum Likelihood (ML) estimates,
and through analysis obtain valuable insights and discuss
useful properties of these estimators.

Let Z1 = ln(P1), Z2 = ln(P2) and Z = ln(P ); we can then
re-write (4) and (5) as,

Z1 = Z + (ln(k) − ln(dα
1 )) + W1 (6)

Z2 = Z + (ln(k) − ln(dα
2 )) + W2 (7)

Let (p1, p2) be the received-power, (z1, z2) be the corre-
sponding logarithm values and θ = (Z, d1, d2) denote the
unknown parameter set. Let f(z1, z2; θ) denote the joint
probability density function, we then have,

f(z1, z2; θ) =
2
∏

i=1

fWi (zi + ln(dα
i /k) − Z) (8)

=
1

2πσ2
e
−

(z1+ln(dα
1 /k)−Z)2

2σ2 e
−

(z2+ln(dα
2 /k)−Z)2

2σ2 (9)

where the above follows since Wi ∼ N (0, σ2).

2Note that this assumption is weaker than having knowledge
of the actual positions of the monitors; hence, the monitors
can be arbitrarily placed in the network with known inter-
distance between them.
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Figure 2: Schematic diagram showing that the ML
estimate for two-monitor case corresponds to the
transmitter located on a unique circle (c < 1 above).

Let Ω be the set of all admissible values for the parameter
set θ; note that d1 and d2 are not arbitrary as they must
satisfy the triangle inequality. In Theorem I below, we give
the Maximum Likelihood (ML) estimate which corresponds
to those values of θ that maximize the chance of measuring
(z1, z2) at the two monitors respectively.

Theorem I. (ML estimate for two-monitor case) Let
(z1, z2) be the logarithm of the received-power at monitors 1
and 2 respectively, and d12 be the distance between the moni-
tors. Let θ∗ = (Z∗, d∗

1, d
∗

2) be the Maximum Likelihood (ML)
estimate; i.e.

θ∗ = arg max
θ∈Ω

f(z1, z2; θ) (10)

Then, the corresponding Z∗ is given as,

Z∗

L ≤ Z∗ ≤ Z∗

H (11)

where, for z1 ≥ z2, Z∗

L = ln
(

(d12)α

k(e−z1/α+e−z2/α)α

)

and Z∗

H =

ln
(

(d12)α

k(e−z2/α
−e−z1/α)α

)

; for z2 > z1, Z∗

L and Z∗

H have the

same expressions as before but interchanging z1 and z2.

Remark 1. In simple terms, the above theorem states
that there is a set of values of θ∗ and corresponding Z∗ that
maximize the likelihood of receiving measurements (z1, z2).
Furthermore, in the proof below, we point out an interesting
geometric interpretation of the values (d∗

1, d
∗

2), summarized
as follows – the ML estimate locus of the transmitter corre-
sponds to a unique circle whose center and radius depends
on the measured values (z1, z2).

Proof. Without loss of generality, let node 1 be at loca-
tion (−d12/2, 0) and node 2 at location (d12/2, 0). Consider
the joint density function, f(z1, z2; θ) which is a product
of two functions fW1(·) and fW2(·) as given in (8). If we
can find (Z, d1, d2) that maximizes each function individu-
ally, then clearly, since each is a non-negative function the
product is also maximized. Thus, for the maximization of
f(z1, z2; θ) we get two equations as follows,

z1 − Z∗ + ln((d∗

1)
α/k) = 0 (12)

z2 − Z∗ + ln((d∗

2)
α/k) = 0 (13)



Subtracting the above two equations gives,

d∗

1

d∗

2

= e(z2−z1)/α = c (14)

where c denotes the quantity e(z2−z1)/α.
First, assume z2 < z1 which implies c < 1. Re-writing,

d∗

1 =
√

(x + d12/2)2 + y2, d∗

2 =
√

(x − d12/2)2 + y2, equa-
tion (14) reduces to (1− c2)x2 + (1− c2)y2 + (1 + c2)d12x +
(1− c2)d2

12/4 = 0. This is an equation of a circle with center
(

−(1+c2)d12

2(1−c2)
, 0
)

and radius cd12
(1−c2)

(as shown in Figure 2).

From the circle, we get cd12
1+c

≤ d∗

1 ≤ cd12
1−c

; substituting this

in (12) and simplifying gives, Z∗

L ≤ Z∗ ≤ Z∗

H , where Z∗

L and
Z∗

H are as stated in the theorem.

For the case z2 > z1, the circle has center
(

(1+c2)d12

2(c2−1)
, 0
)

and radius cd12
(c2−1)

; Z∗

L is the same as before whereas Z∗

H =

ln
(

(d12)α

k(e−z1/α
−e−z2/α)α

)

. Finally, for z1 = z2, we get d∗

1/d∗

2 =

1, which corresponds to the perpendicular bisector of the
line joining nodes 1 and 2. In this case d12

2
≤ d∗

1 < ∞, thus,
Z∗

H = ∞.

Let P ∗ = eZ∗

denote the value of Z∗ in the power domain.
Similarly, let P ∗

L = eZ∗

L and P ∗

H = eZ∗

H . From (11) and
using p1 = ez1 , p2 = ez2 , we have (for z1 > z2), P ∗

L =
(d12)α

k((1/p1)1/α+(1/p2)1/α)α , P ∗

H = (d12)α

k((1/p2)1/α−(1/p2)1/α)α . Thus,

P ∗

L ≤ P ∗ ≤ P ∗

H (15)

On the ML estimate circle, the locations which give values
P ∗

L and P ∗

H respectively are depicted in Figure 2.
From Theorem I several useful insights can be drawn as

follows. First, note that the center of the (maximum like-
lihood) circle does not lie at either node 1 or node 2. This
is in contrast to “localization” problems, where for triangu-
lation, circles are drawn with centers at the various probe
locations [2, 3]. Instead, here, for z2 < z1, the center lies at

point
(

−(1+c2)d12

2(1−c2)
, 0
)

on the line joining the two monitors,

as shown in Figure 2. Furthermore, the radius of this circle
is dependent on the measured power levels (p1, p2). As the
measured p2 value approaches p1 the center moves further
away from node 1 and the radius also increases; thus, the
difference between P ∗

H and P ∗

L increases. When p1 = p2

the maximum likelihood point could lie anywhere on the bi-
sector which gives the widest range for P ∗. For the case
p2 > p1, the geometric picture is simply the mirror image
about the bisector line. Another observation from equations
(12) and (13) is that 2Z∗ = ln(ez1d∗

1
α/k) + ln(ez2d∗

2
α/k) =

ln(p1d
∗

1
αp2d

∗

2
α/k2). From this, P ∗ can be written as,

P ∗ =
1

k

√

p1(d∗

1)
αp2(d∗

2)
α (16)

Thus, expressed differently, P ∗ is proportional to the geo-
metric mean of p1(d

∗

1)
α and p2(d

∗

2)
α, and this interpretation

conforms with the generalized results for the multiple mon-
itor case given in the next section.

As mentioned before, the ML estimate P ∗ consists of an
interval [P ∗

L, P ∗

H ] and one can in theory pick any point in this
interval. In Section 5.3, as a part of performance analysis, we
discuss this issue further and present a distributed estimator
based on the concept of coverage area of the two monitors.

4. MULTIPLE MONITORS SCENARIO
In the previous section, we analyzed the ML estimate for

the two-monitor scenario. We now generalize the setup to
the multiple monitor case; specifically, consider the case of N
monitors (i = 1, . . . , N) with received power measurements
{Pi}N

i=1. With multiple monitors there is clearly more diver-
sity in measurements and one should be able to exploit this
spatial diversity to improve the power estimation. Towards
this goal, we first present the ML estimate, outline the var-
ious geometrical observations and finally show asymptotic
optimality; i.e. we show that the power estimate converges
to the actual transmit power (almost surely) in a random
monitor deployment.

4.1 Maximum Likelihood Estimate
Let (xi, yi) denote the location of monitor node i which

is assumed to be known. Let (x, y) denote the unknown
location of the transmitter and P be its transmit power.
Let Zi = ln(Pi) and Z = ln(P ); then using (3) we have,

Zi = Z + (ln(k) − ln(dα
i )) + Wi, i = 1, . . . , N (17)

where di =
√

(x − xi)2 + (y − yi)2. Let θ̂ = (Z, x, y) de-
note the unknown parameter set, z = (z1, . . . , zN) be a par-

ticular measured vector of {Zi}N
i=1 and f(z; θ̂) be the joint

probability density function. Since {Wi}N
i=1 are independent

Gaussian random variables we have,

f(z; θ̂) =
N
∏

i=1

fWi (zi + ln(dα
i /k) − Z) (18)

=
N
∏

i=1

1√
2πσ2

e
−

(zi+ln(dα
i /k)−Z)2

2σ2 (19)

The next theorem presents the ML estimate θ̂∗ that max-
imizes the likelihood of having measurements (z1, . . . , zN).

Theorem II. (ML estimate for multiple-monitor case)
Let z = (z1, . . . , zN) be the logarithm of the power received

at monitors 1 through N respectively. Let θ̂∗ = (Z∗, x∗, y∗)

denote the Maximum Likelihood (ML) estimate of θ̂; i.e.

θ̂∗ = arg max
θ̂

f(z; θ̂) (20)

Then, Z∗ is given as,

Z∗ = ln(1/k) + ln

(

N
∏

i=1

ezi(d∗

i )
α

)1/N

(21)

where d∗

i =
√

(x∗ − xi)2 + (y∗ − yi)2 and (x∗, y∗) is given
as,

(x∗, y∗) = arg min
(x,y)

N
∑

i=1

(

ln(ezidα
i ) −

∑N
j=1 ln(ezjdα

j )

N

)2

(22)

Proof. See Appendix A.

Remark 2. The results of Theorem II can be understood

as follows. Using pi = ezi and setting P ∗ = eZ∗

, equations
(21) and (22) can be written as,

P ∗ =
1

k

(

N
∏

i=1

pi(d
∗

i )
α

)1/N

(23)



(x∗, y∗) = arg min
(x,y)

N
∑

i=1

(

ln(pid
α
i ) −

∑N
j=1 ln(pjd

α
j )

N

)2

(24)

From the above two equations we see that the ML estimate
P ∗ is proportional to the geometric mean of terms {pi(d

∗

i )
α}

as given in (23), where d∗

i is the distance between monitor i
and the estimated location of the transmitter (x∗, y∗). This
ML estimate (x∗, y∗) is that value of (x, y) which achieves
the minimum in (24). Note that the minimization quantity
in (24) is proportional to the sample variance of {ln(pid

α
i )}N

i=1.
Thus, (x∗, y∗) is the value that minimizes the sample vari-
ance of {ln(pid

α
i )}.

As noted above, to obtain the ML estimate P ∗ we need
to first compute (x∗, y∗) through the minimization in (24).
In full generality of the setup, a closed form solution to this
optimization is intractable. However, the objective function
in (24) is continuously differentiable with respect to (x, y);
hence, one can obtain the partial derivatives with respect to
x and y. Setting these to zero, one can enlist all the local
minima (and stationary points) and pick those that achieve
the lowest value of the objective function. Alternatively, one
can also utilize standard numerical techniques to obtain the
minimum point, as done for the numerical results later.

4.2 Asymptotic Optimality
Having obtained the transmission power estimate for the

multiple monitor scenario, an interesting question that arises
is how does the estimate perform as the number of monitors
increases. Intuitively, with increasing number of measure-
ments one would have more spatial diversity and this should
improve the estimate. In this section, we corroborate this
intuition analytically and show that the ML estimate asymp-
totically converges to the actual transmit power. To prove
this result we proceed in steps and along the way develop
interesting geometric insights into the problem.

Consider equation (23) and suppose for the moment that
instead of using d∗

i we use the real distance dr,i between the
transmitter and monitor i, which is magically known. Let
P ∗

r denote this estimate and (P1, . . . , PN) be the random
vector denoting the received power at the N monitors. We
then have,

P ∗

r =
1

k

(

N
∏

i=1

Pi(dr,i)
α

)1/N

(25)

Consider now the scenario as N increases; i.e. we increase
the number of monitors where each monitor measures the
received power independently. The following lemma shows
that as N → ∞, P ∗

r converges to the actual transmit power
P of the transmitter.

Lemma 1. Consider P ∗

r given in (25), then almost surely,

lim
N→∞

P ∗

r = P (26)

Proof. See Appendix B.

From the above lemma we see that if the real location
of the transmitter is known then the estimate in (23) with
the real distances converges to the actual transmit power.
Clearly however, in our case the location of the transmitter
is unknown; hence, the real distances are unknown. Instead
the ML estimate (x∗, y∗) is obtained from the minimization

4

T


1


2


X


3


dr,1

dr,2

d1

d2

(x̂, ŷ)

Figure 3: Schematic diagram showing the placement
of monitors on a circular arc which gives two solu-
tions – transmitter location and position marked X.

in (24). We next show that under certain conditions as N
increases the optimization in (24) gives a unique solution
which equals the actual location of the transmitter.

Before proceeding further, suppose for now that there is
no fading, i.e. Wi = 0, ∀i; analyzing this case will provide
fundamental geometrical insights which will be utilized later.
First, from (3) we see that under no fading, pi = kP/dα

r,i,
where as before, dr,i denotes the real distance between the
transmitter and monitor i. Substituting this in (24) the
minimization becomes,

min
(x,y)

N
∑

i=1

(

ln(kPdα
i /dα

r,i) −
∑N

j=1 ln(kPdα
j /dα

r,j)

N

)2

(27)

min
(x,y)

N
∑

i=1

(

ln(dα
i /dα

r,i) −
∑N

j=1 ln(dα
j /dα

r,j)

N

)2

(28)

Note that the objective function above is non-negative. Clearly,
(x, y) equal to the actual location of the transmitter is a so-
lution for (28) for which the minimized value equals zero
(since di = dr,i in this case). The question then arises is
whether there is another solution to the above minimiza-
tion. Interestingly, the minimization in (28) has multiple
solutions only for a specific placement of the monitors; this
result is illustrated in the theorem below.

Theorem III. Consider the optimization given in (28).
Let (x∗, y∗) be the optimal solution, then (x∗, y∗) is unique
and equal to the actual location of the transmitter, except
when the monitors are placed on an arc of a circle or a
straight line that does not pass through the actual transmitter
location.

Proof. Without loss of generality, let the real location of
the transmitter be at the origin, then dr,i =

√

x2
i + y2

i . Sup-
pose that (x̂, ŷ) 6= (0, 0) be another solution for (28). Clearly
then, (x̂, ŷ) must make the objective function in (28) equal
to zero (since the minimum value achieved by the actual
transmitter location equals zero). This will happen only if
each term in the summation (28) is equal to zero, which
requires,

di

dr,i
= β, (a constant), ∀i = 1, . . . , N (29)

This can be further written as,

(1− β2)x2
i + (1− β2)y2

i − 2xix̂− 2yiŷ + (x̂2 + ŷ2) = 0 (30)

From the above equation we see that for (x̂, ŷ) to be a solu-
tion of (28), the monitor locations (xi, yi) must satisfy (30).



But this is the equation of a circle for β 6= 1, and for β = 1
it is a straight line that does not pass through the origin.
Thus, stated differently, if the monitors are located on an
arc of a circle or a straight line that does not pass through
the actual transmitter location, we can find (x̂, ŷ) 6= (0, 0)
and β > 0 such that (30) holds. For all other placements of
the monitors, (29) cannot be satisfied; hence there cannot
be more than one solution.

Corollary III.1. For the scenario of two monitors there
are always multiple solutions for (28).

Proof. For any distinct placement of two monitors we
can find a circular arc passing through the two points.

Corollary III.2. For the scenario of three monitors that
do not lie on a straight line passing through the transmitter
location there are always multiple solutions for (28).

Proof. Three monitors either form a triangle in which
case there is a circle that passes through them, or they lie
in a straight line. If this line does not pass through the
transmitter location, then in either case Theorem III implies
multiple solutions.

Figure 3 is a schematic diagram of the circular geometry of
monitor placements which yields multiple solutions to (28).

An interesting outcome of Theorem III for the well-studied
problem of node-localization is that even with infinite num-
ber of monitors and no fading, in the absence of transmit
power information there are situations in which the trans-
mitter location cannot be known with full accuracy.

Corollary III.3. Consider the problem of locating the trans-
mitter position under power-law propagation model with no
fading. In the absence of transmit power information, the
transmitter location cannot be uniquely determined if the
monitors lie on an arc of a circle or a straight line that
does not pass through the actual transmitter location.

Proof. Under no fading, the propagation model in (3)
can be written as Pi = kP/dα

i . Let P be the actual (un-
known) transmit power, then the received power is given as
Pi = kP/dα

r,i, where dr,i is the actual distance between the
transmitter and monitor i. Let (x̂, ŷ) be some other location

(with a corresponding transmit power P̂ ) that also results
in the same received powers; this happens if and only if,

d̂i/dr,i = β, (a constant),∀i; and, P̂ = βαP (31)

From Theorem III we know that if the monitors are located
on an arc of a circle or a straight line that does not pass
through the actual transmitter location, then (31) can in-
deed be satisfied by another location different from the ac-
tual transmitter location. In such a situation, the two lo-
cations are indistinguishable based on received-power mea-
surements.

We now return to the stochastic fading scenario and show
asymptotic optimality of the ML estimate. The setup is
as follows. Let Γ denote a bounded region in R

2 which
encloses the origin. Without loss of generality, let the ac-
tual location of the transmitter be at the origin (which is
of course unknown to the monitors). Let N be the num-
ber of monitors. Place each monitor in Γ independently
according to the probability distribution FXY (x, y); i.e. for

monitor i its location (xi, yi) ∈ Γ is drawn from the distri-
bution FXY (x, y). Each monitor then independently makes
received power measurement under Lognormal fading. Us-
ing these measurements and based on the result in Theo-
rem II, we obtain the ML estimate of the transmit power.
Let P ∗

N denote the estimated power, and (x∗

N , y∗

N ) be the
ML estimate of the transmitter location obtained from the
minimization in (24). The subscript N in the notation de-
notes the number of monitors employed. We refer to this as
the “Random Monitor Placement” scenario. Consider now
a sequence of such setups indexed by N where N is mono-
tonically increasing. Theorem IV below states that if the
random distribution FXY (x, y) does not place all the moni-
tors on an arc of a circle or a straight line, the ML estimate
given in Theorem II is asymptotically optimal; i.e. as N
goes to infinity it converges to the actual transmit power P .

Theorem IV. (Asymptotic optimality of ML esti-
mate) Consider the random monitor placement scenario
over a bounded region Γ. Let the monitor location (xi, yi), ∀i,
be drawn independently from the distribution FXY (x, y). Let
FXY (x, y) be such that,

1. FXY (x, y) is not a distribution over an arc of a circle
or a straight line in Γ.

2. E[|L(x̂, ŷ)|] < ∞ and V ar(L(x̂, ŷ)) < ∞, for all (x̂, ŷ) ∈
Γ, where L(x̂, ŷ)△

=
α
2

ln
(

(x−x̂)2+(y−ŷ)2

x2+y2

)

.

Let P ∗

N denote the ML estimate of transmit power P given
by (23) for an N monitor scenario. Then, almost surely,

lim
N→∞

P ∗

N = P (32)

Proof. See Appendix C.

5. PERFORMANCE EVALUATION
The ML estimate obtained in the previous section has

the interesting property of asymptotic convergence; how-
ever, while the asymptotic result provides justification for
this estimate, we would still like to quantify its performance
for finite monitor scenarios. In this section, we study this
performance through numerical analysis based on simula-
tions and a data set of field measurements of received power.

5.1 Performance Metrics
Let EdB denote the dB error of the estimate P ∗ of a trans-

mitter’s actual (ground-truth) transmit power P , i.e., EdB =
P ∗

dBm −PdBm, P ∗

dBm = 10 log10 P ∗, and PdBm = 10 log10 P .
Given K samples of transmit power P , we define the es-
timation error as the square-root of the mean square dB
error, given as,

(EK [E2
dB])1/2 =

√

EK [(P ∗

dBm − PdBm)2], (33)

where EK denotes the ensemble average of K observations.
We say that a transmission power estimator is effective

under wireless lognormal fading with zero-mean and vari-
ance σ2

dB, if EK [E2
dB ] ≤ σ2

dB
3. In our context of blind power

estimation, an estimator being effective indicates that its er-
ror performance in terms of (33) is as good as the one by

3σ2
dB is the variance of Wi when equation (3) is expressed

in 10 log10() scale rather than ln(); thus σ = σdB ln(10)/10.



a single non-blind monitor that knows the exact distance to
the transmitter. To elaborate, suppose a (non-cooperative)
monitor knows the exact distance d to a transmitter, and it
estimates its transmit power P based on the received power
pr. Knowing d and pr, this single monitor’s estimate of P is
P ∗ = (1/k)prd

α, for which EE2
dB = σ2

dB . Hence, if a blind

estimator is effective, its estimation error, (EK [E2
dB])1/2, is

less than or equal to that of a single non-blind estimation.
Our goal in this section is to illustrate via simulations that
the cooperation of monitors can achieve effective blind esti-
mation.

5.2 Methodology
We experiment with the following two estimation schemes:

• MLE-Coop: A centralized, cooperative ML power es-
timator given by (21) and (22).

• MLE-Pair: A decentralized extension of two-monitor
ML estimator, which requires only the distances (not
the locations) between pairing monitors to estimate
the power. See Section 5.3 for further details.

We employ two different methods of MLE-Coop to find
out the optimal solution of (x∗, y∗) in (22). The first method
is to divide the entire monitored region into two-dimensional
grid block, and choose the center position of the grid block
that gives the minimum value of the optimization function
in (22) as the optimal (x∗, y∗). The results in the later part
of this section show that the inherent inaccuracy introduced
by this quantization method has little impact on the over-
all accuracy of the power estimation. This is due to the
fact that the unavoidable inaccuracy introduced by wireless
fading neutralizes the effect of choosing slightly sub-optimal
positions. The second approach is to use some optimization
tool such as fminsearch in MATLAB. Despite potentially
faster running time than grid-based search, such an opti-
mization tool has its own drawback: they sometimes fall
into local minima, and when they do, it can have drastically
negative impact on the overall performance. We evaluate
both approaches here, and distinguish them by denoting the
former by MLE-Coop-grid (grid search) and the latter
MLE-Coop-fmin (fminsearch).

Along with the above estimators, we also show results
of an “ideal” power estimator, which is assumed to be able
to obtain the precise location information of transmitters.
This imaginary estimator calculates the maximum likelihood
transmission power in (21) with correct distance informa-
tion, and provides upper bounds of the performance of any
blind estimator. We call it MLE-ideal.

The performance of the above power estimators are eval-
uated through two types of simulation using MATLAB. The
first one is based on synthetic data set, in which a large vol-
ume of samples are generated for transmitters’ and monitors’
locations, transmit powers, and received powers under log-
normal wireless fading. In the second setting, we utilize an
empirical data-set of actual field measurements of received
powers. We elaborate later the details of these evaluation
processes in their respective sections.

5.3 Distributed Pairwise Estimation
MLE-Pair estimator is a distributed extension of two-

monitor ML estimator presented in Section 3. Consider two
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Figure 4: Schematic diagram showing the intersec-
tion of ML estimate circle and coverage circle.

monitors, and without loss of generality, let them be at lo-
cations (−d12/2, 0) and (d12/2, 0) respectively (see Figure
4). Recall from Section 3 that for the two monitor case, the
estimated power P ∗ consists of an interval based on the ML-
estimate circle, denoted by CML in the Figure. In principle
one can pick any point in this interval; however, when p1

and p2 are close in value the size of the ML circle increases
arbitrarily and this becomes meaningless from a practical
perspective. To address this concern we introduce the con-
cept of coverage area of the two monitors.

The coverage area is a circle (denoted by CR in Figure 4)
of radius R centered at the origin. Essentially CR defines the
region that two monitors “cover” the transmitters within it
to estimate their transmission powers. The rationale behind
the coverage region is two fold: 1) Efficiency: by restricting
the search space of potential position of the transmitter, the
pair of monitors can avoid a pathological decision of choosing
arbitrarily large estimate value, and 2) Divide-and-Conquer:
the union of the coverage area of multiple pairs of monitors
can cover a large part of the monitored region.

We now describe the estimation method that individual
pairs of nodes employ. For any measured power values p1

and p2, we restrict the ML estimate circle to within CR,
effectively limiting the likely position of the transmitter on
the portion of ML circle CML that is contained within the
area enclosed by CR. This portion corresponds to arc AB in
Figure 4 (the lower part of the arc gives the same values for
the estimate P ∗; hence it is not considered), where A is the
intersection point of CML with CR and B is the intersection
point of CML and the line segment between the two monitors.

Within arc AB, we pick the mid-point M on this arc and
compute the power estimate based on the ML estimate at
this point. Thus, for a pair of monitors i and j, the estimate
is given as, P ∗

MLE−Pair(i, j) = 1
k
p1d

α
M . The rationale behind

this estimator is that restricting the transmitter’s position
on the arc AB, and, supposing all positions are equally likely,
the mid point gives the mean location on arc AB. Finally,
if CML is small enough and does not intersect CR, point M
is taken as the midpoint along the semi-circle of CML.

Finally, the network-wide estimation P ∗

MLE−Pair of trans-
mit power is calculated by a localized, distributed protocol
that enables the exchange of individual P ∗

MLE−Pair(i, j) be-
tween neighboring pairs of nodes in a way similar to the
routing protocol’s operation. Having obtained other pairs’
estimate values, the monitors can average those values to
obtain P ∗

MLE−Pair. In our simulations, we simply use arith-
metic mean to combine multiple local estimate.
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Figure 5: Performance of estimators under ran-
dom monitor/transmitter distribution: Monitors
are placed uniformly at random.

5.4 Evaluation using Synthetic Dataset
In the synthetic simulation, K transmitters and N mon-

itors are placed uniformly at random in a two-dimensional
disk of radius R. The dB-transmit power, PdBm of each
transmitter is selected uniformly at random from a range
[min Pdb, max Pdb]. Then, each monitor’s received power
from a transmitter at distance d is generated by an i.i.d.
lognormal fading model given by (3). The MLE-Coop-grid
estimator searches for the optimal point among (20× 20) ×
πR2

(2R)2
≈ 314 grid points. The MLE-pair estimation utilizes

all pairs of N monitors, thus averaging the results of two-
monitor cooperative estimations by N(N − 1)/2 pairs, and
each pair’s coverage region is set to R (regardless of the
position of the pairs). For simulations, we used R = 40,
K = 1000, and varied N from 2 to 20 to observe the effect
of increasing number of monitors. We used lognormal shad-
owing parameters, α = 2.3 and σdB = 3.92, obtained from
empirical measurement data used in Section 5.5

In Figure 5, we plot the estimation performance of all
estimators under the above random monitor placement as
a function of increasing number of monitors. Each point
in the plot represents the performance value averaged over
K = 1000 estimation results performed by N cooperating
monitors in x-axis.

Figure 5(a) shows the estimation error (EK [E2
dB ])1/2 given

in (33). Recall from Section 5.1 that a blind estimator is
asymptotically effective if the estimation error is less than
or equal to σdB = 3.92, and we can verify indeed all four es-
timators achieve below-σdB performance when N > 2, and
generally continue to perform better as the number of coop-
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erating monitors grows. This clearly highlights the benefit
of nodes’ cooperation in blind estimation.

Overall, MLE-Coop-grid performs the best among three
(realizable) estimators, and quickly approaches the perfor-
mance of the reference non-blind estimator, MLE-ideal. In
the case of MLE-Coop-fmin, though it attempts to find
the optimal solution more quickly, it comes at the expense
of sometimes reaching local minima, the effect of which is
shown in erratic performance when N is between 4 to 8.

Figure 5(b) additionally depicts the mean dB-error EKEdB ,
an indication of the bias of the estimators. While the two-
centralized estimators gradually approach zero-mean as N
increases (except some erroneous cases of MLE-Coop-fmin),
the convergence of the decentralized one (MLE-Pair) is rel-
atively slow, indicating that taking the average of the pair-
wise estimations is biased slightly toward sub-mean value
in this particular scenario. The relatively low performance
of MLE-pair (compared to the centralized approaches) is
expected since it is designed as a heuristic means for the
scalability of estimation as a major concern.

We then further investigate the scalability of the MLE-
pair estimator. Here we place K = 1000 transmitters and
N = 20 monitors uniformly at random within a disk of ra-
dius R = 20. In this case, however, we control the pairwise
connectivity by having the monitors make the pairing con-
nection only if their distance is smaller than some dmin. We
observe the performance of MLE-pair estimator as a function
of the number of monitor pairs (hence the average degree in
the x-axis) by growing dmin until dmin becomes equal to
2 ∗R, at which point the monitors are fully connected. Fig-
ure 6 shows the result. As seen in the figure, the estimation
error of MLE-pair estimator quickly drops initially at low
degree, and a knee is formed around the average degree 3,
after which (EKE2

dB)1/2 stabilizes below σdB . This experi-
ment illustrates that the MLE-pair estimation can achieve
effective performance even with the sparse connection be-
tween monitors.

5.5 Evaluation using Empirical Dataset
For the performance evaluation under a more realistic sce-

nario, we use the power measurement data collected from a
wireless sensor network [17]. This data set consists of 44
wireless sensor devices’ measurement results, in which the
received powers between all pairs of devices are measured.
The actual transmit powers of all devices are fixed at -37.47
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dBm, and hence the goal of the power estimation is to ob-
tain values close to this fixed transmit power. The precise
locations of the devices are also available in this data, which
we only apply to MLE-ideal to compare the performance of
our blind power estimator aginst an ideal (non-blind) power
estimator.

A report on this field data [14] shows that the received
power in the collected measurements can be fitted well to
a lognormal fading model with path-loss exponent α = 2.3
and σdB = 3.92.

We present in Figure 7 the estimation error of MLE-Coop-
grid estimator. Each point in the plot represents (EKE2

dB)1/2

value obtained from one simulation run with N devices ran-
domly selected as the monitors( N = 3, 4, · · · , 10 in the x-
axis), and for each N we iterate the experiment 30 times.
The vertical boxes at each N shows the confidence interval
of (EKE2

dB)1/2 at 95% confidence, and the horizontal line
connects the median value. It can be seen that the gen-
eral trend as well as the median performance continue to
improve as the number of cooperating monitors grows, and
eventually reaches the point where even the worst case per-
formance enters the effectiveness region (below σdB = 3.92).
This again demonstrates that the cooperation of monitors is
a powerful tool that overcomes the inherent uncertainty in
blind estimation of transmit power4.

6. CONCLUSION
We studied the problem of blind transmit-power estima-

tion under wireless fading, wherein neither the transmitter
location nor any statistical characterization of its transmit
power are assumed. The setup consisted of a set of moni-
tors that measured received power and the goal was to utilize
these measurements to estimate the transmission power. We
obtained analytical results for the Maximum Likelihood esti-
mate and utilized the analysis to draw geometrical insights
into the problem. We also showed asymptotic optimality
of the estimate, wherein the estimate converges to the ac-
tual transmit power under certain conditions as the num-
ber of monitors increases. To understand the estimation er-
ror performance under the finite monitor case we presented

4Though not shown here due to space limitation, the per-
formance of MLE-Coop-fmin and MLE-Pair show a trend
similar to that in synthetic experiment in Section 5.4.

both synthetic simulation results and numerical analysis on
a data-set of actual field measurements. Our work highlights
a key aspect that even under no knowledge of the transmit-
ter location and the statistical characteristics of its power,
one can usefully exploit the spatial diversity in measure-
ments through monitor cooperation to significantly enhance
the transmit power estimation.
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APPENDIX

A. PROOF OF THEOREM II
Consider the joint density function f(z; θ̂) as given in (19).

To maximize this function with respect to θ̂, it suffices to
maximize the logarithm of f(z; θ̂). This gives,

θ̂∗ = arg min
θ̂

N
∑

i=1

(zi + ln(dα
i /k) − Z)2 (34)

Let J(Z, x, y) =
∑N

i=1(zi + ln(dα
i /k) − Z)2 and consider its

partial derivative with respect to Z. This gives,

∂J(Z, x, y)

∂Z
= −

N
∑

i=1

2(zi + ln(dα
i /k) − Z) (35)

For a fixed (x, y), the optimal Z that minimizes J(Z, x, y)
is obtained by setting the above partial derivative to zero.
This gives a unique value of Z as follows,

Z = ln(1/k) +
1

N

N
∑

i=1

ln(ezidα
i ) (36)

Thus, for any location (x, y) the unique Z that minimizes
J(Z, x, y) is as given above and the minimum value of J(Z, x, y)

at this location is J̃(x, y) =
∑N

i=1

(

ln(ezidα
i ) −

∑N
j=1 ln(e

zj dα
j )

N

)2

.

To obtain the global minimum we pick (x∗, y∗) that mini-

mizes J̃(x, y) over (x, y). Thus, the optimal solution (Z∗, x∗, y∗)
is as given in (21) and (22).

B. PROOF OF LEMMA 1
Using (3) we have Pi = Hi

kP
dα

r,i
, where Hi

△

=eWi is a Lognor-

mal random variable. Substituting in (25) this gives, P ∗

r =

P
(

∏N
i=1 Hi

)1/N

= PH̃N . Consider ln(H̃N) = 1
N

∑N
i=1 Wi.

Since Wi are i.i.d Gaussian, by the Strong Law of large num-
bers [16] it converges almost surely to W̄ = 0. Thus, H̃N

converges almost surely to 1.

C. PROOF OF THEOREM IV
Let d∗

i denote the distance between monitor i and location
(x∗

N , y∗

N ) (the optimal solution for (24)) for an N monitor
scenario. Using (23), the power estimate P ∗

N is then given

as, ln(P ∗

N ) = ln

(

1
k

(

∏N
i=1 pi(d

∗

i )
α
)1/N

)

. From (3) we also

have, ln(pi) = ln(kP )− ln((dr,i)
α)+wi, where dr,i is the ac-

tual distance between the transmitter and monitor i. Com-

bining the above two we get, ln(P ∗

N ) = ln(P ) +
∑N

i=1 wi

N
+

∑N
i=1 α ln(d∗

i /dr,i)

N
. Taking limits we get,

lim
N→∞

ln(P ∗

N ) = ln(P ) + lim
N→∞

∑N
i=1 α ln(d∗

i /dr,i)

N
(37)

where, by the Strong Law of Large Numbers (SLLN), almost

surely, limN→∞

∑N
i=1 wi

N
= 0. Now, consider the objective

function in (24) normalized by N . Denoting this normalized
function as JN (x̂, ŷ) for a location (x̂, ŷ) ∈ Γ, we have,

JN (x̂, ŷ) =

N
∑

i=1

1

N

(

ln(pi(d̂i)
α) −

∑N
j=1 ln(pj(d̂j)

α)

N

)2

(38)
Let (x, y) be a generic location of a monitor drawn from
the distribution FXY (x, y). Let L(x̂, ŷ) denote the random

variable, α ln

(

d̂(x,y)

dr,(x,y)

)

, where d̂(x,y) is the distance from

(x̂, ŷ) to (x, y) and dr,(x,y) is the distance from the trans-

mitter location to (x, y); thus li = α ln
(

d̂i
dr,i

)

is simply a

particular realization of L for monitor i. Using this, JN (·)
can be written as,

JN (·) =
1

N

N
∑

i=1

(

wi −
∑N

j=1 wj

N

)2

+
1

N

N
∑

i=1

(

li −
∑N

j=1 lj

N

)2

+2
1

N

N
∑

i=1

(

wi −
∑N

j=1 wj

N

)(

li −
∑N

j=1 lj

N

)

(39)

If (x̂, ŷ) = (0, 0) (the transmitter location), then li = 0, ∀i, N .
Thus, by SLLN, JN (0, 0) → σ2 a.s. Suppose that (x̂, ŷ) is
not the transmitter location. From condition 1 in the The-
orem statement, it implies that almost surely the monitors
do not lie on an arc of a circle or a straight line; thus from
Theorem III we have L(x̂, ŷ) 6= β (a constant), ∀(x̂, ŷ), and
the variance of L(x̂, ŷ) is non-zero, i.e. var(L(x̂, ŷ)) > 0.
Since, wi and li are independent r.v’s, by SLLN, we have
JN (x̂, ŷ) → (σ2 + var(L(x̂, ŷ))) > σ2, ∀(x̂, ŷ) 6= (0, 0) (note
that the third term in (39) converges to E[W ]E[L] = 0). Let
J∗

N denote the value of (39) for (x∗

N , y∗

N ) (i.e. the minimizing
value). From the above limits, we have limN→∞ J∗

N ≥ σ2.
Also, J∗

N ≤ JN (0, 0),∀N which gives limN→∞ J∗

N ≤ σ2.
Thus, limN→∞ J∗

N = σ2. Substituting in (39) and taking

limits we get, 1
N

∑N
i=1

(

l∗i −
∑N

j=1 l∗j
N

)2

→ 0. Since this is

an average of positive terms, we require that all terms (ex-
cept finitely many) must equal zero; equivalently in the limit
N → ∞, l∗i = β (a constant), ∀i (except finitely many).
However, from condition 1 in the theorem, almost surely,
this cannot be true, except β = 0 (corresponding to the
actual transmitter location). Thus, l∗N → 0, which implies

limN→∞

∑N
i=1 l∗i
N

= 0 (i.e. limN→∞

∑N
i=1 α log(d∗

i /dr,i)

N
= 0);

combining with (37) we have the result.


