
DiscreteDiscrete--Time Fourier TransformTime Fourier Transform

Discrete Fourier TransformDiscrete Fourier Transform

zz--TransformTransform

Tania Stathaki

811b

t.stathaki@imperial.ac.uk



Joseph Fourier (1768-1830)



DiscreteDiscrete--Time Fourier TransformTime Fourier Transform

• Definition - The Discrete-Time Fourier

Transform (DTFT)               of a sequence 

x[n] is given by

• In general,                is a complex function 

of the real variable ω and can be written as
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• and                  are, respectively, 

the real and imaginary parts of             , and 

are real functions of ω
• can alternately be expressed as

where
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• is called the magnitude function

• is called the phase function

• Both quantities are again real functions of ω
• In many applications, the DTFT is called 

the Fourier spectrum

• Likewise,               and         are called the 

magnitude and phase spectra
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• For a real sequence x[n], and                are 

even functions of ω, whereas,         and                

are odd functions of ω (Prove using previous slide relationships)
• Note:

for any integer k

• The phase function θ(ω) cannot be uniquely 

specified for any DTFT  
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• Unless otherwise stated, we shall assume 

that the phase function θ(ω) is restricted to 

the following range of values:

called the principal value
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• The DTFTs of some sequences exhibit 

discontinuities of 2π in their phase 

responses

• An alternate type of phase function that is a 

continuous function of ω is often used

• It is derived from the original phase 

function by removing the discontinuities of 

2π
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• The process of removing the discontinuities 

is called “unwrapping”

• The continuous phase function generated by 

unwrapping is denoted as

• In some cases, discontinuities of π may be 

present after unwrapping
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• Example - The DTFT of the unit sample 

sequence δ[n] is given by

• Example - Consider the causal sequence
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• Its DTFT is given by

as
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• The magnitude and phase of the DTFT               

are shown below)5.01/(1)( ω−ω −= jj eeX
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• The DTFT               of a sequence x[n] is a 

continuous function of ω

• It is also a periodic function of ω with a 

period 2π:
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• Inverse Discrete-Time Fourier Transform:

• Proof:
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• The order of integration and summation can 

be interchanged if the summation inside the 

brackets converges uniformly, i.e.,              

exists

• Then ∫ ω
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• Now

• Hence
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• Convergence Condition - An infinite 

series of the form

may or may not converge

• Consider the following approximation 
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• Then for uniform convergence of               ,

• If x[n] is an absolutely summable sequence, i.e., if

for all values of ω
• Thus, the absolute summability of x[n] is a sufficient 

condition for the existence of the DTFT
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• Example - The sequence                         for     

is absolutely summable as

and therefore its DTFT               converges 

to   uniformly
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• Since

an absolutely summable sequence has 

always a finite  energy

• However, a finite-energy sequence is not 

necessarily absolutely summable
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• Example - The sequence 

has a finite energy equal to

• However, x[n] is not absolutely summable since the 
summation

does not converge.
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• To represent a finite energy sequence that is not 

absolutely summable by a DTFT, it is necessary to 

consider a mean-square convergence of             

where
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• Here, the total energy of the error

must approach zero at each value of ω as K

goes to

• In such a case, the absolute value of the 

error                                   may not go to 

zero as K goes to      and the DTFT is no 

longer bounded
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• Example - Consider the DTFT

shown below
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• The inverse DTFT of                   is given by

• The energy of             is given by              
(See slide 46 for proof. Parseval’s Theorem stated in slide 37 is used).

• is a finite-energy sequence, 

but it is not absolutely summable
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• As a result

does not uniformly converge to                 

for all values of ω, but converges to              

in the mean-square sense
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• The mean-square convergence property of 

the sequence             can be further 

illustrated by examining the plot of the 

function

for various values of K as shown next
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• As can be seen from these plots, independent 

of the value of K there are ripples in the plot 

of                      around both sides of the 

point

• The number of ripples increases as K

increases with the height of the largest ripple 

remaining the same for all values of K
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• As K goes to infinity, the condition

holds indicating the convergence of            
to

• The oscillatory behavior of        
approximating                  in the mean-
square sense at a point of discontinuity is 
known as the Gibbs phenomenon
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• The DTFT can also be defined for a certain 

class of sequences which are neither 

absolutely summable nor square summable

• Examples of such sequences are the unit 

step sequence µ[n], the sinusoidal sequence 

and the exponential sequence

• For this type of sequences, a DTFT 

representation is possible using the Dirac

delta function δ(ω)
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• A Dirac delta function δ(ω) is a function of 

ω with infinite height, zero width, and unit 

area

• It is the limiting form of a unit area pulse 

function            as ∆ goes to zero, satisfying)(ω∆p
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• Example - Consider the complex exponential 

sequence

• Its DTFT is given by

where is an impulse function of ω and
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• The function

is a periodic function of ω with a period 2π
and is called a periodic impulse train

• To verify that               given above is 

indeed the DTFT of                     we 

compute the inverse DTFT of
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• Thus

where we have used the sampling property 

of the impulse function )(ωδ
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Sequence DTFT
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• There are a number of important properties 

of the DTFT that are useful in signal 

processing applications

• These are listed here without proof

• Their proofs are quite straightforward

• We illustrate the applications of some of the 

DTFT properties



Table: Table: General Properties of DTFTGeneral Properties of DTFT



Table:Table: Symmetry relations of the Symmetry relations of the 
DTFT of a complex sequenceDTFT of a complex sequence

x[n]: A complex sequence



Table:Table: Symmetry relations of Symmetry relations of 
the DTFT of a real sequencethe DTFT of a real sequence

x[n]: A real sequence
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• Example - Determine the DTFT             of

• Let

• We can therefore write

• From Tables above, the DTFT of x[n] is 

given by
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• Using the differentiation property of the 

DTFT given in Table above, we observe 

that the DTFT of is given by

• Next using the linearity property of the 

DTFT given in Table above we arrive at
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• Example - Determine the DTFT              of 

the sequence v[n] defined by

• The DTFT of         is 1

• Using the time-shifting property of the 

DTFT given in Table above we observe that 

the DTFT of              is           and the DTFT 

of              is][ 1−nv
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• Using the linearity property of we then 

obtain the frequency-domain representation 

of

as

• Solving the above equation we get
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Energy Density SpectrumEnergy Density Spectrum

• The total energy of a finite-energy sequence 

g[n] is given by

• From Parseval’s relation given above we 

observe that
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• The quantity

is called the energy density spectrum

• Therefore, the area under this curve in the 

range           divided by 2π is the 

energy of the sequence
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• Example - Compute the energy of the 

sequence

• Here

where
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• Therefore

• Hence,             is a finite-energy sequence
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DTFT Computation Using DTFT Computation Using 

MATLABMATLAB

• The function freqz can be used to 

compute the values of the DTFT of a 

sequence, described as a rational function in       

the form of

at a prescribed set of discrete frequency 

points
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DTFT Computation Using MATLABDTFT Computation Using MATLAB

• For example, the statement

H = freqz(num,den,w)

returns the frequency response values as a 
vector H of a DTFT defined in terms of the

vectors num and den containing the 

coefficients         and       , respectively at a 

prescribed set of frequencies between 0 and

2π given by the vector w

• There are several other forms of the function
freqz
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DTFT Computation Using MATLABDTFT Computation Using MATLAB

• Example – We illustrate the magnitude and phase of 

the following DTFT
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DTFT Computation Using DTFT Computation Using 

MATLABMATLAB
• Note: The phase spectrum displays a 

discontinuity of 2π at ω = 0.72

• This discontinuity can be removed using the 
function unwrap as indicated below
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Linear Convolution Using Linear Convolution Using 

DTFTDTFT

• An important property of the DTFT is given 

by the convolution theorem

• It states that if y[n] = x[n]    h[n], then the 

DTFT             of y[n] is given by

• An implication of this result is that the 

linear convolution y[n] of the sequences

x[n] and h[n] can be performed as follows:

*
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Linear Convolution Using Linear Convolution Using 

DTFTDTFT

• 1) Compute the DTFTs and            

of the sequences x[n] and h[n], respectively

• 2)  Form the DTFT

• 3)  Compute the IDTFT y[n] of 
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• Definition - For a length-N sequence x[n], 

defined for                       only N samples of its

DTFT are required, which are obtained by 

uniformly sampling               on the ω-axis 

between                    at ,

• From the definition of the DTFT we thus have
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• Note: X[k] is also a length-N sequence in 

the frequency domain

• The sequence X[k] is called the Discrete

Fourier Transform (DFT) of the sequence

x[n]

• Using the notation                             the 

DFT is usually expressed as:
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• The Inverse Discrete Fourier Transform

(IDFT) is given by

• To verify the above expression we multiply 

both sides of the above equation by            

and sum the result from n = 0 to 1−= Nn
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resulting in
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• Making use of the identity 

we observe that the RHS of the last 

equation is equal to

• Hence
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• Example - Consider the length-N sequence

• Its N-point DFT is given by
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• Example - Consider the length-N sequence

• Its N-point DFT is given by
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence  

defined for

• Using a trigonometric identity we can write
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Discrete Fourier TransformDiscrete Fourier Transform

• The N-point DFT of g[n] is thus given by
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Discrete Fourier TransformDiscrete Fourier Transform

• Making use of the identity

we get
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Matrix RelationsMatrix Relations

• The DFT samples defined by

can be expressed in matrix form as

where
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Matrix RelationsMatrix Relations

and        is the           DFT matrix given byND NN ×
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Matrix RelationsMatrix Relations

• Likewise, the IDFT relation given by

can be expressed in matrix form as

where        is the IDFT matrix
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Matrix RelationsMatrix Relations

where

• Note:
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DFT Computation Using DFT Computation Using 

MATLABMATLAB

• The functions to compute the DFT and the 
IDFT are fft and ifft

• These functions make use of FFT 

algorithms which are computationally 

highly efficient compared to the direct 

computation



DFT Computation Using DFT Computation Using 

MATLABMATLAB
• Example - The DFT and the DTFT of the 

sequence

are shown below
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DTFT from DFT by DTFT from DFT by 

Interpolation Interpolation 

• The N-point DFT X[k] of a length-N

sequence x[n] is simply the frequency 

samples of its DTFT              evaluated at N

uniformly spaced frequency points

• Given the N-point DFT X[k] of a length-N

sequence x[n], its DTFT               can be 

uniquely determined from X[k] !

)( ωjeX
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DTFT from DFT by DTFT from DFT by 

InterpolationInterpolation

• Thus
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DTFT from DFT by DTFT from DFT by 

InterpolationInterpolation

• To develop a compact expression for the 

sum S, let

• Then

• From the above
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DTFT from DFT by DTFT from DFT by 
InterpolationInterpolation

• Or, equivalently,

• Hence

Nrrr −=−=− 1S)1(SS

)]/2([

)2(

1

1

1

1
S

Nkj

kNjN

e

e

r

r
π−ω−

π−ω−

−

−
=

−
−

=

]2/)1)][(/2[(

2

2
sin

2

2
sin

−π−ω−⋅






 π−ω







 π−ω

= NNkje

N

kN

kN



DTFT from DFT by DTFT from DFT by 

InterpolationInterpolation

• Therefore
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Sampling the DTFTSampling the DTFT

• Consider a sequence x[n] with a DTFT

• We sample             at N equally spaced points                      

,                      developing the N

frequency samples

• These N frequency samples can be

considered as an N-point DFT Y[k] whose N-

point IDFT is a length-N sequence y[n]

)( ωjeX

)( ωjeX
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Sampling the DTFTSampling the DTFT

• Now

• Thus

• An IDFT of Y[k] yields
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Sampling the DTFTSampling the DTFT

• i.e.

• Making use of the identity
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Sampling the DTFTSampling the DTFT

we arrive at the desired relation

• Thus y[n] is obtained from x[n] by adding 

an infinite number of shifted replicas of

x[n], with each replica shifted by an integer 

multiple of N sampling instants, and 

observing the sum only for the interval
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Sampling the DTFTSampling the DTFT

• To apply

to finite-length sequences, we assume that 

the samples outside the specified range are 

zeros

• Thus if x[n] is a length-M sequence with

, then y[n] = x[n] for

10 −≤≤+= ∑
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Sampling the DTFTSampling the DTFT

• If M > N, there is a time-domain aliasing of 

samples of x[n] in generating y[n], and x[n] 

cannot be recovered from y[n]

• Example - Let 

• By sampling its DTFT              at                     , 

and then applying a 4-point IDFT to 

these samples, we arrive at the sequence y[n]

given by

}{]}[{ 543210=nx
↑

)( ωjeX 4/2 kk π=ω
30 ≤≤ k



Sampling the DTFTSampling the DTFT

,

• i.e.

{x[n]} cannot be recovered from {y[n]}

][][][][ 44 −+++= nxnxnxny 30 ≤≤ n

}{]}[{ 3264=ny
↑



Numerical Computation of the Numerical Computation of the 

DTFT Using the DFTDTFT Using the DFT

• A practical approach to the numerical 

computation of the DTFT of a finite-length 

sequence

• Let              be the DTFT of a length-N

sequence x[n]

• We wish to evaluate              at a dense grid 

of frequencies                     ,                      ,

where M >> N:
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Numerical Computation of the Numerical Computation of the 

DTFT Using the DFTDTFT Using the DFT

• Define a new sequence

• Then
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• Thus               is essentially an M-point DFT

of the length-M sequence

• The DFT           can be computed very 

efficiently using the FFT algorithm ifM is 

an integer power of 2

• The function freqz employs this approach 

to evaluate the frequency response at a 

prescribed set of frequencies of a DTFT 

expressed as a rational function in    

)( kjeX
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DFT PropertiesDFT Properties

• Like the DTFT, the DFT also satisfies a 

number of properties that are useful in 

signal processing applications

• Some of these properties are essentially 

identical to those of the DTFT, while some 

others are somewhat different

• A summary of the DFT properties are given 

in Tables in the following slides



Table:Table: General Properties of DFTGeneral Properties of DFT



Table:Table: DFT Properties: DFT Properties: 
Symmetry RelationsSymmetry Relations

x[n] is a complex sequence



Table:Table: DFT Properties: DFT Properties: 
Symmetry RelationsSymmetry Relations

x[n] is a real sequence



Circular Shift of a SequenceCircular Shift of a Sequence

• This property is analogous to the time-

shifting property of the DTFT, but with a 

subtle difference

• Consider length-N sequences defined for

• Sample values of such sequences are equal 

to zero for values of n < 0 and Nn ≥

10 −≤≤ Nn



Circular Shift of a SequenceCircular Shift of a Sequence

• If x[n] is such a sequence, then for any 

arbitrary integer     , the shifted sequence

is no longer defined for the range

• We thus need to define another type of a 

shift that will always keep the shifted 

sequence in the range

][][ onnxnx −=1
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10 −≤≤ Nn

10 −≤≤ Nn



Circular Shift of a SequenceCircular Shift of a Sequence

• The desired shift, called the circular shift, 

is defined using a modulo operation:

• For            (right circular shift), the above 

equation implies
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Circular Shift of a SequenceCircular Shift of a Sequence

• Illustration of the concept of a circular shift

][nx ]1[ 6〉−〈nx

]5[ 6〉+〈= nx ]2[ 6〉+〈= nx

]4[ 6〉−〈nx



Circular Shift of a SequenceCircular Shift of a Sequence

• As can be seen from the previous figure, a 

right circular shift by      is equivalent to a 

left circular shift by             sample periods

• A circular shift by an integer number         

greater than N is equivalent to a circular 

shift by

on

onN −

on

Non 〉〈



Circular ConvolutionCircular Convolution

• This operation is analogous to linear 

convolution, but with a subtle difference

• Consider two length-N sequences, g[n] and

h[n], respectively

• Their linear convolution results in a length-

sequence          given by)( 12 −N

220
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Circular ConvolutionCircular Convolution

• In computing          we have assumed that 

both length-N sequences have been zero-

padded to extend their lengths to

• The longer form of           results from the 

time-reversal of the sequence h[n]  and its 

linear shift to the right 

• The first nonzero value of           is                

, and the last nonzero value 

is

12 −N

][nyL

][nyL

][nyL
][][][ 000 hgyL =
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Circular ConvolutionCircular Convolution

• To develop a convolution-like operation 

resulting in a length-N sequence          , we 

need to define a circular time-reversal, and 

then apply a circular time-shift

• Resulting operation, called a circular

convolution, is defined by
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Circular ConvolutionCircular Convolution

• Since the operation defined involves two 

length-N sequences, it is often referred to as 

an N-point circular convolution, denoted as

y[n] = g[n]    h[n]

• The circular convolution is commutative, 

i.e.

g[n]    h[n] = h[n]    g[n]

N

N N



Circular ConvolutionCircular Convolution

• Example - Determine the 4-point circular 

convolution of the two length-4 sequences:

as sketched below
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Circular ConvolutionCircular Convolution

• The result is a length-4 sequence          
given by

• From the above we observe
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Circular ConvolutionCircular Convolution

• Likewise ∑ 〉−〈=
=

3

0
4]1[][]1[

m
C mhmgy
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Circular ConvolutionCircular Convolution

and

• The circular convolution can also be 
computed using a DFT-based approach as 
indicated in previous Table
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Circular ConvolutionCircular Convolution
• Example - Consider the two length-4 

sequences repeated below for convenience:

• The 4-point DFT G[k] of g[n] is given by

n
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2 ][ng

n
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1

2 ][nh

4210 /][][][ kjeggkG π−+=
4644 32 // ][][ kjkj egeg ππ −− ++

3021 232 ≤≤++= −− kee kjkj ,// ππ



Circular ConvolutionCircular Convolution

• Therefore

• Likewise, 

,][ 21212 −=−−=G

,][ jjjG −=+−= 1211

jjjG +=−+= 1213][

,][ 41210 =++=G

4210 /][][][ kjehhkH π−+=
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Circular ConvolutionCircular Convolution

• Hence,

• The two 4-point DFTs can also be 

computed using the matrix relation given 

earlier

,][ 611220 =+++=H

,][ 011222 =−+−=H

,][ jjjH −=+−−= 11221

jjjH +=−−+= 11223][



Circular ConvolutionCircular Convolution
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Circular ConvolutionCircular Convolution

• If denotes the 4-point DFT of        

then from Table above we observe

• Thus
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Circular ConvolutionCircular Convolution

• A 4-point IDFT of            yields][kYC
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Circular ConvolutionCircular Convolution

• Example - Now let us extended the two 

length-4 sequences to length 7 by 

appending each with three zero-valued 

samples, i.e.
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Circular ConvolutionCircular Convolution

• We next determine the 7-point circular 

convolution of          and          :

• From the above

60,][][][
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0
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Circular ConvolutionCircular Convolution

• Continuing the process we arrive at

,)()(][][][][][ 6222101101 =×+×=+= hghgy

][][][][][][][ 0211202 hghghgy ++=
,)()()( 5202211 =×+×+×=
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Circular ConvolutionCircular Convolution

• As can be seen from the above that y[n] is 

precisely the sequence          obtained by a

linear convolution of g[n] and h[n]

,)()(][][][][][ 1111023325 =×+×=+= hghgy

111336 =×== )(][][][ hgy
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Circular ConvolutionCircular Convolution

• The N-point circular convolution can be 

written in matrix form as

• Note: The elements of each diagonal of the  

matrix are equal

• Such a matrix is called a circulant matrix

NN ×



















−

















−−−

−
−−

=

− 















]1[

]2[

]1[

]0[

]0[]3[]2[]1[

]3[]0[]1[]2[
]2[]1[]0[]1[
]1[]2[]1[]0[

]1[

]2[

]1[

]0[

Ng

g

g

g

hNhNhNh

hhhh
hNhhh
hNhNhh

Ny

y

y

y

C

C

C

C

M

L

MOMMM

L

L

L

M



Computation of the DFT of Computation of the DFT of 

Real SequencesReal Sequences

• In most practical applications, sequences of 

interest are real

• In such cases, the symmetry properties of 

the DFT can be exploited to make the DFT 

computations more efficient



NN--Point Point DFTsDFTs of Two Lengthof Two Length--NN

Real SequencesReal Sequences

• Let g[n] and h[n] be two length-N real

sequences with G[k] and H[k] denoting their

respective N-point DFTs

• These two N-point DFTs can be computed

efficiently using a single N-point DFT

• Define a complex length-N sequence

• Hence, g[n] = Re{x[n]} and h[n] = Im{x[n]} 

][][][ nhjngnx +=



NN--Point Point DFTsDFTs of Two Lengthof Two Length--NN

Real SequencesReal Sequences

• Let X[k] denote the N-point DFT of x[n]

• Then, DFT properties we arrive at

• Note that

]}[*][{][
2

1
NkXkXkG 〉〈−+=

]}[*][{][
2

1
Nj

kXkXkH 〉〈−−=

][*][* NN kNXkX 〉−〈=〉〈−



NN--Point Point DFTsDFTs of Two Lengthof Two Length--NN

Real SequencesReal Sequences

• Example - We compute the 4-point DFTs of

the two real sequences g[n] and h[n] given 

below

• Then is given by

}{]}[{},{]}[{ 11221021 == nhng
↑ ↑

]}[{]}[{]}[{ nhjngnx +=

}{]}[{ jjjjnx +++= 12221
↑



NN--Point Point DFTsDFTs of Two Lengthof Two Length--NN

Real SequencesReal Sequences
• Its DFT X[k] is

• From the above

• Hence
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NN--Point Point DFTsDFTs of Two Lengthof Two Length--NN

Real SequencesReal Sequences

• Therefore

verifying the results derived earlier

}{]}[{ jjkG +−−= 1214

}{]}[{ jjkH +−= 1016



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

• Let v[n] be a length-2N real sequence with

an 2N-point DFT V[k]

• Define two length-N real sequences g[n] 

and h[n] as follows:

• Let G[k] and H[k] denote their respective N-

point DFTs

Nnnvnhnvng ≤≤+== 0122 ],[][],[][



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

• Define a length-N complex sequence

with an N-point DFT X[k]

• Then as shown earlier
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22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

• Now ∑
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∑ ∑
−

=

−

=
+=

1

0

1

0
2

N

n

N

n

k
N

nk
N

nk
N WWnhWng ][][

∑ ∑
−

=

−

=
−≤≤+=

1

0

1

0
2 120

N

n

N

n

nk
N

k
N

nk
N NkWnhWWng ,][][



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

• i.e.,

• Example - Let us determine the 8-point 

DFT V[k] of the length-8 real sequence

• We form two length-4 real sequences as 

follows 

120],[][][ 2 −≤≤〉〈+〉〈= NkkHWkGkV N
k
NN

}{]}[{ 11102221=nv
↑



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

• Now

• Substituting the values of the 4-point DFTs

G[k] and H[k] computed earlier we get

}{]}[{]}[{ 10212 == nvng
↑

}{]}[{]}[{ 112212 =+= nvnh
↑

70],[][][ 484 ≤≤〉〈+〉〈= kkHWkGkV k



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

1064000 =+=+= ][][][ HGV

][][][ 111 1
8HWGV +=

41422111 4 .)()( / jjej j −=−+−= − π

202222 22
8 −=⋅+−=+= − /][][][ πjeHWGV

][][][ 333 3
8 HWGV +=

41420111 43 .)()( / jjej j −=+++= − π

264004 4
8 −=⋅+=+= − πjeHWGV ][][][



22NN--Point DFT of a Real Point DFT of a Real 

Sequence Using an Sequence Using an NN--point DFTpoint DFT

][][][ 115 5
8 HWGV +=

41420111 45 .)()( / jjej j +=−+−= − π

202226 236
8 −=⋅+−=+= − /][][][ πjeHWGV

][][][ 337 7
8 HWGV +=

41422111 47 .)()( / jjej j +=+++= − π



Linear Convolution Using the Linear Convolution Using the 

DFTDFT

• Linear convolution is a key operation in 

many signal processing applications

• Since a DFT can be efficiently implemented 

using FFT algorithms, it is of interest to 

develop methods for the implementation of 

linear convolution using the DFT



Linear Convolution of Two Linear Convolution of Two 

FiniteFinite--Length SequencesLength Sequences

• Let g[n] and h[n] be two finite-length

sequences of length N andM, respectively

• Denote

• Define two length-L sequences

1−+= MNL





−≤≤
−≤≤=

10

10

LnN

Nnng
nge ,

],[
][





−≤≤
−≤≤=

10
10

LnM
Mnnh

nhe ,
],[

][



Linear Convolution of Two Linear Convolution of Two 

FiniteFinite--Length SequencesLength Sequences

• Then

• The corresponding implementation scheme 

is illustrated below

][][][][][][ nhngnynhngny CL === * L

Zero-padding
with

zeros1)( −N point DFT

Zero-padding
with

zeros1)( −M

−−+ )( 1MN

point DFT

×

g[n]

h[n]

Length-N

][nge

][nhe −−+ )( 1MN

−−+ )( 1MN

point IDFT

][nyL

Length-M Length- )( 1−+ MN



Linear Convolution of a FiniteLinear Convolution of a Finite--
Length Sequence with an Length Sequence with an 
InfiniteInfinite--Length SequenceLength Sequence

• We next consider the DFT-based 

implementation of

where h[n] is a finite-length sequence of

lengthM and x[n] is an infinite length (or a 

finite length sequence of length much

greater than M)

][][][][][ nxnhnxhny
M

∑
−

=
=−=

1

0l

ll *



OverlapOverlap--Add MethodAdd Method

• We first segment x[n], assumed to be a 

causal sequence here without any loss of 

generality, into a set of contiguous finite-

length subsequences           of length N each:

where

][nxm

∑
∞

=
−=

0m
m mNnxnx ][][



 −≤≤+=

otherwise0
10

,
],[

][
NnmNnx

nxm



OverlapOverlap--Add MethodAdd Method

• Thus we can write

where

• Since h[n] is of lengthM and           is of

length N, the linear convolution                    

is of length

][nxm
][][ nxnh m*

][][][ nxnhny mm = *

∑
∞

=
−==

0m
m mNnynxnhny ][][][][ *

1−+MN



OverlapOverlap--Add MethodAdd Method

• As a result, the desired linear convolution   

has been broken up into a 

sum of infinite number of short-length 

linear convolutions of length                  

each:

• Each of these short convolutions can be 

implemented using the DFT-based method 

discussed earlier, where now the DFTs (and 

the IDFT) are computed on the basis of     

points

][][][ nxnhny = *

1−+MN

)( 1−+MN

][][][ nhnxny mm = L



OverlapOverlap--Add MethodAdd Method

• There is one more subtlety to take care of 

before we can implement

using the DFT-based approach

• Now the first convolution in the above sum, 

, is of length              

and is defined for

∑
∞

=
−=

0m
m mNnyny ][][

1−+MN

20 −+≤≤ MNn

][][][ 00 nxnhny = *



OverlapOverlap--Add MethodAdd Method

• The second short convolution 

,  is also of length                      

but is defined for

• There is an overlap of           samples 

between these two short linear convolutions

• Likewise, the third short convolution 

, is also of length

but is defined for

1−+MN

22 −+≤≤ MNnN

20 −+≤≤ MNn

1−M

][][ nxnh 2*

][][ nxnh 1*

=][2 ny

=][1 ny

1−+MN



OverlapOverlap--Add MethodAdd Method

• Thus there is an overlap of            samples 

between                   and

• In general, there will be an overlap of         

samples between the samples of the short 

convolutions                       and                   

for

• This process is illustrated in the figure on 

the next slide for M = 5 and N = 7

][][ nxnh r 1−* ][][ nxnh r*

1−M

1−M

][][ nxnh 1* ][][ nxnh 2*



OverlapOverlap--Add MethodAdd Method



OverlapOverlap--Add MethodAdd Method
Add

Add



OverlapOverlap--Add MethodAdd Method

• Therefore, y[n] obtained by a linear

convolution of x[n] and h[n] is given by

],[][ nyny 0=
],[][][ 710 −+= nynyny

],[][ 71 −= nyny

],[][][ 147 21 −+−= nynyny

],[][ 142 −= nyny
•
•
•

60 ≤≤ n
107 ≤≤ n
1311 ≤≤ n
1714 ≤≤ n
2018 ≤≤ n



OverlapOverlap--Add MethodAdd Method

• The above procedure is called the overlap-

add method since the results of the short 

linear convolutions overlap and the 

overlapped portions are added to get the 

correct final result

• The function fftfilt can be used to 

implement the above method



OverlapOverlap--Add MethodAdd Method

• We have created a program which uses fftfilt

for the filtering of a noise-corrupted signal y[n] 

using a length-3 moving average filter. The 

• The plots generated by running this program is 

shown below
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OverlapOverlap--Save MethodSave Method

• In implementing the overlap-add method 

using the DFT, we need to compute two        

-point DFTs and one                   -

point IDFT since the overall linear 

convolution was expressed as a sum of  

short-length linear convolutions of length      

each

• It is possible to implement the overall linear 

convolution by performing instead circular 

convolution of length shorter than

)( 1−+MN )( 1−+MN

)( 1−+MN

)( 1−+MN



OverlapOverlap--Save MethodSave Method

• To this end, it is necessary to segment x[n] 

into overlapping blocks          , keep the 

terms of the circular convolution of h[n] 

with           that corresponds to the terms 

obtained by a linear convolution of h[n] and              

, and throw away the other parts of 

the circular convolution

][nxm

][nxm

][nxm



OverlapOverlap--Save MethodSave Method

• To understand the correspondence between 

the linear and circular convolutions, 

consider a length-4 sequence x[n] and a 

length-3 sequence h[n]

• Let           denote the result of a linear 

convolution of x[n] with h[n]

• The six samples of           are given by

][nyL

][nyL



OverlapOverlap--Save MethodSave Method

][][][ 000 xhyL =
][][][][][ 01101 xhxhyL +=

][][][][][][][ 0211202 xhxhxhyL ++=

][][][][][][][ 1221303 xhxhxhyL ++=

][][][][][ 22314 xhxhyL +=

][][][ 325 xhyL =



OverlapOverlap--Save MethodSave Method

• If we append h[n] with a single zero-valued 

sample and convert it into a length-4 

sequence         , the 4-point circular 

convolution           of          and x[n] is given 

by

][][][][][][][ 2231000 xhxhxhyC ++=

][][][][][][][ 3201101 xhxhxhyC ++=

]0[]2[]1[]1[]2[]0[]2[ xhxhxhyC ++=

][][][][][][][ 1221303 xhxhxhyC ++=

][nhe
][nhe][nyC



OverlapOverlap--Save MethodSave Method

• If we compare the expressions for the 

samples of           with the samples of           , 

we observe that the first 2 terms of           do

not correspond to the first 2 terms of     ,

whereas the last 2 terms of           are  

precisely the same as the 3rd and 4th terms

of , i.e.,

][nyL

][nyL

][nyL

][nyC
][nyC

][nyC

],[][ 00 CL yy ≠ ][][ 11 CL yy ≠

],[][ 22 CL yy = ][][ 33 CL yy =



OverlapOverlap--Save MethodSave Method

• General case: N-point circular convolution 

of a length-M sequence h[n] with a length-N

sequence x[n] with N > M

• First samples of the circular 

convolution are incorrect and are rejected

• Remaining samples correspond 

to the correct samples of the linear

convolution of h[n] with x[n]

1−M

1+−MN



OverlapOverlap--Save MethodSave Method

• Now, consider an infinitely long or very 

long sequence x[n]

• Break it up as a collection of smaller length 

(length-4) overlapping sequences           as

• Next, form

][nxm
∞≤≤≤≤+= mnmnxnxm 0302 ,],[][

][][][ nxnhnw mm = 4



OverlapOverlap--Save MethodSave Method

• Or, equivalently,

• Computing the above for m = 0, 1, 2, 3, . . . ,

and substituting the values of           we 

arrive at

][][][][][][][ 2231000 mmmm xhxhxhw ++=

][][][][][][][ 3201101 mmmm xhxhxhw ++=

][][][][][][][ 0211202 mmmm xhxhxhw ++=

][][][][][][][ 1221303 mmmm xhxhxhw ++=

][nxm



OverlapOverlap--Save MethodSave Method

][][][][][][][ 22310000 xhxhxhw ++=

][][][][][][][ 32011010 xhxhxhw ++=
][][][][][][][][ 202112020 yxhxhxhw =++=

][][][][][][][][ 312213030 yxhxhxhw =++=

←Reject

←Reject

←Save

←Save

][][][][][][][ 42512001 xhxhxhw ++=

][][][][][][][ 52213011 xhxhxhw ++=
][][][][][][][][ 422314021 yxhxhxhw =++=

][][][][][][][][ 532415031 yxhxhxhw =++=

←Reject

←Reject

←Save

←Save



OverlapOverlap--Save MethodSave Method

][][][][][][][ 62514002 xhxhxhw ++= ←Reject

][][][][][][][ 72415012 xhxhxhw ++= ←Reject

][][][][][][][][ 642516022 yxhxhxhw =++= ←Save

][][][][][][][][ 752617032 yxhxhxhw =++= ←Save



OverlapOverlap--Save MethodSave Method

• It should be noted that to determine y[0] and

y[1], we need to form           :

and compute                                    for              

reject            and           , and save              

and

][nx 1−

,][,][ 0100 11 == −− xx

][][][ nxnhnw 11 −− = 4 30 ≤≤ n
][01−w ][11−w ][][ 021 yw =−

][][ 131 yw =−

][][],[][ 1302 11 xxxx == −−



OverlapOverlap--Save MethodSave Method

• General Case: Let h[n] be a length-N

sequence

• Let           denote the m-th section of an

infinitely long sequence x[n] of length N

and defined by

withM < N

10)],1([][ −≤≤+−+= NnmNmnxnxm

][nxm



OverlapOverlap--Save MethodSave Method

• Let

• Then, we reject the first           samples of     

and “abut” the remaining                  samples of            

to form          , the linear convolution of

h[n] and x[n]

• If           denotes the saved portion of           , 

i.e.

][nwm

][nwm

][][][ nxnhnw mm = N

1−M

1+−MN
][nyL

][nym ][nwm





−≤≤−
−≤≤=

21],[
20,0

][
NnMnw
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OverlapOverlap--Save MethodSave Method

• Then

• The approach is called overlap-save 

method since the input is segmented into 

overlapping sections and parts of the results 

of the circular convolutions are saved and 

abutted to determine the linear convolution 

result

11],[)]1([ −≤≤−=+−+ NnMnyMNmny mL



OverlapOverlap--Save MethodSave Method

• Process is illustrated next



OverlapOverlap--Save MethodSave Method



zz--TransformTransform

• The DTFT provides a frequency-domain 

representation of discrete-time signals and 

LTI discrete-time systems

• Because of the convergence condition, in 

many cases, the DTFT of a sequence may 

not exist

• As a result, it is not possible to make use of 

such frequency-domain characterization in 

these cases



zz--TransformTransform
• A generalization of the DTFT defined by

leads to the z-transform

• z-transform may exist for many sequences 

for which the DTFT does not exist

• Moreover, use of z-transform techniques 

permits simple algebraic manipulations

∑=
∞

−∞=

ω−ω

n

njj enxeX ][)(



zz--TransformTransform

• Consequently, z-transform has become an 

important tool in the analysis and design of 

digital filters

• For a given sequence g[n], its z-transform 

G(z) is defined as

where z = Re(z) + jIm(z) is a complex 

variable

∑
∞

−∞=

−=
n

nzngzG ][)(



zz--TransformTransform

• If we let               , then the z-transform 

reduces to

• The above can be interpreted as the DTFT 

of the modified sequence

• For r = 1 (i.e., |z| = 1), z-transform reduces 

to its DTFT, provided the latter exists

ω= jerz

∑=
∞

−∞=

ω−−ω

n

njnj erngerG ][)(

}][{ nrng −



zz--TransformTransform
• The contour |z| = 1 is a circle in the z-plane 

of unity radius and is called the unit circle

• Like the DTFT, there are conditions on the 

convergence of the infinite series

• For a given sequence, the set R of values of 

z for which its z-transform converges is 

called the region of convergence (ROC)

∑
∞

−∞=

−

n

nzng ][



zz--TransformTransform

• From our earlier discussion on the uniform 

convergence of the DTFT, it follows that the 

series

converges if                  is absolutely 

summable, i.e., if

∑=
∞

−∞=

ω−−ω

n

njnj erngerG ][)(

}][{ nrng −

∞<∑
∞

−∞=

−

n

nrng ][



zz--TransformTransform

• In general, the ROC R of a z-transform of a 

sequence g[n] is an annular region of the z-

plane:

where

• Note: The z-transform is a form of a Laurent 

series and is an analytic function at every 

point in the ROC

+− << gg RzR

∞≤<≤ +− gg RR0



zz--TransformTransform

• Example - Determine the z-transform X(z) 

of the causal sequence                        and its 

ROC

• Now 

• The above power series converges to

• ROC is the annular region |z| > |α|

][][ nnx nµα=

∑α=∑ µα=
∞

=

−∞

−∞=

−

0

][)(
n

nn

n

nn zznzX

1for,
1

1
)( 1

1
<α

α−
= −

− z
z

zX



zz--TransformTransform

• Example - The z-transform µµµµ(z) of the unit

step sequence µ[n] can be obtained from

by setting α = 1:

• ROC is the annular region

1for,
1

1
)( 1

1
<α

α−
= −

− z
z

zX

∞≤< z1

1for
1

1 1

1
<

−
= −

−
z

z
z ,)(µµµµ



zz--TransformTransform

• Note: The unit step sequence µ[n] is not 

absolutely summable, and hence its DTFT 

does not converge uniformly

• Example - Consider the anti-causal 

sequence

]1[][ −−µα−= nny n



zz--TransformTransform

• Its z-transform is given by

• ROC is the annular region

∑α−=∑ α−=
∞

=

−−

−∞=

−

1

1
)(

m

mm

n

nn zzzY

1for,
1

1 1

1
<α

α−
= −

− z
z

z

z
zz

m

mm

1

1

0

1

1 −

−∞

=

−−

α−

α
−=∑αα−=

α<z



zz--TransformTransform

• Note: The z-transforms of the two 

sequences              and                         are 

identical even though the two parent 

sequences are different

• Only way a unique sequence can be 

associated with a z-transform is by 

specifying its ROC

]1[ −−µα− nn][nnµα



zz--TransformTransform

• The DTFT              of a sequence g[n] 

converges uniformly if and only if the ROC 

of the z-transform G(z) of g[n] includes the 

unit circle

• The existence of the DTFT does not always 

imply the existence of the z-transform

)( ωjeG



zz--TransformTransform

• Example - The finite energy sequence

has a DTFT given by

which converges in the mean-square sense

∞<<∞−π
ω

= n
n
n

nh c
LP ,

sin
][





π≤ω<ω
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LP eH
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zz--TransformTransform

• However,             does not have a z-transform 

as it is not absolutely summable for any value 

of r

• Some commonly used z-transform pairs are 

listed on the next slide

][nhLP



Table:Table: Commonly UsedCommonly Used zz--
Transform PairsTransform Pairs



Rational Rational zz--TransformsTransforms

• In the case of LTI discrete-time systems we 

are concerned with in this course, all 

pertinent z-transforms are rational functions 

of

• That is, they are ratios of two polynomials 

in      :

1−z

1−z

N
N

N
N

M
M

M
M

zdzdzdd

zpzpzpp

zD

zP
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Rational Rational zz--TransformsTransforms

• The degree of the numerator polynomial

P(z) is M and the degree of the denominator 

polynomial D(z) is N

• An alternate representation of a rational z-

transform is as a ratio of two polynomials in

z:

NN
NN

MM
MM

MN

dzdzdzd

pzpzpzp
zzG

++++

++++
=

−
−

−
−

−

1
1

10

1
1

10
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Rational Rational zz--TransformsTransforms

• A rational z-transform can be alternately 

written in factored form as

∏
∏

=
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=
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−

−
=

N

M
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zp
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Rational Rational zz--TransformsTransforms

• At a root           of the numerator polynomial                 

, and as a result, these values of z

are known as the zeros of G(z)

• At a root           of the denominator 

polynomial                   , and as a result, 

these values of z are known as the poles of

G(z)

lξ=z

lλ=z
∞→)( lλG

0=)( lξG



Rational Rational zz--TransformsTransforms

• Consider

• Note G(z) has M finite zeros and N finite 

poles

• If N > M there are additional             zeros at

z = 0 (the origin in the z-plane)

• If N < M there are additional             poles at

z = 0

MN −

NM −

∏
∏

=

=−

−

−
=

N

M
MN

zd

zp
zzG

10

10

l l

l l
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Rational Rational zz--TransformsTransforms
• Example - The z-transform

has a zero at z = 0 and a pole at z = 1

1for
1

1
1

>
−

=
−

z
z

z ,)(µµµµ



Rational Rational zz--TransformsTransforms

• A physical interpretation of the concepts of 

poles and zeros can be given by plotting the 

log-magnitude                        as shown on 

next slide for

)(log zG1020

21

21

640801

882421
−−

−−

+−

+−
=

zz

zz
zG
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Rational Rational zz--TransformsTransforms



Rational Rational zz--TransformsTransforms

• Observe that the magnitude plot exhibits 

very large peaks around the points              

which are the poles of

G(z)

• It also exhibits very narrow and deep wells 

around the location of the zeros at

6928040 .. jz ±=

2121 .. jz ±=



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• ROC of a z-transform is an important 

concept

• Without the knowledge of the ROC, there is 

no unique relationship between a sequence 

and its z-transform

• Hence, the z-transform must always be 

specified with its ROC



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Moreover, if the ROC of a z-transform 

includes the unit circle, the DTFT of the 

sequence is obtained by simply evaluating 

the z-transform on the unit circle

• There is a relationship between the ROC of 

the z-transform of the impulse response of a 

causal LTI discrete-time system and its 

BIBO stability



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The ROC of a  rational z-transform is 

bounded by the locations of its poles

• To understand the relationship between the 

poles and the ROC, it is instructive to 

examine the pole-zero plot of a z-transform

• Consider again the pole-zero plot of the z-

transform µµµµ(z) 



ROC of a Rational ROC of a Rational 
zz--TransformTransform

• In this plot, the ROC, shown as the shaded 

area, is the region of the z-plane just outside 

the circle centered at the origin and going 

through the pole at z = 1



ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - The z-transform H(z) of the 

sequence                                is given by

• Here the ROC is just outside the circle 
going through the point 60.−=z

][)6.0(][ nnh nµ−=

,
.

)(
1601

1
−+

=
z

zH

60.>z



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• A sequence can be one of the following 

types: finite-length, right-sided, left-sided

and two-sided

• In general, the ROC depends on the type of 

the sequence of interest



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Example - Consider a finite-length sequence

g[n] defined for                      , where M and

N are non-negative integers and

• Its z-transform is given by

NnM ≤≤−
∞<][ng

N

MN nMNN

Mn

n

z

zMng
zngzG

∑
∑

+ −+

−=

− −
== 0

][
][)(



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Note: G(z) has M poles at           and N poles

at z = 0 (explain why)

• As can be seen from the expression for

G(z), the z-transform of a finite-length 

bounded sequence converges everywhere in 

the z-plane except possibly at z = 0 and/or at

∞=z

∞=z



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Example - A right-sided sequence with 

nonzero sample values for is 

sometimes called a causal sequence

• Consider a causal sequence

• Its z-transform is given by

∑
∞

=

−=
0

11 ][)(
n

nznuzU

0≥n

][1 nu



ROC of a Rational ROC of a Rational 
zz--TransformTransform

• It can be shown that           converges 

exterior to a circle            , including the 

point

• On the other hand, a right-sided sequence  

with nonzero sample values only for           

with M nonnegative has a z-transform        

with M poles at

• The ROC of            is exterior to a circle            

, excluding the point

)(1 zU

1Rz =

2Rz =

∞=z

∞=z
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)(2 zU

][2 nu
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Example - A left-sided sequence with 

nonzero sample values for is 

sometimes called a anticausal sequence

• Consider an anticausal sequence

• Its z-transform is given by
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∑
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• It can be shown that           converges 

interior to a circle             , including the 

point z = 0

• On the other hand, a left-sided sequence  

with nonzero sample values only for           

with N nonnegative has a z-transform        

with N poles at z = 0          

• The ROC of            is interior to a circle            

, excluding the point z = 0

Nn ≤

)(1 zV

3Rz =

)(2 zV

)(2 zV

4Rz =



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Example - The z-transform of a two-sided

sequence w[n] can be expressed as

• The first term on the RHS,                       , 

can be interpreted as the z-transform of a 

right-sided sequence and it thus converges 

exterior to the circle

∑∑∑
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The second term on the RHS,                        , 

can be interpreted as the z-transform of a left-

sided sequence and it thus converges interior 

to the circle

• If              , there is an overlapping ROC 

given by

• If              , there is no overlap and the              

z-transform does not exist
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n
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - Consider the two-sided sequence

where α can be either real or complex

• Its z-transform is given by

• The first term on the RHS converges for        
, whereas the second term converges 

for

nnu α=][
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• There is no overlap between these two 

regions

• Hence, the z-transform of                 does 

not exist

nnu α=][



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The ROC of a rational z-transform cannot 

contain any poles and is bounded by the 

poles

• To show that the z-transform is bounded by 

the poles, assume that the z-transform X(z) 

has simple poles at z = α and z = β
• Assume that the corresponding sequence

x[n] is a right-sided sequence



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Then x[n] has the form

where      is a positive or negative integer

• Now, the z-transform of the right-sided 

sequence                      exists if

for some z
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The condition

holds for            but not for

• Therefore, the z-transform of

has an ROC defined by

∞<γ∑
∞

=

−

oNn

nnz

γ>z γ≤z
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• Likewise, the z-transform of a left-sided 

sequence

has an ROC defined by

• Finally, for a two-sided sequence, some of 

the poles contribute to terms in the parent 

sequence for n < 0 and the other poles 

contribute to terms

( ) β<α−−µβ+α= ],[][ 21 o
nn Nnrrnx

α<≤ z0

0≥n



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The ROC is thus bounded on the outside by 

the pole with the smallest magnitude that 

contributes for n < 0 and on the inside by 

the pole with the largest magnitude that 

contributes for

• There are three possible ROCs of a rational 

z-transform with poles at z = α and z = β
(           )

0≥n

β<α



ROC of a Rational ROC of a Rational 
zz--TransformTransform



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• In general, if the rational z-transform has N

poles with R distinct magnitudes, then it has    

ROCs

• Thus, there are         distinct sequences with 

the same z-transform

• Hence, a rational z-transform with a 

specified ROC has a unique sequence as its 

inverse z-transform

1+R

1+R



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The ROC of a rational z-transform can be 

easily determined using MATLAB

determines the zeros, poles, and the gain 

constant of a rational z-transform with the 

numerator coefficients specified by the 
vector num and the denominator coefficients 

specified by the vector den

[z,p,k] = tf2zp(num,den)



ROC of a Rational ROC of a Rational 

zz--TransformTransform

• [num,den] = zp2tf(z,p,k)

implements the reverse process

• The factored form of the z-transform can be 
obtained using sos = zp2sos(z,p,k)

• The above statement computes the 

coefficients of each second-order factor 
given as an          matrix sos6×L



ROC of a Rational ROC of a Rational 

zz--TransformTransform

where
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ROC of a Rational ROC of a Rational 

zz--TransformTransform

• The pole-zero plot is determined using the 
function zplane

• The z-transform can be either described in 
terms of its zeros and poles:

zplane(zeros,poles)

• or, it can be described in terms of its 

numerator and denominator coefficients:
zplane(num,den)



ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - The pole-zero plot of

obtained using MATLAB is shown below
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Inverse zInverse z--TransformTransform

• General Expression: Recall that, for              , 

the z-transform G(z) given by

is merely the DTFT of the modified sequence

• Accordingly, the inverse DTFT is thus given 

by

ω= jerz
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Inverse zInverse z--TransformTransform

• By making a change of variable              , 

the previous equation can be converted into 

a contour integral given by

where      is a counterclockwise contour of 

integration defined by |z| = r

ω= jerz
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dzzzG
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Inverse zInverse z--TransformTransform
• But the integral remains unchanged when     

is replaced with any contour C encircling 

the point z = 0 in the ROC of G(z)

• The contour integral can be evaluated using 

the Cauchy’s residue theorem resulting in

• The above equation needs to be evaluated at 

all values of n and is not pursued here
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• A rational z-transform G(z) with a causal

inverse transform g[n] has an ROC that is 

exterior to a circle

• Here it is more convenient to express G(z) 

in a partial-fraction expansion form and

then determine g[n] by summing the inverse 

transform of the individual simpler terms in 

the expansion



Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• A rational G(z) can be expressed as

• If              then G(z) can be re-expressed as

where the degree of          is less than N
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• The rational function                     is called a 

proper fraction

• Example - Consider

• By long division we arrive at
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Simple Poles: In most practical cases, the 

rational z-transform of interest G(z) is a 

proper fraction with simple poles

• Let the poles of G(z) be at           ,

• A partial-fraction expansion of G(z) is then 

of the form

kz λ= Nk ≤≤1
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• The constants      in the partial-fraction 

expansion are called the residues and are 

given by

• Each term of the sum in partial-fraction 

expansion has an ROC given by                 

and, thus has an inverse transform of the 

form
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Therefore, the inverse transform g[n] of

G(z) is given by

• Note: The above approach with a slight 

modification can also be used to determine 

the inverse of a rational z-transform of a 

noncausal sequence
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Example - Let the z-transform H(z) of a

causal sequence h[n] be given by

• A partial-fraction expansion of H(z) is then 

of the form
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Now

and
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Hence

• The inverse transform of the above is 

therefore given by
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Inverse Transform by Inverse Transform by 

PartialPartial--Fraction ExpansionFraction Expansion

• Multiple Poles: If G(z) has multiple poles, 

the partial-fraction expansion is of slightly 

different form

• Let the pole at z = ν be of multiplicity L and 

the remaining           poles be simple and at             

,

LN −
lλ=z LN −≤≤ l1



Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Then the partial-fraction expansion of G(z) 

is of the form

where the constants     are computed using

• The residues       are calculated as before
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PartialPartial--Fraction Expansion Fraction Expansion 

Using MATLABUsing MATLAB

• [r,p,k]= residuez(num,den)

develops the partial-fraction expansion of 

a rational z-transform with numerator and 

denominator coefficients given by vectors
num and den

• Vector r contains the residues

• Vector p contains the poles

• Vector k contains the constants
lη



PartialPartial--Fraction Expansion Fraction Expansion 

Using MATLABUsing MATLAB

• [num,den]=residuez(r,p,k)

converts a z-transform expressed in a 

partial-fraction expansion form to its 

rational form



Inverse zInverse z--Transform via Long Transform via Long 

DivisionDivision

• The z-transform G(z) of a causal sequence

{g[n]} can be expanded in a power series in

• In the series expansion, the coefficient 

multiplying the term         is then the n-th

sample g[n]

• For a rational z-transform expressed as a 

ratio of polynomials in      , the power series 

expansion can be obtained by long division

1−z

1−z
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Inverse zInverse z--Transform via Long Transform via Long 

DivisionDivision

• Example - Consider

• Long division of the numerator by the 

denominator yields

• As a result
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Inverse zInverse z--Transform Using Transform Using 

MATLABMATLAB

• The function impz can be used to find the 

inverse of a rational z-transform G(z)

• The function computes the coefficients of 

the power series expansion of G(z)

• The number of coefficients can either be 

user specified or determined automatically



Table:Table: zz--Transform PropertiesTransform Properties



zz--Transform PropertiesTransform Properties

• Example - Consider the two-sided sequence

• Let                        and                              

with X(z) and Y(z) denoting, respectively, 

their z-transforms

• Now

and
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zz--Transform PropertiesTransform Properties

• Using the linearity property we arrive at

• The ROC of V(z) is given by the overlap 

regions of             and

• If             , then there is an overlap and the 

ROC is an annular region

• If             , then there is no overlap and V(z)

does not exist
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zz--Transform PropertiesTransform Properties

• Example - Determine the z-transform and 

its ROC of the causal sequence

• We can express x[n] = v[n] + v*[n] where

• The z-transform of v[n] is given by
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zz--Transform PropertiesTransform Properties
• Using the conjugation property we obtain 

the z-transform of v*[n] as

• Finally, using the linearity property we get

,
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zz--Transform PropertiesTransform Properties

• or,

• Example - Determine the z-transform Y(z) 

and the ROC of the sequence

• We can write                                 where
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zz--Transform PropertiesTransform Properties

• Now, the z-transform X(z) of                        

is given by

• Using the differentiation property, we arrive 

at the z-transform of           as
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zz--Transform PropertiesTransform Properties

• Using the linearity property we finally 

obtain
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