Computer-Aided Design of
Digital Filters

e The IR and FIR filter design techniques
discussed so far can be easily implemented
on a computer

In addition, there are a number of filter
design algorithms that rely on some type of
optimization techniques that are used to
minimize the error between the desired
frequency response and that of the
computer-generated filter
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Computer-Aided Design of
Digital Filters

Basic idea behind the computer-based
iterative technique

Let H(e’*)denote the frequency response
of the digital filter H(z) to be designed
approximating the desired frequency
response D(e’®), given as a piecewise
linear function of @, in some sense
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Computer-Aided Design of
Digital Filters

Objective - Determine iteratively the
coefficients of H(z) so that the difference
between between H(e’“) and D(e’”) over
closed subintervals of 0S@w <7 is
minimized

 This difference usually specified as a
weighted error function
(o) =W (') H (')~ D(e')]
where W (e/®) is some user-specified
weighting function
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Computer-Aided Design of
Digital Filters

Chebyshev or minimax criterion -
Minimizes the peak absolute value of the
weighted error:

£= na}ealg(\f (o)
where R is the set of disjoint frequency bands
in the range 0 < @ < 7z, on which D(e’?) is
defined
For example, for a lowpass filter design, R is
the disjoint union of [0,®,,] and [®,T]
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Computer-Aided Design of
Digital Filters

Least-p Criterion - Minimize

e= [W(e/)H(e/®) - D(e/)] do
®eR

over the specified frequency range R with p
a positive integer
» p =2 yields the least-squares criterion

* As p — oo, the least p-th solution
approaches the minimax solution
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Computer-Aided Design of
Digital Filters

Least-p Criterion - In practice, the p-th
power error measure is approximated as
e=Y W (/" H (")~ D(e™)]}
where @; l,=11 <i<K,is a suitably chosen
dense grid of digital angular frequencies
For linear-phase FIR filter design, H (e’ ) and
D(e’®)are zero-phase frequency responses
For IIR filter design, H (e’®) and D(e’”) are
magnitude functions
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Design of Equiripple
Linear-Phase FIR Filters

The linear-phase FIR filter obtained by
minimizing the peak absolute value of

e= ma;(\f (o)

is usually called the equiripple FIR filter
o After £ is minimized, the weighted error

function Z(@) exhibits an equiripple

behavior in the frequency range R
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Design of Equiripple
Linear-Phase FIR Filters

The general form of frequency response of a
causal linear-phase FIR filter of length
2M+1: _ o
H(’®)=eM"e/P H(w)

where the amplitude response H (@) is a real
function of @
Weighted error function is given by

E(w)=W (o) H(w)-D(w)]
where D(@) is the desired amplitude
response and W (w)is a positive weighting
function
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Design of Equiripple
Linear-Phase FIR Filters

* Parks-McClellan Algorithm - Based on
iteratively adjusting the coefficients of H (@)
until the peak absolute value of E(w) is
minimized

If peak absolute value of Z(w) in a band

W, SO=w, is g, then the absolute error
satisfies

_ £,
|H () - D(w)|< W)

0, <0<,
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Design of Equiripple
Linear-Phase FIR Filters

For filter design,
1, in the passband
D(w) =

H(w) is required to satisfy the above desired
response with a ripple of £, in the
passband and a ripple of J, in the stopband

0, in the stopband

Copyright © 2001, S. K. Mitra

Design of Equiripple
Linear-Phase FIR Filters

e Thus, weighting function can be chosen
either as
in the passband

ww=1.

(@) {5 ,/d,, inthestopband

or

6,/6,, inthepassband
L in thestopband

W () ={
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Design of Equiripple
Linear-Phase FIR Filters
Type 1 FIR Filter - A (w) = %a[k]cos(a)k)

where +=0
a[0]=h[M], alk]=2hM —k], 1<Sk<M

Type 2 FIR filter -
(2M+1)/2

H@)="3 blk]cos(w(k-1))

where
b[k]=2h[#—k], ISkS#
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Design of Equiripple
Linear-Phase FIR Filters
* Type 3 FIR Filter - H(w)= %c[k]sin(a)k)
where =
[k1=20M k], 1<Sk<M
* Type 4 FIR Filter -
_ (2M+1)/2
Hw)= 3 dklsin(@(k-1))
k=1

where

dlk]=2hn*"—k], 1<k<2¥H

2
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Design of Equiripple
Linear-Phase FIR Filters
» Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as
H(w)=0(w)A(w)

where
1 for Type 1

cos(w/2), for Type 2
sin(w), for Type 3
sin(w/2), for Type 4
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O(w)=

Design of Equiripple
Linear-Phase FIR Filters

and i
A(w) = Y. dlk]cos(wk)
k=0
where alk], for Typel

b[k], for Type 2
¢[k], for Type3
d[k], for Type 4

alk]=
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Design of Equiripple
Linear-Phase FIR Filters

with
M,  for Typel

2M-1

E for Type 2

M -1, for Type3
2M-1

2 2

L=

for Type 4

b[k], clk], and d[k], are related to b[k],
c[k], and d[k], respectively
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Design of Equiripple
Linear-Phase FIR Filters

* Modified form of weighted error function
o) =W(o)[Q(@)A(w) - D(w)]
= W (@)Q(@)[ (@)~ 22
=W (o) 4(@)~D(w)]
where we have used the notation
W () =W (0)Q()

D(w) = D(0)/ Q(w)
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Design of Equiripple
Linear-Phase FIR Filters

* Optimization Problem - Determine @[k ]
which minimize the peak absolute value &€

f L
* E(@) =W (@)[ £ alk]cos(@k) - D(@)]
k=0

over the specified frequency bands w e R

» After a[k] has been determined,
corresponding coefficients of the original
A(e’®) are computed from which h[n] are
determined
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Design of Equiripple
Linear-Phase FIR Filters

 Alternation Theorem - A(@) is the best
unique approximation of D(®) obtained by
minimizing peak absolute value £ of

E(w) =W () Q(@)A(®) - D(w)]
if and only if there exist at least L+2
extremal frequencies, {@;}, 0<i< L+1,

in a closed subset R of the frequency range
0<w<rzsuchthatw, <w, < <w, <o,

and E(w,) =-E(®,,,), E(@)|=¢ foralli
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Design of Equiripple

Linear-Phase FIR Filters

* Consider a Type 1 FIR filter with an
amplitude response 4(w) whose
approximation error Z(®) satisfies the
Alternation Theorem

» Peaks of £(w) areat w =w,;, 0<i< L+1
where dE(w)/dw=0

* Since in the passband and stopband, W (o)
and D(w) are piecewise constant,

dE(w) dA(w) _ 0
dw dw
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Design of Equiripple
Linear-Phase FIR Filters

Using cos(wk) =T, (cosw), where T} (x) is
the k-th order Chebyshev polynomial
T, (x) = cos(kcos™ x)

A(w) can be expressed as
A(w) =X olk](cos )"

which is an Lth-order polynomial in cos@

Hence, A(w) can have at most L —1 local
minima and maxima inside specified
passband and stopband
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Design of Equiripple
Linear-Phase FIR Filters
* At bandedges, o =@, and @ =@, E(w)| is
a maximum, and hence A(w) has extrema at
these points

* A(w)can have extrema at w=0and @ =7
¢ Therefore, there are at most L+3 extremal
frequencies of Z(w)

* For linear-phase FIR filters with K specified
bandedges, there can be at most L+K+1
extremal frequencies
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Design of Equiripple
Linear-Phase FIR Filters

e The set of equations
W (0,)[A(0;) - D(w;)]=(~1)'e, 0<i<L+1

is written in a matrix form

cos(wg) - cos(Log)  ~1/W(wp) |[al0] o ()
cos(@) - cos(Lay) 1/ (o) al] D(ay)
cos(@y) - cos(Loy) (~DE/W(wy) || alL] D(wy)

cos(wp,y) - cos(Lopy) (DE/ (o)L e Do)
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Design of Equiripple
Linear-Phase FIR Filters

» The matrix equation can be solved for the
unknowns @[i] and € if the locations of the
L+2 extremal frequencies are known a
priori

* The Remez exchange algorithm is used to
determine the locations of the extremal
frequencies
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Remez Exchange Algorithm

Step 1: A set of initial values of extremal
frequencies are either chosen or are
available from completion of previous stage
Step 2: Value of € is computed using

s cD(@y) + ¢ D(@) +---+ ¢, D(@,,,)
(=D Cril

W(wLH)

% G
W) W(w)
L+1

where ¢, =[] ————F—
" g)cos(wn) —cos(w,)
i#n
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Remez Exchange Algorithm

* Step 3: Values of A(w) at @ = @, are then
computed using

Alw) = ;7_(120“; +D(w,), 0<i<L+1

 Step 4: The polynomial A(w) is determined
by interpolating the above values at the L+2
extremal frequencies using the Lagrange
interpolation formula
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Remez Exchange Algorithm
Step 4: The new error function

) =W (o)A(w) - D(w)]
is computed at a dense set S (S > I) of
frequencies. In practice S= 16L is adequate.
Determine the L+2 new extremal frequencies
from the values of E(w) evaluated at the
dense set of frequencies.

Step S: If the peak values € of Z(w) are

equal in magnitude, algorithm has converged.
Otherwise, go back to Step 2.
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Remez Exchange Algorithm

e [llustration of algorithm

D) . A
D .,_.k

4

‘ Iteration process is

stopped if the
e N difference between
the values of the

£
£

£

£

peak absolute errors

) between two

+e

consecutive stages is

i less than a preset
value, e.g., 107

£

&

&
€
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Remez Exchange Algorithm

Example - Approximate the desired
function D(x) =1.1x* —0.1 defined for the
range 0 < x <2 by a linear function a,x + q,
by minimizing the peak value of the
absolute error

max ‘l.lx2 -0.1-a,—ax
x€[0,2]

Stage 1:
Choose arbitrarily the initial extremal points
x=0,x,=0.5,x=1.5
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Remez Exchange Algorithm

 Solve the three linear equations
a,+ax,—(-)'e=D(x,), (=123

e oo 17a] [-o01
1 05 —1]a |=|0.175
115 1| gl 2375

for the given extremal points yielding
a, =—0.375, a,=1.65, £=0.275
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Remez Exchange Algorithm

* Plot of Z,(x)=1.1x* —1.65x+0.275 along
with values of error at chosen extremal

points shown below
1.5 T

-0.5
0

* Note: Errors are equal in magnitude and
alternate in sign
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Remez Exchange Algorithm

e Stage 2:
 Choose extremal points where Z, (x)
assumes its maximum absolute values

* These are x, =0, x,=0.75, x; =2
* New values of unknowns are obtained by

solving 5 | Ta, ~0.1

1 075 —1]a |=|0.5188

1 2 1 g 43
yielding a, =—0.6156, a, =2.2, £=0.5156
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Remez Exchange Algorithm

* Plot of Z,(x)=1.1x> —2.2x+0.5156 along
with values of error at chosen extremal
points shown below
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Remez Exchange Algorithm

» Stage 3:
¢ Choose extremal points where Z, (x)
assumes its maximum absolute values

* Theseare x;, =0, x, =1, x; =2
* New values of unknowns are obtained by

solving

I 0 1|4 -0.1

1 1 -1|q|=|10

1 2 1]¢ 43
yielding a,=-0.65,a,=2.2, £=0.55
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Remez Exchange Algorithm

* Plot of Z,(x)=1.1x*-2.2x+0.55 along
with values of error at chosen extremal
points shown below

Algorithm has converged as € is also the
maximum value of the absolute error
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IIR Digital Filter Design Using
MATLAB

e Order Estimation -

 For IIR filter design using bilinear
transformation, MATLAB statements to
determine the order and bandedge are:

[N, Wn] = buttord(Wp, Ws, Rp, Rs);
[N, Wn] = cheblord(Wp, Ws, Rp, Rs);
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);
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IIR Digital Filter Design Using
MATLAB

» Example - Determine the minimum order of a
Type 2 Chebyshev digital highpass filter with
the following specifications:

F,=1 kHz, F,=1kHz, F; =4 kHz,
a,=1dB, o, =40dB
* Here, Wp=2x1/4=0.5, Ws=2x0.6/4=0.3
 Using the statement
[N, Wn] = cheb20rd(0.5, 0.3, 1, 40);
we get N=5 and Wn = 0.3224
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IIR Digital Filter Design Using
MATLAB

* Filter Design -

» For IIR filter design using bilinear
transformation, MATLAB statements to use
are:

[b, a] = butter(N, Wn)

[b, a] = cheby1(N, Rp, Wn)
[b, a] = cheby2(N, Rs, Wn)
[b, a] = ellip(N, Rp, Rs, Wn)
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IIR Digital Filter Design Using
MATLAB

* The form of transfer function obtained is

B(z) _b()+b(2)z" +--+b(N+1)z™"

Aiz)  1+a@)z+-+a(N+1)z"

 The frequency response can be computed
using the M-file freqz(b, a, w) where w is a
set of specified angular frequencies

G(z)=

* It generates a set of complex frequency
response samples from which magnitude
and/or phase response samples cn be
computed
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IIR Digital Filter Design Using
MATLAB

» Example - Design an elliptic IIR lowpass filter
with the specifications: F, =0.8 kHz,
F, =1 kHz, F;, =4 kHz, a,= 0.5dB,
o, =40 dB
* Here, @, =27F,/F;=0.47 ,0, = 27F/F;,=0.5%
* Code fragments used are:
[N,Wn] = ellipord(0.4, 0.5, 0.5, 40);
[b, a] = ellip(N, 0.5, 40, Wn);
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IIR Digital Filter Design Using
MATLAB

* Gain response plot is shown below:

Elliptic IR Lowpass Filter Passband Details
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FIR Digital Filter Design Using
MATLAB

* Order Estimation -
« Kaiser’s Formula:

N=_ 20log,,(+/6,6,)
T l46(0,-0,)/ 2
* Note: Filter order N is inversely
proportional to transition band width (@, —@,)
and does not depend on actual location of
transition band
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FIR Digital Filter Design Using
MATLAB

¢ Hermann-Rabiner-Chan’s Formula:
Ne D.(8,.6)-F(S,.0) (@, -w,)/2xT
(o, -w,)/ 271

where
D_(6,,6,)=[a(log,, 5,)" +a,(log,, 8,) +a;]log,, &,
+[a,(log;, 5,,)2 +as(log, 5,;) +ag]
F(6,,6,)=b +by[log,, 6, —log,, J,]
with g, =0.005309, @, =0.07114, a, =—0.4761
a, =0.00266, a; =0.5941, a, =0.4278
b =11.01217, b, =0.51244
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FIR Digital Filter Design Using
MATLAB

* Formula valid for 6, 2 &,

* For §,, < 6, formula to be used is obtained
by interchanging &, and J;

 Both formulas provide only an estimate of
the required filter order N

* Frequency response of FIR filter designed
using this estimated order may or may not
meet the given specifications

« If specifications are not met, increase filter
order until they are met
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FIR Digital Filter Design Using
MATLAB

* MATLAB code fragments for estimating
filter order using Kaiser’s formula

num = - 20*log10(sqrt(dp*ds)) - 13;
den =14.6%(Fs - Fp)/FT;
N = ceil(num/ den);

* M-file remezord implements Hermann-
Rabiner-Chan’s order estimation formula
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FIR Digital Filter Design Using
MATLAB

e For FIR filter design using the Kaiser
window, window order is estimted using the
M-file kaiserord

* The M-file kaiserord can in some cases
generate a value of N which is either greater
or smaller than the required minimum order

« If filter designed using the estimated order N
does not meet the specifications, N should
either be gradually increased or decreased
until the specifications are met
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Equiripple FIR Digital Filter
Design Using MATLAB

* The M-file remez can be used to design an
equiripple FIR filter using the Parks-
McClellan algorlg}n; 0.01

« Example - Design an equiripple FIR filter
with the specifications: ¥, = 0.8 kHz,
F,=1 kHz, F; =4 kHz, a,=0.5dB,

a, =40 dB
* Here, 6, =0.0559 and &, =0.01
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Equiripple FIR Digital Filter
Design Using MATLAB

* MATLAB code fragments used are
[N, fpts, mag, wt] =
remezord(fedge, mval, dev, FT);
b =remez(N, fpts, mag, wt);
where fedge = [800 1000],

mval = [1 0], dev = [0.0559 0.01], and
FT = 4000
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Equiripple FIR Digital Filter
Design Using MATLAB

* The computed gain response with the filter
order obtained (N = 28) does not meet the
specifications (&, =0.6dB, o, =38.7dB)

 Specifications are met with N =30

Passband Details

Equiripple FIR Low pass Filter

0.5

Gain, dB

-0.5
0 0.1 0.2 0.3 0.4
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Equiripple FIR Digital Filter
Design Using MATLAB

» Example - Design a linear-phase FIR
bandpass filter of order 26 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.55 to 1

* The pertinent input data here are
N =26
fpts=1[0 0.25 0.3 0.5 0.551]
mag=[00110 0]
wt=[11 1]
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Equiripple FIR Digital Filter
Design Using MATLAB

* Computed gain response shown below
where , =1dB, a, =18.7 dB

N =26, weight ratio = 1

Copyright © 2001, S. K. Mitra

Equiripple FIR Digital Filter
Design Using MATLAB

* We redesign the filter with order increased
to 110

» Computed gain response shown below
where a, =0.024 dB, o, =51.2dB

e Note: Increase in . NS M eSS
order improves
gain response at the
expense of increased
computational
complexity

Qe
g
£ 40
3

w/n
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Equiripple FIR Digital Filter
Design Using MATLAB

* o, can be increased at the expenses of a
larger &, by decreasing the relative weight
ratio W(w) = §p /5S , N= llO.weighlmlio: 1710

 Gain response of
bandpass filter of
order 110 obtained
with a weight vector
[T 0.1 1]

* Now ¢, =0.076 dB, o, =60.86dB
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Equiripple FIR Digital Filter
Design Using MATLAB

« Plots of absolute error for 1st design

N =26, weight ratio = 1
T T T

* Absolute error has 02

| | | |
. = 0.1 —A-
same peak value in s MAFH\E\N\
2 T i Il
all bands 2o YL LYY -
1 1 1

c AsL= 13, and there R O.Am/ 06 08 1
are 4 band edges, there can be at most
L—-1+6=18 extrema

¢ Error plot exhibits 17 extrema
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Equiripple FIR Digital Filter
Design Using MATLAB

* Absolute error has same peak value in
all bands for the 2nd design

 Absolute error in passband of 3rd design is
10 times the error in the stopbands

x10° N =110, weight ratio = | N = 110, weight ratio = 1/10
T T T T T T T T

Absolute Error

Absolute Error
-
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Equiripple FIR Digital Filter

Design Using MATLAB

e Example - Design a linear-phase FIR
bandpass filter of order 60 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.6 to 1 with unequal weights

The pertinent input data here are
N =60

fpts=[0 0.25 0.3 0.5 0.61]
mag=[0011 0 0]
wt=[11 0.3]
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Equiripple FIR Digital Filter
Design Using MATLAB

* Plots of gain response and absolute error
shown below

Absolute Error

Copyright © 2001, S. K. Mitra

Equiripple FIR Digital Filter
Design Using MATLAB

* Response in the second transition band shows
a peak with a value higher than that in
passband

Result does not contradict alternation theorem

e As N=60, M = 30, and hence, there must be
at least M + 2 = 32 extremal frequencies

Plot of absolute error shows the presence of
32 extremal frequencies
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Equiripple FIR Digital Filter
Design Using MATLAB

« If gain response of filter designed exhibits a
nonmonotonic behavior, it is recommended
that either the filter order or the bandedges
or the weighting function be adjusted until a
satisfactory gain response has been obtained

* Gain plot obtained
by moving the
second stopband
edge to 0.55
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Equiripple FIR Differentiator
Design Using MATLAB

* A lowpass differentiator has a bandlimited
frequency response
; o, 0<|lw<w
Hpp(ed®) =17 p
pir(€™) { 0, ao,<lw<z
where 0 <|w| < ), represents the passband
and @, <|w|<7 represents the stopband
 For the design phase we choose

P(w)=1/w, Dw)=1, 0<lo<w,

Copyright © 2001, S. K. Mitra
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Equiripple FIR Differentiator
Design Using MATLAB

e The M-file remezord cannot be used to
estimate the order of an FIR differentiator
* Example - Design a full-band (@ ,=7)
differentiator of order 11
e Code fragment to use
b =remez(N, fpts, mag, ‘differentiator”);
where N =11
fpts=[0 1]
mag =[0 pi]
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Equiripple FIR Differentiator
Design Using MATLAB

* Plots of magnitude response and absolute
error

w

S

Magnitude

T
|
4
|
T
|
i
|
|
T
|

) 0.2 04 0.6 0.8 1
o/t o/t

* Absolute error increases with @ as the
algorithm results in an equiripple error of
the function [%w) —-1]
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Equiripple FIR Differentiator
Design Using MATLAB

» Example - Design a lowpass differentiator
of order 50 with @, =0.47 and @, =0.457
e Code fragment to use
b = remez(N, fpts, mag, ‘differentiator”);
where
N =50
fpts=[0 0.4 0.45 1]
mag=1[0 0.4*pi 0 0]
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Equiripple FIR Differentiator
Design Using MATLAB

* Plot of the magnitude response of the
lowpass differentiator

Magnitude
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Equiripple FIR Hilbert Transformer
Design Using MATLAB

 Desired amplitude response of a bandpass
Hilbert transformer is

D(w)=1, op<|o|<oy
with weighting function
P(w)=1, o <|lo|<oy
» Impulse response of an ideal Hilbert
transformer satisfies the condition
hyr[n]=0, for neven
which can be met by a Type 3 FIR filter
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Equiripple FIR Hilbert Transformer
Design Using MATLAB
» Example - Design a linear-phase bandpass
FIR Hilbert transformer of order 20 with
oy =0.1r, oy =097
e Code fragment to use
b = remez(N, fpts, mag, ‘Hilbert’);

where
N =20
fpts =[0.1 0.9]
mag=[1 1]
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Equiripple FIR Hilbert Transformer
Design Using MATLAB

* Plots of magnitude response and absolute
error
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Window-Based FIR Filter
Design Using MATLAB

* Window Generation - Code fragments to use
w = blackman(L);

w = hamming(L);
w = hanning(L);

w = chebwin(L, Rs);
w = kaiser(L, beta);

where window length L is odd

Copyright © 2001, S. K. Mitra

Window-Based FIR Filter
Design Using MATLAB

» Example - Kaiser window design for use in a
lowpass FIR filter design
* Specifications of lowpass filter: @, =0.37,
w,=04r,0;,=50 dB = 6, =0.003162
* Code fragments to use
[N, Wn, beta, ftype] = kaiserord(fpts, mag,dev);
w = kaiser(N+1, beta);
where fpts=[0.3 0.4]
mag =[0 1]
dev =[0.003162 0.003162]
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Window-Based FIR Filter
Design Using MATLAB

* Plot of the gain response of the Kaiser
window

Gain Response of Kaiser Window

Gain, dB
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Window-Based FIR Filter
Design Using MATLAB

* M-files available are firl and fir2

e firl is used to design conventional lowpass,
highpass, bandpass, bandstop and multiband
FIR filters

* fir2 is used to design FIR filters with
arbitrarily shaped magnitude response

¢ In firl, Hamming window is used as a
default if no window is specified
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Window-Based FIR Filter
Design Using MATLAB

» Example - Design using a Kaiser window a
lowpass FIR filter with the specifications:
w, =037, 0,=04x, 5;=0.003162
* Code fragments to use
[N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);
b = firl(N, Wn, kaiser(N+1, beta));
where fpts=[0.3 0.4]
mag=[1 0]
dev =[0.003162 0.003162]
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Window-Based FIR Filter
Design Using MATLAB

* Plot of gain response

Lowpass Filter Designed Using Kaiser Window
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Window-Based FIR Filter
Design Using MATLAB

» Example - Design using a Kaiser window a
highpass FIR filter with the specifications:
w,=0.557, o, =047, 5, =0.02

* Code fragments to use

* [N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);
b = firl(N, Wn, ‘ftype’, kaiser(N+1, beta));
where fpts=[0.4 0.55]

mag=[0 1]
dev =10.02 0.02]
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Window-Based FIR Filter
Design Using MATLAB

* Plot of gain response

Higpass Filter Designed Using Kaiser Window

Gain, dB
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Window-Based FIR Filter
Design Using MATLAB

» Example - Design using a Hamming
window an FIR filter of order 100 with
three different constant magnitude levels:
0.3 in the frequency range [0, 0.28], 1.0 in
the frequency range [0.3, 0.5], and 0.7 in the
frequency range [0.52, 1.0]
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Window-Based FIR Filter
Design Using MATLAB

* Code fragment to use
b = fir2(100, fpts, mval);
where fpts=1[0 0.28 0.3 0.5 0.52 1];
mval=[0.3 0.3 1.0 1.0 0.7 0.7];

Multiband Filter
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