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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

� The IIR and FIR filter design techniques
discussed so far can be easily implemented
on a computer

� In addition, there are a number of filter
design algorithms that rely on some type of
optimization techniques that are used to
minimize the error between the desired
frequency response and that of the
computer-generated filter
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Computer-Aided Design ofComputer-Aided Design of
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� Basic idea behind the computer-based
iterative technique

� Let              denote the frequency response
of the digital filter H(z) to be designed
approximating the desired frequency
response             , given as a piecewise
linear function of    , in some sense
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� Objective - Determine iteratively the
coefficients of H(z) so that the difference
between between              and              over
closed subintervals of                  is
minimized

� This difference usually specified as a
weighted error function

where              is some user-specified
weighting function
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Digital FiltersDigital Filters

� Chebyshev or minimax criterion -
Minimizes the peak absolute value of the
weighted error:

where R is the set of disjoint frequency bands
in the range                , on which             is
defined

� For example, for a lowpass filter design, R is
the disjoint union of              and
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� Least-p Criterion - Minimize

over the specified frequency range R with p
a positive integer

� p = 2 yields the least-squares criterion
� As              , the least p-th solution

approaches the minimax solution
∞→p
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� Least-p Criterion - In practice, the p-th
power error measure is approximated as

where     ,                , is a suitably chosen
dense grid of digital angular frequencies

� For linear-phase FIR filter design,             and
      are zero-phase frequency responses

� For IIR filter design,              and              are
magnitude functions
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Design of Design of EquirippleEquiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

� The linear-phase FIR filter obtained by
minimizing the peak absolute value of

is usually called the equiripple FIR filter
� After      is minimized, the weighted error

function            exhibits an equiripple
behavior in the frequency range R
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� The general form of frequency response of a
causal linear-phase FIR filter of length
2M+1:

where the amplitude response           is a real
function of

� Weighted error function is given by

where           is the desired amplitude
response and           is a positive weighting
function
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� Parks-McClellan Algorithm - Based on
iteratively adjusting the coefficients of
until the peak absolute value of            is
minimized

� If peak absolute value of           in a band
                is     , then the absolute error

satisfies
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� For filter design,

�      is required to satisfy the above desired
response with a ripple of          in the
passband and a ripple of      in the stopband
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� Thus, weighting function can be chosen
either as

or
�
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� Type 1 FIR Filter -
where

� Type 2 FIR filter -

where
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� Type 3 FIR Filter -
where

� Type 4 FIR Filter -

where
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� Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as

where
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and

where
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with

            ,         ,  and         , are related to b[k],
c[k], and  d[k], respectively
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� Modified form of weighted error function

where we have used the notation
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� Optimization Problem - Determine
which minimize the peak absolute value
of

over the specified frequency bands
� After          has been determined,

corresponding coefficients of the original
       are computed from which h[n] are

determined
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� Alternation Theorem -           is the best
unique approximation of D(ω) obtained by
minimizing peak absolute value     of

if and only if there exist at least L+2
extremal frequencies,
in a closed subset R of the frequency range

           such that
and                             ,                      for all i
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� Consider a Type 1 FIR filter with an
amplitude response           whose
approximation error           satisfies the
Alternation Theorem

� Peaks of           are at
where

� Since in the passband and stopband,
and           are piecewise constant,

)(ωA
)(ωE

)(ωE 10, +≤≤= Liiωω
0/)( =ωω ddE

0)()( ==
ω
ω

ω
ω

d
dA

d
dE

)(~ ωW
)(~ ωD

Copyright © 2001, S. K. Mitra

Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

� Using                                 , where          is
the k-th order Chebyshev polynomial

�           can be expressed as

which is an Lth-order polynomial in
� Hence,          can have at most          local

minima and maxima inside specified
passband and stopband
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� At bandedges,             and            ,            is
a maximum, and hence           has extrema at
these points

�           can have extrema at           and
� Therefore, there are at most L+3 extremal

frequencies of
� For linear-phase FIR filters with K specified

bandedges, there can be at most L+K+1
extremal frequencies
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� The set of equations

is written in a matrix form
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� The matrix equation can be solved for the
unknowns         and     if the locations of the
L+2 extremal frequencies are known a
priori

� The Remez exchange algorithm is used to
determine the locations of the extremal
frequencies
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RemezRemez Exchange Algorithm Exchange Algorithm
� Step 1: A set of initial values of extremal

frequencies are either chosen or are
available from completion of previous stage

� Step 2:  Value of      is computed using

where
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RemezRemez Exchange Algorithm Exchange Algorithm
� Step 3: Values of           at             are then

computed using

� Step 4: The polynomial           is determined
by interpolating the above values at the L+2
extremal frequencies using the Lagrange
interpolation formula
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RemezRemez Exchange Algorithm Exchange Algorithm
� Step 4: The new error function

is computed at a dense set S (        ) of
frequencies.  In practice S = 16L is adequate.
Determine the L+2 new extremal frequencies
from the values of           evaluated at the
dense set of frequencies.

� Step 5: If the peak values     of           are
equal in magnitude, algorithm has converged.
Otherwise, go back to Step 2.
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� Illustration of algorithm

                                     Iteration process is
                               stopped if the  
                               difference between 
                               the values of the 
                               peak absolute errors
                               between two  
                               consecutive stages is
                               less than a preset 
                               value, e.g., 610−
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RemezRemez Exchange Algorithm Exchange Algorithm
� Example - Approximate the desired

function                               defined for the
range                 by a linear function
by minimizing the peak value of the
absolute error

� Stage 1:
Choose arbitrarily the initial extremal points
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� Solve the three linear equations

i.e.,

for the given extremal points yielding
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RemezRemez Exchange Algorithm Exchange Algorithm
� Plot of                                                 along

with values of error at chosen extremal
points shown below

� Note: Errors are equal in magnitude and
alternate in sign
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RemezRemez Exchange Algorithm Exchange Algorithm
� Stage 2:
� Choose extremal points where

assumes its maximum absolute values
� These are
� New values of unknowns are obtained by

solving

yielding
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� Plot of                                                 along
with values of error at chosen extremal
points shown below
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RemezRemez Exchange Algorithm Exchange Algorithm
� Stage 3:
� Choose extremal points where

assumes its maximum absolute values
� These are
� New values of unknowns are obtained by

solving

yielding
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RemezRemez Exchange Algorithm Exchange Algorithm
� Plot of                                               along

with values of error at chosen extremal
points shown below

� Algorithm has converged as      is also the
maximum value of the absolute error
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

� Order Estimation -
� For IIR filter design using bilinear

transformation, MATLAB statements to
determine the order and bandedge are:
[N, Wn] = buttord(Wp, Ws, Rp, Rs);
[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs);
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

� Example - Determine the minimum order of a
Type 2 Chebyshev digital highpass filter with
the following specifications:

                kHz,             kHz,             kHz,
               dB,              dB
� Here,                              ,
� Using the statement
 [N, Wn] = cheb2ord(0.5, 0.3, 1, 40);

we get N = 5  and Wn = 0.3224

1=pF 1=pF 4=TF
1=pα 40=sα

5.04/12Wp =×= 3.04/6.02Ws =×=
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

� Filter Design -
� For IIR filter design using bilinear

transformation, MATLAB statements to use
are:
[b, a] = butter(N, Wn)
[b, a] = cheby1(N, Rp, Wn)
[b, a] = cheby2(N, Rs, Wn)
[b, a] = ellip(N, Rp, Rs, Wn)

Copyright © 2001, S. K. Mitra

IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

� The form of transfer function obtained is

� The frequency response can be computed
using the M-file freqz(b, a, w) where w is a
set of specified angular frequencies

� It generates a set of complex frequency
response samples from which magnitude
and/or phase response samples cn be
computed
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

� Example - Design an elliptic IIR lowpass filter
with the specifications:               kHz,

      kHz,            kHz,               dB,
dB

� Here,                                  ,
� Code fragments used are:

[N,Wn] = ellipord(0.4, 0.5, 0.5, 40);
[b, a] = ellip(N, 0.5, 40, Wn);

8.0=pF
1=sF 4=TF 5.0=pα
40=sα

ππω 4.0/2 == Tpp FF ππω 5.0/2 == Tss FF
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� Gain response plot is shown below:
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

� Order Estimation -
� Kaiser�s Formula:

� Note: Filter order N is inversely
proportional to transition band width
and does not depend on actual location of
transition band
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
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� Hermann-Rabiner-Chan�s Formula:

where

with
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

� Formula valid for
� For             , formula to be used is obtained

by interchanging      and
� Both formulas provide only an estimate of

the required filter order N
� Frequency response of FIR filter designed

using this estimated order may or may not
meet the given specifications

� If specifications are not met, increase filter
order until they are met

sp δδ ≥
sp δδ <

pδ sδ
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

� MATLAB code fragments for estimating
filter order using Kaiser�s formula
num = - 20*log10(sqrt(dp*ds)) - 13;
den = 14.6*(Fs - Fp)/FT;
N = ceil(num/den);

� M-file remezord implements Hermann-
Rabiner-Chan�s order estimation formula

Copyright © 2001, S. K. Mitra

FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

� For FIR filter design using the Kaiser
window, window order is estimted using the
M-file kaiserord

� The M-file kaiserord can in some cases
generate a value of N which is either greater
or smaller than the required minimum order

� If filter designed using the estimated order N
does not meet the specifications, N should
either be gradually increased or decreased
until the specifications are met

Copyright © 2001, S. K. Mitra

EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� The M-file remez can be used to design an
equiripple FIR filter using the Parks-
McClellan algorithm

� Example - Design an equiripple FIR filter
with the specifications:               kHz,

      kHz,             kHz,                dB,
        dB

� Here,                      and

8.0=pF
1=sF 4=TF 5.0=pα
40=sα

01.0=sδ

0559.0=pδ 01.0=sδ
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� MATLAB code fragments used are
[N, fpts, mag, wt] =   

remezord(fedge, mval, dev, FT);
b = remez(N, fpts, mag, wt);
where fedge = [800   1000],
mval = [1   0], dev = [0.0559   0.01], and
FT = 4000
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� The computed gain response with the filter
order obtained (N = 28) does not meet the
specifications (              dB,                dB)

� Specifications are met with N = 30
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� Example - Design a linear-phase FIR
bandpass filter of order 26 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.55 to 1

� The pertinent input data here are
N = 26
fpts = [0  0.25  0.3  0.5  0.55 1]
mag = [0  0  1  1  0  0]
wt = [1  1  1]
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Design Using MATLABDesign Using MATLAB

� Computed gain response shown below
where             dB,                 dB1=pα 7.18=sα
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� We redesign the filter with order increased
to 110

� Computed gain response shown below
where                    dB,                 dB

� Note: Increase in
order improves
gain response at the
expense of increased
computational
complexity

2.51=sα024.0=pα

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω/π

G
ai

n,
 d

B

N = 110, weight ratio = 1

Copyright © 2001, S. K. Mitra

EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

�       can be increased at the expenses of a
larger       by decreasing the relative weight
ratio

� Gain response of
bandpass filter of
order 110 obtained
with a weight vector
[1  0.1  1]

� Now                   dB,                    dB

pα
sα

spW δδω /)( =

076.0=pα 86.60=sα
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� Plots of absolute error for 1st design
� Absolute error has

same peak value in
all bands

� As L = 13, and there
are 4 band edges, there can be at most
                     extrema

� Error plot exhibits 17 extrema
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� Absolute error has same peak value in
all bands for the 2nd design

� Absolute error in passband of 3rd design is
10 times the error in the stopbands
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� Example - Design a linear-phase FIR
bandpass filter of order 60 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.6 to 1 with unequal weights

� The pertinent input data here are
N = 60
fpts = [0  0.25  0.3  0.5  0.6 1]
mag = [0  0  1  1  0  0]
wt = [1  1  0.3]
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� Plots of gain response and absolute error
shown below
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� Response in the second transition band shows
a peak with a value higher than that in
passband

� Result does not contradict alternation theorem
� As N = 60, M = 30, and hence, there must be

at least M + 2 = 32 extremal frequencies
� Plot of absolute error shows the presence of

32 extremal frequencies

Copyright © 2001, S. K. Mitra

EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

� If gain response of filter designed exhibits a
nonmonotonic behavior, it is recommended
that either the filter order or the bandedges
or the weighting function be adjusted until a
satisfactory gain response has been obtained

� Gain plot obtained
by moving the
second stopband
edge to 0.55
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� A lowpass differentiator has a bandlimited
frequency response

where                    represents the passband
and                     represents the stopband

� For the design phase we choose
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� The M-file remezord cannot be used to
estimate the order of an FIR differentiator

� Example - Design a full-band (           )
differentiator of order 11

� Code fragment to use
b = remez(N, fpts, mag, �differentiator�);
where    N = 11

        fpts = [0   1]
        mag = [0   pi]

πω =p
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� Plots of magnitude response and absolute
error

� Absolute error increases with     as the
algorithm results in an equiripple error of
the function ]1[ )( −ω
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� Example - Design a lowpass differentiator
of order 50 with                   and

� Code fragment to use
b = remez(N, fpts, mag, �differentiator�);
where

        N = 50
        fpts = [0   0.4   0.45   1]
        mag = [0   0.4*pi   0   0]

πω 4.0=p πω 45.0=s
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� Plot of the magnitude response of the
lowpass differentiator
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� Desired amplitude response of a bandpass
Hilbert transformer is

with weighting function

� Impulse response of an ideal Hilbert
transformer satisfies the condition

which can be met by a Type 3 FIR filter

HLD ωωωω ≤≤= ,1)(

HLP ωωωω ≤≤= ,1)(

evenfor,0][ nnhHT =
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� Example - Design a linear-phase bandpass
FIR Hilbert transformer of order 20 with

           ,
� Code fragment to use

b = remez(N, fpts, mag, �Hilbert�);
where

            N = 20
            fpts = [0.1   0.9]
            mag = [1   1]

πω 1.0=L πω 9.0=H
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� Plots of magnitude response and absolute
error
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� Window Generation - Code fragments to use
w = blackman(L);
w = hamming(L);
w = hanning(L);
w = chebwin(L, Rs);
w = kaiser(L, beta);
where window length L is odd
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� Example - Kaiser window design for use in a
lowpass FIR filter design

� Specifications of lowpass filter:                 ,
            ,           dB

� Code fragments to use
[N, Wn, beta, ftype] = kaiserord(fpts, mag,dev);
w = kaiser(N+1, beta);
where  fpts = [0.3   0.4]

                 mag = [0   1]
                 dev = [0.003162   0.003162]

πω 4.0=s

πω 3.0=p
50=sα 003162.0=� sδ
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� Plot of the gain response of the Kaiser
window
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� M-files available are fir1 and fir2
� fir1 is used to design conventional lowpass,

highpass, bandpass, bandstop and multiband
FIR filters

� fir2 is used to design FIR filters with
arbitrarily shaped magnitude response

� In fir1, Hamming window is used as a
default if no window is specified
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� Example - Design using a Kaiser window a
lowpass FIR filter with the specifications:

  ,                 ,
� Code fragments to use

[N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);
b = fir1(N, Wn, kaiser(N+1, beta));

where  fpts = [0.3   0.4]
                 mag = [1    0]
                 dev = [0.003162   0.003162]

πω 3.0=p πω 4.0=s 003162.0=sδ
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� Plot of gain response
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� Example - Design using a Kaiser window a
highpass FIR filter with the specifications:

    ,                 ,
� Code fragments to use
� [N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);

b = fir1(N, Wn, �ftype�, kaiser(N+1, beta));

where  fpts = [0.4   0.55]
                 mag = [0    1]
                 dev = [0.02   0.02]

πω 55.0=p πω 4.0=s 02.0=sδ
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� Plot of gain response
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� Example - Design using a Hamming
window an FIR filter of order 100 with
three different constant magnitude levels:
0.3 in the frequency range [0, 0.28], 1.0 in
the frequency range [0.3, 0.5], and 0.7 in the
frequency range [0.52, 1.0]
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� Code fragment to use
b = fir2(100, fpts, mval);
where  fpts = [0  0.28  0.3  0.5  0.52  1];
            mval = [0.3  0.3  1.0  1.0  0.7  0.7];
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