Discrete-Time Fourier Transform Discrete Fourier Transform z-Transform

Tania Stathaki
811b

t.stathaki@imperial.ac.uk

Joseph Fourier (1768-1830)

Discrete-Time Fourier Transform

- Definition - The Discrete-Time Fourier Transform (DTFT) $X\left(e^{j \omega}\right)$ of a sequence $x[n]$ is given by

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- In general, $X\left(e^{j \omega}\right)$ is a complex function of the real variable ω and can be written as

$$
X\left(e^{j \omega}\right)=X_{\mathrm{re}}\left(e^{j \omega}\right)+j X_{\mathrm{im}}\left(e^{j \omega}\right)
$$

Discrete-Time Fourier Transform

- $X_{\mathrm{re}}\left(e^{j \omega}\right)$ and $X_{\mathrm{im}}\left(e^{j \omega}\right)$ are, respectively, the real and imaginary parts of $X\left(e^{j \omega}\right)$, and are real functions of ω
- $X\left(e^{j \omega}\right)$ can alternately be expressed as

$$
X\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) e^{j \theta(\omega)}
$$

where

$$
\theta(\omega)=\arg \left\{X\left(e^{j \omega}\right)\right\}
$$

Discrete-Time Fourier Transform

- $X\left(e^{j \omega}\right)$ is called the magnitude function
- $\theta(\omega)$ is called the phase function
- Both quantities are again real functions of ω
- In many applications, the DTFT is called the Fourier spectrum
- Likewise, $X\left(e^{j \omega}\right)$ and $\theta(\omega)$ are called the magnitude and phase spectra

Discrete-Time Fourier Transform

$$
\begin{aligned}
& \left|X\left(e^{j \omega}\right)\right|^{2}=X\left(e^{j \omega}\right) X^{*}\left(e^{j \omega}\right) \\
& X_{\mathrm{re}}\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| \cos \theta(\omega) \\
& X_{\mathrm{im}}\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| \sin \theta(\omega) \\
& \left|X\left(e^{j \omega}\right)\right|^{2}=X_{\mathrm{re}}^{2}\left(e^{j \omega}\right)+X_{\mathrm{im}}^{2}\left(e^{j \omega}\right) \\
& \tan \theta(\omega)=\frac{X_{\mathrm{im}}\left(e^{j \omega}\right)}{X_{\mathrm{re}}\left(e^{i \omega}\right)}
\end{aligned}
$$

Discrete-Time Fourier Transform

- For a real sequence $x[n], X\left(e^{j \omega}\right)$ and $X_{\mathrm{re}}\left(e^{j \omega}\right)$ are even functions of ω, whereas, $\theta(\omega)$ and $X_{\mathrm{im}}\left(e^{j \omega}\right)$ are odd functions of ω (Prove using previous slide relationships)
- Note: $\quad X\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) e^{j \theta(\omega+2 \pi k)}$

$$
=\left|X\left(e^{j \omega}\right)\right| e^{j \theta(\omega)}
$$

for any integer k

- \longrightarrow The phase function $\theta(\omega)$ cannot be uniquely specified for any DTFT

Discrete-Time Fourier Transform

- Unless otherwise stated, we shall assume that the phase function $\theta(\omega)$ is restricted to the following range of values:

$$
-\pi \leq \theta(\omega)<\pi
$$

called the principal value

Discrete-Time Fourier Transform

- The DTFTs of some sequences exhibit discontinuities of 2π in their phase responses
- An alternate type of phase function that is a continuous function of ω is often used
- It is derived from the original phase function by removing the discontinuities of 2π

Discrete-Time Fourier Transform

- The process of removing the discontinuities is called "unwrapping"
- The continuous phase function generated by unwrapping is denoted as $\theta_{c}(\omega)$
- In some cases, discontinuities of π may be present after unwrapping

Discrete-Time Fourier Transform

- Example - The DTFT of the unit sample sequence $\delta[n]$ is given by

$$
\Delta(\omega)=\sum_{n=-\infty}^{\infty} \delta[n] e^{-j \omega n}=\delta[0]=1
$$

- Example - Consider the causal sequence

$$
x[n]=\alpha^{n} \mu[n], \quad|\alpha|<1, \mu[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Discrete-Time Fourier Transform

- Its DTFT is given by

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} \alpha^{n} \mu[n] e^{-j \omega n}=\sum_{n=0}^{\infty} \alpha^{n} e^{-j \omega n} \\
& =\sum_{n=0}^{\infty}\left(\alpha e^{-j \omega}\right)^{n}=\frac{1}{1-\alpha e^{-j \omega}} \\
& \text { as } \alpha e^{-j \omega}|=|\alpha|<1
\end{aligned}
$$

Discrete-Time Fourier Transform

- The magnitude and phase of the DTFT $X\left(e^{j \omega}\right)=1 /\left(1-0.5 e^{-j \omega}\right)$ are shown below

Discrete-Time Fourier Transform

- The DTFT $X\left(e^{j \omega}\right)$ of a sequence $x[n]$ is a continuous function of ω
- It is also a periodic function of ω with a period 2π :

$$
\begin{gathered}
X\left(e^{j\left(\omega_{o}+2 \pi k\right)}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j\left(\omega_{o}+2 \pi k\right) n} \\
=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{o} n} e^{-j 2 \pi k n}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{o} n}=X\left(e^{j \omega_{o}}\right)
\end{gathered}
$$

Discrete-Time Fourier Transform

- Inverse Discrete-Time Fourier Transform:

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

- Proof:

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j \omega \ell}\right) e^{j \omega n} d \omega
$$

Discrete-Time Fourier Transform

- The order of integration and summation can be interchanged if the summation inside the brackets converges uniformly, i.e., $X\left(e^{j \omega}\right)$ exists
- Then $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j \omega \ell}\right) e^{j \omega n} d \omega$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell]\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-\ell)} d \omega\right)=\sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi(n-\ell)}{\pi(n-\ell)}
$$

Discrete-Time Fourier Transform

- Now $\frac{\sin \pi(n-\ell)}{\pi(n-\ell)}= \begin{cases}1, & n=\ell \\ 0, & n \neq \ell\end{cases}$

$$
=\delta[n-\ell]
$$

- Hence

$$
\sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi(n-\ell)}{\pi(n-\ell)}=\sum_{\ell=-\infty}^{\infty} x[\ell] \delta[n-\ell]=x[n]
$$

Discrete-Time Fourier Transform

- Convergence Condition - An infinite series of the form

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

may or may not converge

- Consider the following approximation

$$
X_{K}\left(e^{j \omega}\right)=\sum_{n=-K}^{K} x[n] e^{-j \omega n}
$$

Discrete-Time Fourier Transform

- Then for uniform convergence of $X\left(e^{j \omega}\right)$,

$$
\lim _{K \rightarrow \infty}\left|X\left(e^{j \omega}\right)-X_{K}\left(e^{j \omega}\right)\right|=0
$$

- If $x[n]$ is an absolutely summable sequence, i.e., if

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty}|x[n]|<\infty \\
X\left(e^{j \omega}\right)=\left|\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right| \leq \sum_{n=-\infty}^{\infty}|x[n]|<\infty
\end{gathered}
$$

for all values of ω

- Thus, the absolute summability of $x[n]$ is a sufficient condition for the existence of the DTFT

Discrete-Time Fourier Transform

- Example - The sequence $x[n]=\alpha^{n} \mu[n]$ for $\alpha<1$ is absolutely summable as

$$
\sum_{n=-\infty}^{\infty}\left|\alpha^{n}\right| \mu[n]=\sum_{n=0}^{\infty}\left|\alpha^{n}\right|=\frac{1}{1-\alpha \mid}<\infty
$$

and therefore its DTFT $X\left(e^{j \omega}\right)$ converges to $1 /\left(1-\alpha e^{-j \omega}\right)$ uniformly

Discrete-Time Fourier Transform

- Since

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2} \leq\left(\sum_{n=-\infty}^{\infty} \mid x[n]\right)^{2},
$$

an absolutely summable sequence has always a finite energy

- However, a finite-energy sequence is not necessarily absolutely summable

Discrete-Time Fourier Transform

- Example - The sequence

$$
x[n]=\left\{\begin{array}{cc}
1 / n, & n \geq 1 \\
0, & n \leq 0
\end{array}\right.
$$

has a finite energy equal to

$$
\mathrm{E}_{x}=\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}=\frac{\pi^{2}}{6}
$$

- However, $x[n]$ is not absolutely summable since the summation

$$
\sum_{n=1}^{\infty}\left|\frac{1}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}
$$

does not converge.

Discrete-Time Fourier Transform

- To represent a finite energy sequence that is not absolutely summable by a DTFT, it is necessary to consider a mean-square convergence of $X\left(e^{j \omega}\right)$

$$
\lim _{K \rightarrow \infty} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)-X_{K}\left(e^{j \omega}\right)\right|^{2} d \omega=0
$$

where

$$
X_{K}\left(e^{j \omega}\right)=\sum_{n=-K}^{K} x[n] e^{-j \omega n}
$$

Discrete-Time Fourier Transform

- Here, the total energy of the error

$$
X\left(e^{j \omega}\right)-X_{K}\left(e^{j \omega}\right)
$$

must approach zero at each value of ω as K goes to ∞

- In such a case, the absolute value of the error $X\left(e^{j \omega}\right)-X_{K}\left(e^{j \omega}\right)$ may not go to zero as K goes to ∞ and the DTFT is no longer bounded

Discrete-Time Fourier Transform

- Example - Consider the DTFT

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq \mid \omega \leq \omega_{c} \\ 0, & \omega_{c}<|\omega| \leq \pi\end{cases}
$$

shown below

Discrete-Time Fourier Transform

- The inverse DTFT of $H_{L P}\left(e^{j \omega}\right)$ is given by

$$
\begin{aligned}
& h_{L P}[n]=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi}\left(\frac{e^{j \omega_{c} n}}{j n}-\frac{e^{-j \omega_{c} n}}{j n}\right)=\frac{\sin \omega_{c} n}{\pi n},-\infty<n<\infty
\end{aligned}
$$

- The energy of $h_{L P}[n]$ is given by ω_{c} / π (See slide 46 for proof. Parseval's Theorem stated in slide 37 is used).
- $\longrightarrow h_{L P}[n]$ is a finite-energy sequence, but it is not absolutely summable

Discrete-Time Fourier Transform

- As a result

$$
\sum_{n=-K}^{K} h_{L P}[n] e^{-j \omega n}=\sum_{n=-K}^{K} \frac{\sin \omega_{c} n}{\pi n} e^{-j \omega n}
$$

does not uniformly converge to $H_{L P}\left(e^{j \omega}\right)$ for all values of ω, but converges to $H_{L P}\left(e^{j \omega}\right)$ in the mean-square sense

Discrete-Time Fourier Transform

- The mean-square convergence property of the sequence $h_{L P}[n]$ can be further illustrated by examining the plot of the function

$$
H_{L P, K}\left(e^{j \omega}\right)=\sum_{n=-K}^{K} \frac{\sin \omega_{c} n}{\pi n} e^{-j \omega n}
$$

for various values of K as shown next

Discrete-Time Fourier Transform
 $\mathrm{N}=10$
 $\mathrm{N}=20$

Discrete-Time Fourier Transform

- As can be seen from these plots, independent of the value of K there are ripples in the plot of $H_{L P, K}\left(e^{j \omega}\right)$ around both sides of the point $\omega=\omega_{c}$
- The number of ripples increases as K increases with the height of the largest ripple remaining the same for all values of K

Discrete-Time Fourier Transform

- As K goes to infinity, the condition

$$
\lim _{K \rightarrow \infty} \int_{-\pi}^{\pi}\left|H_{L P}\left(e^{j \omega}\right)-H_{L P, K}\left(e^{j \omega}\right)\right|^{2} d \omega=0
$$

holds indicating the convergence of $H_{L P, K}\left(e^{j \omega}\right)$ to $H_{L P}\left(e^{j \omega}\right)$

- The oscillatory behavior of $H_{L P, K}\left(e^{j \omega}\right)$ approximating $H_{L P}\left(e^{j \omega}\right)$ in the meansquare sense at a point of discontinuity is known as the Gibbs phenomenon

Discrete-Time Fourier Transform

- The DTFT can also be defined for a certain class of sequences which are neither absolutely summable nor square summable
- Examples of such sequences are the unit step sequence $\mu[n]$, the sinusoidal sequence $\cos \left(\omega_{o} n+\phi\right)$ and the exponential sequence $A \alpha^{n}$
- For this type of sequences, a DTFT representation is possible using the Dirac delta function $\delta(\omega)$

Discrete-Time Fourier Transform

- A Dirac delta function $\delta(\omega)$ is a function of ω with infinite height, zero width, and unit area
- It is the limiting form of a unit area pulse function $p_{\Delta}(\omega)$ as Δ goes to zero, satisfying

$$
\lim _{\Delta \rightarrow 0} \int_{-\infty}^{\infty} p_{\Delta}(\omega) d \omega=\int_{-\infty}^{\infty} \delta(\omega) d \omega
$$

Discrete-Time Fourier Transform

- Example - Consider the complex exponential sequence

$$
x[n]=e^{j \omega_{o} n}
$$

- Its DTFT is given by

$$
X\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{o}+2 \pi k\right)
$$

where $\delta(\omega)$ is an impulse function of ω and

$$
-\pi \leq \omega_{o} \leq \pi
$$

Discrete-Time Fourier Transform

- The function

$$
X\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{o}+2 \pi k\right)
$$

is a periodic function of ω with a period 2π and is called a periodic impulse train

- To verify that $X\left(e^{j \omega}\right)$ given above is indeed the DTFT of $x[n]=e^{j \omega_{o} n}$ we compute the inverse DTFT of $X\left(e^{j \omega}\right)$

Discrete-Time Fourier Transform

- Thus

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{o}+2 \pi k\right) e^{j \omega n} d \omega \\
& =\int_{-\pi}^{\pi} \delta\left(\omega-\omega_{o}\right) e^{j \omega n} d \omega=e^{j \omega_{o} n}
\end{aligned}
$$

where we have used the sampling property of the impulse function $\delta(\omega)$

Commonly Used DTFT Pairs

Sequence DTFT
$\delta[n] \leftrightarrow 1$
$1 \leftrightarrow \sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$e^{j \omega_{o} n} \leftrightarrow \sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{o}+2 \pi k\right)$
$\mu[n] \leftrightarrow \frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$\mu[n],(\mid<1) \leftrightarrow \frac{1}{1-\alpha e^{-j \omega}}$

DTFT Properties

- There are a number of important properties of the DTFT that are useful in signal processing applications
- These are listed here without proof
- Their proofs are quite straightforward
- We illustrate the applications of some of the DTFT properties

Table: General Properties of DTFT

Type of Property	Sequence	Discrete-Time Fourier Transform
	$g[n]$	$G\left(e^{j \omega}\right)$
$h[n]$	$H\left(e^{j \omega}\right)$	
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G\left(e^{j \omega}\right)+\beta H\left(e^{j \omega}\right)$
Time-shifting	$g\left[n-n_{o}\right]$	$e^{-j \omega n_{o}} G\left(e^{j \omega}\right)$
Frequency-shifting	$e^{j \omega_{o} n} g[n]$	$G\left(e^{j\left(\omega-\omega_{o}\right)}\right)$
Differentiation in frequency Convolution Modulation	$g g[n] \circledast h[n]$	$j \frac{d G\left(e^{j \omega}\right)}{d \omega}$
	$g[n] h[n]$	$G\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(e^{j \theta}\right) H\left(e^{j(\omega-\theta)}\right) d \theta$		
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n] h^{*}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right) d \omega$	

Table: Symmetry relations of the DTFT of a complex sequence

Sequence	Discrete-Time Fourier Transform
$x[n]$	$X\left(e^{j \omega}\right)$
$x[-n]$	$X\left(e^{-j \omega}\right)$
$x^{*}[-n]$	$X^{*}\left(e^{j \omega}\right)$
$\operatorname{Re}\{x[n]\}$	$X_{\mathrm{cs}}\left(e^{j \omega}\right)=\frac{1}{2}\left\{X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right\}$
$j \operatorname{Im}\{x[n]\}$	$X_{\mathrm{ca}}\left(e^{j \omega}\right)=\frac{1}{2}\left\{X\left(e^{j \omega}\right)-X^{*}\left(e^{-j \omega}\right)\right\}$
$x_{\mathrm{cs}}[n]$	$X_{\mathrm{re}}\left(e^{j \omega}\right)$
$x_{\mathrm{ca}}[n]$	$j X_{\mathrm{im}}\left(e^{j \omega}\right)$

Note: $X_{\mathrm{cs}}\left(e^{j \omega}\right)$ and $X_{\mathrm{ca}}\left(e^{j \omega}\right)$ are the conjugate-symmetric and conjugate-antisymmetric parts of $X\left(e^{j \omega}\right)$, respectively. Likewise, $x_{\mathrm{cs}}[n]$ and $x_{\mathrm{ca}}[n]$ are the conjugate-symmetric and conjugate-antisymmetric parts of $x[n]$, respectively.

$$
x[n]: \text { A complex sequence }
$$

Table: Symmetry relations of the DTFT of a real sequence

Sequence	Discrete-Time Fourier Transform
$x[n]$	$X\left(e^{j \omega}\right)=X_{\mathrm{re}}\left(e^{j \omega}\right)+j X_{\mathrm{im}}\left(e^{j \omega}\right)$
$\begin{aligned} & x_{\text {ev }}[n] \\ & x_{\mathrm{od}}[n] \end{aligned}$	$\begin{gathered} X_{\mathrm{re}(}\left(e^{j \omega}\right) \\ j X_{\mathrm{im}}\left(e^{j \omega}\right) \end{gathered}$
Symmetry relations	$\begin{gathered} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ X_{\mathrm{re}}\left(e^{j \omega}\right)=X_{\mathrm{re}}\left(e^{-j \omega}\right) \\ X_{\operatorname{im}}\left(e^{j \omega}\right)=-X_{\operatorname{im}}\left(e^{-j \omega}\right) \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \arg \left\{X\left(e^{j \omega}\right)\right\}=-\arg \left\{X\left(e^{-j \omega}\right)\right\} \end{gathered}$

Note: $x_{\mathrm{ev}}[n]$ and $x_{\mathrm{od}}[n]$ denote the even and odd parts of $x[n]$, respectively.
$x[n]$: A real sequence

DTFT Properties

- Example - Determine the DTFT $Y\left(e^{j \omega}\right)$ of

$$
y[n]=(n+1) \alpha^{n} \mu[n],|\alpha|<1
$$

- Let $x[n]=\alpha^{n} \mu[n],|\alpha|<1$
- We can therefore write

$$
y[n]=n x[n]+x[n]
$$

- From Tables above, the DTFT of $x[n]$ is given by

$$
X\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}
$$

DTFT Properties

- Using the differentiation property of the DTFT given in Table above, we observe that the DTFT of $n x[n]$ is given by

$$
j \frac{d X\left(e^{j \omega}\right)}{d \omega}=j \frac{d}{d \omega}\left(\frac{1}{1-\alpha e^{-j \omega}}\right)=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}}
$$

- Next using the linearity property of the DTFT given in Table above we arrive at
$Y\left(e^{j \omega}\right)=\frac{\alpha e^{-j \omega}}{\left(1-\alpha e^{-j \omega}\right)^{2}}+\frac{1}{1-\alpha e^{-j \omega}}=\frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}}$

DTFT Properties

- Example - Determine the DTFT $V\left(e^{j \omega}\right)$ of the sequence $v[n]$ defined by

$$
d_{0} v[n]+d_{1} v[n-1]=p_{0} \delta[n]+p_{1} \delta[n-1]
$$

- The DTFT of $\delta[n]$ is 1
- Using the time-shifting property of the DTFT given in Table above we observe that the DTFT of $\delta[n-1]$ is $e^{-j \omega}$ and the DTFT of $v[n-1]$ is $e^{-j \omega} V\left(e^{j \omega}\right)$

DTFT Properties

- Using the linearity property of we then obtain the frequency-domain representation of

$$
d_{0} v[n]+d_{1} v[n-1]=p_{0} \delta[n]+p_{1} \delta[n-1]
$$

as

$$
d_{0} V\left(e^{j \omega}\right)+d_{1} e^{-j \omega} V\left(e^{j \omega}\right)=p_{0}+p_{1} e^{-j \omega}
$$

- Solving the above equation we get

$$
V\left(e^{j \omega}\right)=\frac{p_{0}+p_{1} e^{-j \omega}}{d_{0}+d_{1} e^{-j \omega}}
$$

Energy Density Spectrum

- The total energy of a finite-energy sequence $g[n]$ is given by

$$
\mathrm{E}_{g}=\sum_{n=-\infty}^{\infty} \mid g[n]^{2}
$$

- From Parseval's relation given above we observe that

$$
\mathrm{E}_{g}=\sum_{n=-\infty}^{\infty}|g[n]|^{2}=\left.\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(e^{j \omega}\right)\right|^{2} d \omega
$$

Energy Density Spectrum

- The quantity

$$
S_{g g}(\omega)=G\left(e^{j \omega}\right)^{2}
$$

is called the energy density spectrum

- Therefore, the area under this curve in the range $-\pi \leq \omega \leq \pi$ divided by 2π is the energy of the sequence

Energy Density Spectrum

- Example - Compute the energy of the sequence

$$
h_{L P}[n]=\frac{\sin \omega_{c} n}{\pi n},-\infty<n<\infty
$$

- Here

$$
\left.\sum_{n=-\infty}^{\infty} \mid h_{L P}[n]\right]^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|H_{L P}\left(e^{j \omega}\right)\right|^{2} d \omega
$$

where

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq \mid \omega \leq \omega_{c} \\ 0, & \omega_{c}<\omega \leq \pi\end{cases}
$$

Energy Density Spectrum

- Therefore

$$
\sum_{n=-\infty}^{\infty} h_{L P}[n]^{2}=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} d \omega=\frac{\omega_{c}}{\pi}<\infty
$$

- Hence, $h_{L P}[n]$ is a finite-energy sequence

DTFT Computation Using MATLAB

- The function freqz can be used to compute the values of the DTFT of a sequence, described as a rational function in the form of

$$
X\left(e^{j \omega}\right)=\frac{p_{0}+p_{1} e^{-j \omega}+\ldots .+p_{M} e^{-j \omega M}}{d_{0}+d_{1} e^{-j \omega}+\ldots .+d_{N} e^{-j \omega N}}
$$

at a prescribed set of discrete frequency points $\omega=\omega_{\ell}$

DTFT Computation Using MATLAB

- For example, the statement

H $=$ freqz (num, den, w)
returns the frequency response values as a vector \mathbf{H} of a DTFT defined in terms of the vectors num and den containing the coefficients $\left\{p_{i}\right\}$ and $\left\{d_{i}\right\}$, respectively at a prescribed set of frequencies between 0 and 2π given by the vector \mathbf{w}

- There are several other forms of the function freqz

DTFT Computation Using MATLAB

- Example - We illustrate the magnitude and phase of the following DTFT

$$
X\left(e^{j \omega}\right)=\frac{0.008-0.033 e^{-j \omega}+0.05 e^{-j 2 \omega}-0.033 e^{-j 3 \omega}+0.008 e^{-j 4 \omega}}{1+2.37 e^{-j \omega}+2.7 e^{-j 2 \omega}+1.6 e^{-j 3 \omega}+0.41 e^{-j 4 \omega}}
$$

Magnitude Spectrum

Phase Spectrum

DTFT Computation Using MATLAB

- Note: The phase spectrum displays a discontinuity of 2π at $\omega=0.72$
- This discontinuity can be removed using the function unwrap as indicated below

Linear Convolution Using

DTFT

- An important property of the DTFT is given by the convolution theorem
- It states that if $y[n]=x[n] \circledast h[n]$, then the DTFT $Y\left(e^{j \omega}\right)$ of $y[n]$ is given by

$$
Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)
$$

- An implication of this result is that the linear convolution $y[n]$ of the sequences $x[n]$ and $h[n]$ can be performed as follows:

Linear Convolution Using

 DTFT- 1) Compute the DTFTs $X\left(e^{j \omega}\right)$ and $H\left(e^{j \omega}\right)$ of the sequences $x[n]$ and $h[n]$, respectively
- 2) Form the DTFT $Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
- 3) Compute the IDTFT $y[n]$ of $Y\left(e^{j \omega}\right)$

Discrete Fourier Transform

- Definition - For a length $-N$ sequence $x[n]$, defined for $0 \leq n \leq N-1$ only N samples of its DTFT are required, which are obtained by uniformly sampling $X\left(e^{j \omega}\right)$ on the ω-axis between $0 \leq \omega \leq 2 \pi$ at $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$
- From the definition of the DTFT we thus have

$$
\begin{aligned}
& X[k]=X\left(e^{j \omega}\right)_{\omega=2 \pi k / N}=\sum_{k=0}^{N-1} x[n] e^{-j 2 \pi k / N}, \\
& 0 \leq k \leq N-1
\end{aligned}
$$

Discrete Fourier Transform

- Note: $X[k]$ is also a length- N sequence in the frequency domain
- The sequence $X[k]$ is called the Discrete Fourier Transform (DFT) of the sequence $x[n]$
- Using the notation $W_{N}=e^{-j 2 \pi / N}$ the DFT is usually expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, 0 \leq k \leq N-1
$$

Discrete Fourier Transform

- The Inverse Discrete Fourier Transform (IDFT) is given by

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad 0 \leq n \leq N-1
$$

- To verify the above expression we multiply both sides of the above equation by $W_{N}^{\ell n}$ and sum the result from $n=0$ to $n=N-1$

Discrete Fourier Transform

resulting in

$$
\begin{aligned}
\sum_{n=0}^{N-1} x[n] W_{N}^{\ell n} & =\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right) W_{N}^{\ell n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} X[k] W_{N}^{-(k-\ell) n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} X[k] W_{N}^{-(k-\ell) n}
\end{aligned}
$$

Discrete Fourier Transform

- Making use of the identity $\sum_{n=0}^{N-1} W_{N}^{-(k-\ell) n}=\left\{\begin{array}{l}N, \text { for } k-\ell=r N, r \text { an integer } \\ 0, \text { otherwise }\end{array}\right.$ we observe that the RHS of the last equation is equal to $X[\ell]$
- Hence

$$
\sum_{n=0}^{N-1} x[n] W_{N}^{\ell n}=X[\ell]
$$

Discrete Fourier Transform

- Example - Consider the length- N sequence

$$
x[n]=\left\{\begin{array}{lc}
1, & n=0 \\
0, & 1 \leq n \leq N-1
\end{array}\right.
$$

- Its N-point DFT is given by

$$
\begin{array}{r}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=x[0] W_{N}^{0}=1 \\
0 \leq k \leq N-1
\end{array}
$$

Discrete Fourier Transform

- Example - Consider the length N sequence

$$
y[n]=\left\{\begin{array}{cc}
1, & n=m \\
0, & 0 \leq n \leq m-1, m+1 \leq n \leq N-1
\end{array}\right.
$$

- Its N-point DFT is given by

$$
\begin{array}{r}
Y[k]=\sum_{n=0}^{N-1} y[n] W_{N}^{k n}=y[m] W_{N}^{k m}=W_{N}^{k m} \\
0 \leq k \leq N-1
\end{array}
$$

Discrete Fourier Transform

- Example - Consider the length N sequence defined for $0 \leq n \leq N-1$

$$
g[n]=\cos (2 \pi r n / N), \quad 0 \leq r \leq N-1
$$

- Using a trigonometric identity we can write

$$
\begin{aligned}
g[n] & =\frac{1}{2}\left(e^{j 2 \pi r n / N}+e^{-j 2 \pi r n / N}\right) \\
& =\frac{1}{2}\left(W_{N}^{-r n}+W_{N}^{r n}\right)
\end{aligned}
$$

Discrete Fourier Transform

- The N-point DFT of $g[n]$ is thus given by

$$
\begin{aligned}
G[k] & =\sum_{n=0}^{N-1} g[n] W_{N}^{k n} \\
& =\frac{1}{2}\left(\sum_{n=0}^{N-1} W_{N}^{-(r-k) n}+\sum_{n=0}^{N-1} W_{N}^{(r+k) n}\right), \\
& 0 \leq k, r \leq N-1
\end{aligned}
$$

Discrete Fourier Transform

- Making use of the identity
$\sum_{n=0}^{N-1} W_{N}^{-(k-\ell) n}=\left\{\begin{array}{l}N, \text { for } k-\ell=r N, r \text { an integer } \\ 0, \text { otherwise }\end{array}\right.$ we get

$$
\begin{aligned}
& G[k]=\left\{\begin{array}{cl}
N / 2, & \text { for } k=r \\
N / 2, & \text { for } k=N-r \\
0, & \text { otherwise }
\end{array}\right. \\
& 0 \leq k, r \leq N-1
\end{aligned}
$$

Matrix Relations

- The DFT samples defined by

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{X}=\mathbf{D}_{N} \mathbf{x}
$$

where

$$
\begin{aligned}
\mathbf{X} & =\left[\begin{array}{llll}
X[0] & X[1] & \ldots & X[N-1
\end{array}\right]^{T} \\
\mathbf{x} & =\left[\begin{array}{llll}
x[0] & x[1] & \ldots & x[N-1]
\end{array}\right]^{T}
\end{aligned}
$$

Matrix Relations

 and \mathbf{D}_{N} is the $N \times N$ DFT matrix given by$$
\mathbf{D}_{N}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{(N-1)} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)^{2}}
\end{array}\right]
$$

Matrix Relations

- Likewise, the IDFT relation given by

$$
x[n]=\sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, 0 \leq n \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{x}=\mathbf{D}_{N}^{-1} \mathbf{X}
$$

where \mathbf{D}_{N}^{-1} is the $N \times N$ IDFT matrix

Matrix Relations

where
$\mathbf{D}_{N}^{-1}=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\ 1 & W_{N}^{-2} & W_{N}^{-4} & \cdots & W_{N}^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)^{2}}\end{array}\right]$

- Note:

$$
\mathbf{D}_{N}^{-1}=\frac{1}{N} \mathbf{D}_{N}^{*}
$$

DFT Computation Using MATLAB

- The functions to compute the DFT and the IDFT are fft and ifft
- These functions make use of FFT algorithms which are computationally highly efficient compared to the direct computation

DFT Computation Using MATLAB

- Example - The DFT and the DTFT of the sequence

$$
x[n]=\cos (6 \pi n / 16), \quad 0 \leq n \leq 15
$$

are shown below

- indicates DFT samples

DTFT from DFT by Interpolation

- The N-point DFT $X[k]$ of a length- N sequence $x[n]$ is simply the frequency samples of its DTFT $X\left(e^{j \omega}\right)$ evaluated at N uniformly spaced frequency points

$$
\omega=\omega_{k}=2 \pi k / N, \quad 0 \leq k \leq N-1
$$

- Given the N-point DFT $X[k]$ of a length- N sequence $x[n]$, its DTFT $X\left(e^{j \omega}\right)$ can be uniquely determined from $X[k]$!

DTFT from DFT by Interpolation

- Thus

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{N-1} x[n] e^{-j \omega n} \\
& =\sum_{n=0}^{N-1}\left[\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}\right] e^{-j \omega n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \underbrace{\sum_{n=0}^{N-1} e^{-j(\omega-2 \pi k / N) n}}_{\mathrm{S}}
\end{aligned}
$$

DTFT from DFT by Interpolation

- To develop a compact expression for the sum S , let $r=e^{-j(\omega-2 \pi k / N)}$

$$
=\sum_{n=1}^{N-1} r^{n}+r^{N}-1=S+r^{N}-1
$$

- Then $\mathrm{S}=\sum_{n=0}^{N-1} r^{n}$
- From the above

$$
\begin{aligned}
r \mathrm{~S} & =\sum_{n=1}^{N} r^{n}=1+\sum_{n=1}^{N-1} r^{n}+r^{N}-1 \\
& =\sum_{n=1}^{N-1} r^{n}+r^{N}-1=S+r^{N}-1
\end{aligned}
$$

DTFT from DFT by Interpolation

- Or, equivalently,

$$
\mathrm{S}-r \mathrm{~S}=(1-r) \mathrm{S}=1-r^{N}
$$

- Hence

$$
\begin{aligned}
\mathrm{S} & =\frac{1-r^{N}}{1-r}=\frac{1-e^{-j(\omega N-2 \pi k)}}{1-e^{-j[\omega-(2 \pi k / N)]}} \\
& =\frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[(\omega-2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

DTFT from DFT by Interpolation

- Therefore

$$
\begin{aligned}
& X\left(e^{j \omega}\right) \\
= & \frac{1}{N} \sum_{k=0}^{N-1} X[k] \sin \left(\frac{\omega N-2 \pi k}{2}\right) \\
\sin \left(\frac{\omega N-2 \pi k}{2 N}\right) & e^{-j[(\omega-2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

Sampling the DTFT

- Consider a sequence $x[n]$ with a DTFT $X\left(e^{j \omega}\right)$
- We sample $X\left(e^{j \omega}\right)$ at N equally spaced points $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$ developing the N frequency samples $\left\{X\left(e^{j \omega_{k}}\right)\right\}$
- These N frequency samples can be considered as an N-point DFT $Y[k]$ whose N point IDFT is a length $-N$ sequence $y[n]$

Sampling the DTFT

- Now $X\left(e^{j \omega}\right)=\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j \omega \ell}$
- Thus $Y[k]=X\left(e^{j \omega_{k}}\right)=X\left(e^{j 2 \pi k / N}\right)$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j 2 \pi k \ell / N}=\sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell}
$$

- An IDFT of $Y[k]$ yields

$$
y[n]=\frac{1}{N} \sum_{k=0}^{N-1} Y[k] W_{N}^{-k n}
$$

Sampling the DTFT

- i.e. $y[n]=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell} W_{N}^{-k n}$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell]\left[\frac{1}{N} \sum_{k=0}^{N-1} W_{N}^{-k(n-\ell)}\right]
$$

- Making use of the identity

$$
\frac{1}{N} \sum_{n=0}^{N-1} W_{N}^{-k(n-r)}=\left\{\begin{array}{l}
1, \text { for } r=n+m N \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Sampling the DTFT

we arrive at the desired relation

$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

- Thus $y[n]$ is obtained from $x[n]$ by adding an infinite number of shifted replicas of $x[n]$, with each replica shifted by an integer multiple of N sampling instants, and observing the sum only for the interval $0 \leq n \leq N-1$

Sampling the DTFT

- To apply

$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

to finite-length sequences, we assume that the samples outside the specified range are zeros

- Thus if $x[n]$ is a length $-M$ sequence with $M \leq N$, then $y[n]=x[n]$ for $0 \leq n \leq N-1$

Sampling the DTFT

- If $M>N$, there is a time-domain aliasing of samples of $x[n]$ in generating $y[n]$, and $x[n]$ cannot be recovered from $y[n]$
- Example - Let $\left.\{x[n]\}=\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\right\}$
- By sampling its DTFT $X\left(e^{j \omega}\right)$ at $\omega_{k}=2 \pi k / 4$, $0 \leq k \leq 3$ and then applying a 4 -point IDFT to these samples, we arrive at the sequence $y[n]$ given by

Sampling the DTFT

$$
y[n]=x[n]+x[n+4]+x[n-4], 0 \leq n \leq 3
$$

- i.e.

$$
\{y[n]\}=\left\{\begin{array}{llll}
4 & 6 & 2 & 3
\end{array}\right\}
$$

$\{x[n]\}$ cannot be recovered from $\{y[n]\}$

Numerical Computation of the DTFT Using the DFT

- A practical approach to the numerical computation of the DTFT of a finite-length sequence
- Let $X\left(e^{j \omega}\right)$ be the DTFT of a length- N sequence $x[n]$
- We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies $\omega_{k}=2 \pi k / M, 0 \leq k \leq M-1$, where $M \gg N$:

Numerical Computation of the DTFT Using the DFT

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / M}
$$

- Define a new sequence

$$
x_{e}[n]=\left\{\begin{array}{cc}
x[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq M-1
\end{array}\right.
$$

- Then

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x[n] e^{-j 2 \pi k n / M}
$$

Numerical Computation of the DTFT Using the DFT

- Thus $X\left(e^{j \omega_{k}}\right)$ is essentially an M-point DFT $X_{e}[k]$ of the length $-M$ sequence $x_{e}[n]$
- The DFT $X_{e}[k]$ can be computed very efficiently using the FFT algorithm if M is an integer power of 2
- The function $f r e q z$ employs this approach to evaluate the frequency response at a prescribed set of frequencies of a DTFT expressed as a rational function in $e^{-j \omega}$

DFT Properties

- Like the DTFT, the DFT also satisfies a number of properties that are useful in signal processing applications
- Some of these properties are essentially identical to those of the DTFT, while some others are somewhat different
- A summary of the DFT properties are given in Tables in the following slides

Table: General Properties of DFT

Type of Property	Length- N Sequence	N-point DFT
	$\begin{aligned} & g[n] \\ & h[n] \end{aligned}$	$\begin{aligned} & G[k] \\ & H[k] \end{aligned}$
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G[k]+\beta H[k]$
Circular time-shifting	$g\left[\left\langle n-n_{o}\right\rangle_{N}\right]$	$W_{N}^{k n_{o}} G[k]$
Circular frequency-shifting	$W_{N}^{-k_{o} n} g[n]$	$G\left[\left\langle k-k_{o}\right\rangle_{N}\right]$
Duality	$G[n]$	$N g\left[\langle-k\rangle_{N}\right]$
N-point circular convolution	$\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right]$	$G[k] H[k]$
Modulation	$g[n] h[n]$	$\frac{1}{N} \sum_{m=0}^{N-1} G[m] H\left[\langle k-m\rangle_{N}\right]$
Parseval's relation	$\sum_{n=0}^{N-1}\|x[n]\|^{2}$	$=\frac{1}{N} \sum_{k=0}^{N-1}\|X[k]\|^{2}$

Table: DFT Properties: Symmetry Relations

Length- N Sequence	N-point DFT
$x[n]$	$X[k]$
$x^{*}[n]$	$X^{*}\left[\langle-k\rangle_{N}\right]$
$x^{*}\left[\langle-n\rangle_{N}\right]$	$X^{*}[k]$
$\operatorname{Re}\{x[n]\}$	$X_{\text {pcs }}[k]=\frac{1}{2}\left\{X\left[\langle k\rangle_{N}\right]+X^{*}\left[\langle-k\rangle_{N}\right]\right\}$
$j \operatorname{Im}\{x[n]\}$	$X_{\text {pca }}[k]=\frac{1}{2}\left\{X\left[\langle k\rangle_{N}\right]-X^{*}\left[\langle-k\rangle_{N}\right]\right\}$
$x_{\text {pcs }}[n]$	$\operatorname{Re}\{X[k]\}$
$x_{\text {pca }}[n]$	$j \operatorname{Im}\{X[k]\}$

Note: $x_{\text {pcs }}[n]$ and $x_{\text {pca }}[n]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of $x[n]$, respectively. Likewise, $X_{\mathrm{pcs}}[k]$ and $X_{\text {pca }}[k]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of $X[k]$, respectively.
$x[n]$ is a complex sequence

Table: DFT Properties: Symmetry Relations

Length- N Sequence	N-point DFT
$x[n]$	$X[k]=\operatorname{Re}\{X[k]\}+j \operatorname{Im}\{X[k]\}$
$x_{\mathrm{pe}}[n]$	$\operatorname{Re}\{X[k]\}$
$x_{\mathrm{po}}[n]$	$j \operatorname{Im}\{X[k]\}$
	$X[k]=X^{*}\left[\langle-k\rangle_{N}\right]$
Symmetry relations	$\operatorname{Re} X[k]=\operatorname{Re} X\left[\langle-k\rangle_{N}\right]$
	$\|X[k]\|=\left\|X\left[\langle-k\rangle_{N}\right]\right\|$
	$\arg X[k]=-\arg X\left[\langle-k\rangle_{N}\right]$

Note: $x_{\mathrm{pe}}[n]$ and $x_{\mathrm{po}}[n]$ are the periodic even and periodic odd parts of $x[n]$, respectively.
$x[n]$ is a real sequence

Circular Shift of a Sequence

- This property is analogous to the timeshifting property of the DTFT, but with a subtle difference
- Consider length $-N$ sequences defined for

$$
0 \leq n \leq N-1
$$

- Sample values of such sequences are equal to zero for values of $n<0$ and $n \geq N$

Circular Shift of a Sequence

- If $x[n]$ is such a sequence, then for any arbitrary integer n_{o}, the shifted sequence

$$
x_{1}[n]=x\left[n-n_{o}\right]
$$

is no longer defined for the range $0 \leq n \leq N-1$

- We thus need to define another type of a shift that will always keep the shifted sequence in the range $0 \leq n \leq N-1$

Circular Shift of a Sequence

- The desired shift, called the circular shift, is defined using a modulo operation:

$$
x_{c}[n]=x\left[\left\langle n-n_{o}\right\rangle_{N}\right]
$$

- For $n_{o}>0$ (right circular shift), the above equation implies

$$
x_{c}[n]=\left\{\begin{array}{c}
x\left[n-n_{o}\right], \quad \text { for } n_{o} \leq n \leq N-1 \\
x\left[N-n_{o}+n\right], \quad \text { for } 0 \leq n<n_{o}
\end{array}\right.
$$

Circular Shift of a Sequence

- Illustration of the concept of a circular shift

$x[n]$

$x\left[\langle n-1\rangle_{6}\right]$
$=x\left[\langle n+5\rangle_{6}\right]$
$=x\left[\langle n+2\rangle_{6}\right]$

Circular Shift of a Sequence

- As can be seen from the previous figure, a right circular shift by n_{o} is equivalent to a left circular shift by $N-n_{o}$ sample periods
- A circular shift by an integer number n_{o} greater than N is equivalent to a circular shift by $\left\langle n_{o}\right\rangle_{N}$

Circular Convolution

- This operation is analogous to linear convolution, but with a subtle difference
- Consider two length $-N$ sequences, $g[n]$ and $h[n]$, respectively
- Their linear convolution results in a length$(2 N-1)$ sequence $y_{L}[n]$ given by

$$
y_{L}[n]=\sum_{m=0}^{N-1} g[m] h[n-m], \quad 0 \leq n \leq 2 N-2
$$

Circular Convolution

- In computing $y_{L}[n]$ we have assumed that both length $-N$ sequences have been zeropadded to extend their lengths to $2 N-1$
- The longer form of $y_{L}[n]$ results from the time-reversal of the sequence $h[n]$ and its linear shift to the right
- The first nonzero value of $y_{L}[n]$ is $y_{L}[0]=g[0] h[0]$, and the last nonzero value is $y_{L}[2 N-2]=g[N-1] h[N-1]$

Circular Convolution

- To develop a convolution-like operation resulting in a length $-N$ sequence $y_{C}[n]$, we need to define a circular time-reversal, and then apply a circular time-shift
- Resulting operation, called a circular convolution, is defined by

$$
y_{C}[n]=\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right], \quad 0 \leq n \leq N-1
$$

Circular Convolution

- Since the operation defined involves two length $-N$ sequences, it is often referred to as an N-point circular convolution, denoted as

$$
y[n]=g[n] ® h[n]
$$

- The circular convolution is commutative, i.e.

$$
g[n] \otimes h[n]=h[n] \otimes g[n]
$$

Circular Convolution

- Example - Determine the 4-point circular convolution of the two length-4 sequences:
as sketched below

Circular Convolution

- The result is a length -4 sequence $y_{C}[n]$ given by

$$
\begin{gathered}
y_{C}[n]=g[n](4) h[n]=\sum_{m=0}^{3} g[m] h\left[\langle n-m\rangle_{4}\right], \\
0 \leq n \leq 3
\end{gathered}
$$

- From the above we observe

$$
\begin{aligned}
y_{C}[0] & =\sum_{m=0}^{3} g[m] h\left[\langle-m\rangle_{4}\right] \\
& =g[0] h[0]+g[1] h[3]+g[2] h[2]+g[3] g[1] \\
& =(1 \times 2)+(2 \times 1)+(0 \times 1)+(1 \times 2)=6
\end{aligned}
$$

Circular Convolution

- Likewise $y_{C}[1]=\sum_{m=0}^{3} g[m] h\left[\langle 1-m\rangle_{4}\right]$

$$
\begin{aligned}
= & g[0] h[1]+g[1] h[0]+g[2] h[3]+g[3] h[2] \\
& =(1 \times 2)+(2 \times 2)+(0 \times 1)+(1 \times 1)=7 \\
y_{C}[2] & \left.=\sum_{m=0}^{3} g[m] h[2-m\rangle_{4}\right] \\
& =g[0] h[2]+g[1] h[1]+g[2] h[0]+g[3] h[3] \\
& =(1 \times 1)+(2 \times 2)+(0 \times 2)+(1 \times 1)=6
\end{aligned}
$$

Circular Convolution

$$
\begin{aligned}
& \begin{aligned}
y_{C}[3] & =\sum_{m=0}^{3} g[m] h\left[\langle 3-m\rangle_{4}\right] \\
& =g[0] h[3]+g[1] h[2]+g[2] h[1]+g[3] h[0] \\
& =(1 \times 1)+(2 \times 1)+(0 \times 2)+(1 \times 2)=5
\end{aligned} \quad \int_{0123}^{60 \overbrace{2}^{79}} y_{C}[n]
\end{aligned}
$$

- The circular convolution can also be computed using a DFT-based approach as indicated in previous Table

Circular Convolution

- Example - Consider the two length-4 sequences repeated below for convenience:

- The 4-point DFT $G[k]$ of $g[n]$ is given by

$$
\begin{aligned}
G[k]= & g[0]+g[1] e^{-j 2 \pi k / 4} \\
& +g[2] e^{-j 4 \pi k / 4}+g[3] e^{-j 6 \pi k / 4} \\
= & 1+2 e^{-j \pi k / 2}+e^{-j 3 \pi k / 2}, \quad 0 \leq k \leq 3
\end{aligned}
$$

Circular Convolution

- Therefore $G[0]=1+2+1=4$,

$$
\begin{aligned}
G[1] & =1-j 2+j=1-j, \\
G[2] & =1-2-1=-2, \\
G[3] & =1+j 2-j=1+j
\end{aligned}
$$

- Likewise,

$$
H[k]=h[0]+h[1] e^{-j 2 \pi k / 4}
$$

$$
+h[2] e^{-j 4 \pi k / 4}+h[3] e^{-j 6 \pi k / 4}
$$

$$
=2+2 e^{-j \pi k / 2}+e^{-j \pi k}+e^{-j 3 \pi k / 2}, 0 \leq k \leq 3
$$

Circular Convolution

- Hence, $H[0]=2+2+1+1=6$,

$$
\begin{aligned}
& H[1]=2-j 2-1+j=1-j, \\
& H[2]=2-2+1-1=0, \\
& H[3]=2+j 2-1-j=1+j
\end{aligned}
$$

- The two 4-point DFTs can also be computed using the matrix relation given earlier

Circular Convolution

$$
\begin{aligned}
& {\left[\begin{array}{l}
G[0] \\
G[1] \\
G[2] \\
G[3]
\end{array}\right]=\mathbf{D}_{4}\left[\begin{array}{l}
g[0] \\
g[1] \\
g[2] \\
g[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
1-j \\
-2 \\
1+j
\end{array}\right]} \\
& {\left[\begin{array}{l}
H[0] \\
H[1] \\
H[2] \\
H[3]
\end{array}\right]=\mathbf{D}_{4}\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
1-j \\
0 \\
1+j
\end{array}\right]}
\end{aligned}
$$

\mathbf{D}_{4} is the 4-point DFT matrix

Circular Convolution

- If $Y_{C}[k]$ denotes the 4 -point DFT of $y_{C}[n]$ then from Table above we observe

$$
Y_{C}[k]=G[k] H[k], \quad 0 \leq k \leq 3
$$

- Thus

$$
\left[\begin{array}{c}
Y_{C}[0] \\
Y_{C}[1] \\
Y_{C}[2] \\
Y_{C}[3]
\end{array}\right]=\left[\begin{array}{c}
G[0] H[0] \\
G[1] H[1] \\
G[2] H[2] \\
G[3] H[3]
\end{array}\right]=\left[\begin{array}{c}
24 \\
-j 2 \\
0 \\
j 2
\end{array}\right]
$$

Circular Convolution

- A 4-point IDFT of $Y_{C}[k]$ yields

$$
\left[\begin{array}{c}
y_{C}[0] \\
y_{C}[1] \\
y_{C}[2] \\
y_{C}[3]
\end{array}\right]=\frac{1}{4} \mathbf{D}_{4}^{*}\left[\begin{array}{c}
Y_{C}[0] \\
Y_{C}[1] \\
Y_{C}[2] \\
Y_{C}[3]
\end{array}\right]
$$

$$
=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{c}
24 \\
-j 2 \\
0 \\
j 2
\end{array}\right]=\left[\begin{array}{l}
6 \\
7 \\
6 \\
5
\end{array}\right]
$$

Circular Convolution

- Example - Now let us extended the two length- 4 sequences to length 7 by appending each with three zero-valued samples, i.e.

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right.
\end{aligned}
$$

Circular Convolution

- We next determine the 7-point circular convolution of $g_{e}[n]$ and $h_{e}[n]$:

$$
y[n]=\sum_{m=0}^{6} g_{e}[m] h_{e}\left[\langle n-m\rangle_{7}\right], \quad 0 \leq n \leq 6
$$

- From the above $y[0]=g_{e}[0] h_{e}[0]+g_{e}[1] h_{e}[6]$

$$
\begin{gathered}
+g_{e}[3] h_{e}[4]+g_{e}[4] h_{e}[3]+g_{e}[5] h_{e}[2]+g_{e}[6] h_{e}[1] \\
=g[0] h[0]=1 \times 2=2
\end{gathered}
$$

Circular Convolution

- Continuing the process we arrive at

$$
\begin{aligned}
& y[1]=g[0] h[1]+g[1] h[0]=(1 \times 2)+(2 \times 2)=6, \\
& y[2]=g[0] h[2]+g[1] h[1]+g[2] h[0] \\
& =(1 \times 1)+(2 \times 2)+(0 \times 2)=5,
\end{aligned}
$$

$$
y[3]=g[0] h[3]+g[1] h[2]+g[2] h[1]+g[3] h[0]
$$

$$
=(1 \times 1)+(2 \times 1)+(0 \times 2)+(1 \times 2)=5 \text {, }
$$

$$
y[4]=g[1] h[3]+g[2] h[2]+g[3] h[1]
$$

$$
=(2 \times 1)+(0 \times 1)+(1 \times 2)=4,
$$

Circular Convolution

$$
\begin{aligned}
& y[5]=g[2] h[3]+g[3] h[2]=(0 \times 1)+(1 \times 1)=1, \\
& y[6]=g[3] h[3]=(1 \times 1)=1
\end{aligned}
$$

- As can be seen from the above that $y[n]$ is precisely the sequence $y_{L}[n]$ obtained by a linear convolution of $g[n]$ and $h[n]$

Circular Convolution

- The N-point circular convolution can be written in matrix form as

$$
\left[\begin{array}{c}
y_{C}[0] \\
y_{C}[1] \\
y_{C}[2] \\
\vdots \\
y_{C}[N-1]
\end{array}\right]=\left[\begin{array}{ccccc}
h[0] & h[N-1] & h[N-2] & \cdots & h[1] \\
h[1] & h[0] & h[N-1] & \cdots & h[2] \\
h[2] & h[1] & h[0] & \cdots & h[3] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h[N-1] & h[N-2] & h[N-3] & \cdots & h[0]
\end{array}\right]\left[\begin{array}{c}
g[0] \\
g[1] \\
g[2] \\
\vdots \\
g[N-1]
\end{array}\right]
$$

- Note: The elements of each diagonal of the $N \times N$ matrix are equal
- Such a matrix is called a circulant matrix

Computation of the DFT of Real Sequences

- In most practical applications, sequences of interest are real
- In such cases, the symmetry properties of the DFT can be exploited to make the DFT computations more efficient

N-Point DFTs of Two Length- N Real Sequences

- Let $g[n]$ and $h[n]$ be two length $-N$ real sequences with $G[k]$ and $H[k]$ denoting their respective N-point DFTs
- These two N-point DFTs can be computed efficiently using a single N-point DFT
- Define a complex length $-N$ sequence

$$
x[n]=g[n]+j h[n]
$$

- Hence, $g[n]=\operatorname{Re}\{x[n]\}$ and $h[n]=\operatorname{Im}\{x[n]\}$

N-Point DFTs of Two Length- N Real Sequences

- Let $X[k]$ denote the N-point DFT of $x[n]$
- Then, DFT properties we arrive at

$$
\begin{aligned}
G[k] & =\frac{1}{2}\left\{X[k]+X *\left[\langle-k\rangle_{N}\right]\right\} \\
H[k] & =\frac{1}{2 j}\left\{X[k]-X *\left[\langle-k\rangle_{N}\right]\right\}
\end{aligned}
$$

- Note that

$$
X *\left[\langle-k\rangle_{N}\right]=X *\left[\langle N-k\rangle_{N}\right]
$$

N-Point DFTs of Two Length- N Real Sequences

- Example - We compute the 4-point DFTs of the two real sequences $g[n]$ and $h[n]$ given below

$$
\{g[n]\}=\underset{\uparrow}{\{1} 22 \quad 0 \quad 0 \quad 1\}, \quad\{h[n]\}=\underset{\uparrow}{\left\{\begin{array}{lllll}
2 & 2 & 1 & 1
\end{array}\right\}}
$$

- Then $\{x[n]\}=\{g[n]\}+j\{h[n]\}$ is given by

$$
\{x[n]\}=\underset{\uparrow}{\{1+j 2} \quad 2+j 2 \quad j \quad 1+j\}
$$

N-Point DFTs of Two Length- N Real Sequences

- Its DFT $X[k]$ is
$\left[\begin{array}{l}X[0] \\ X[1] \\ X[2] \\ X[3]\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j\end{array}\right]\left[\begin{array}{c}1+j 2 \\ 2+j 2 \\ j \\ 1+j\end{array}\right]=\left[\begin{array}{c}4+j 6 \\ 2 \\ -2 \\ j 2\end{array}\right]$
- From the above

$$
X^{*}[k]=\left[\begin{array}{llll}
4-j 6 & 2 & -2 & -j 2
\end{array}\right]
$$

- Hence

$$
X^{*}\left[\langle 4-k\rangle_{4}\right]=\left[\begin{array}{llll}
4-j 6 & -j 2 & -2 & 2
\end{array}\right]
$$

N-Point DFTs of Two Length- N Real Sequences

- Therefore

$$
\begin{aligned}
& \{G[k]\}=\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\} \\
& \{H[k]\}=\left\{\begin{array}{llll}
6 & 1-j & 0 & 1+j
\end{array}\right\}
\end{aligned}
$$

verifying the results derived earlier

2N-Point DFT of a Real

Sequence Using an N-point DFT

- Let $v[n]$ be a length $2 N$ real sequence with an $2 N$-point DFT $V[k]$
- Define two length $-N$ real sequences $g[n]$ and $h[n]$ as follows:
$g[n]=v[2 n], \quad h[n]=v[2 n+1], \quad 0 \leq n \leq N$
- Let $G[k]$ and $H[k]$ denote their respective N point DFTs

2N-Point DFT of a Real

Sequence Using an N-point DFT

- Define a length $-N$ complex sequence

$$
\{x[n]\}=\{g[n]\}+j\{h[n]\}
$$

with an N-point DFT $X[k]$

- Then as shown earlier

$$
\begin{aligned}
& G[k]=\frac{1}{2}\left\{X[k]+X *\left[\langle-k\rangle_{N}\right]\right\} \\
& H[k]=\frac{1}{2 j}\left\{X[k]-X *\left[\langle-k\rangle_{N}\right]\right\}
\end{aligned}
$$

2N-Point DFT of a Real

Sequence Using an N-point DFT

- Now $V[k]=\sum_{n=0}^{2 N-1} v[n] W_{2 N}^{n k}$

$$
\begin{aligned}
& =\sum_{n=0}^{N-1} v[2 n] W_{2 N}^{2 n k}+\sum_{n=0}^{N-1} v[2 n+1] W_{2 N}^{(2 n+1) k} \\
& =\sum_{n=0}^{N-1} g[n] W_{N}^{n k}+\sum_{n=0}^{N-1} h[n] W_{N}^{n k} W_{2 N}^{k} \\
= & \sum_{n=0}^{N-1} g[n] W_{N}^{n k}+W_{2 N}^{k} \sum_{n=0}^{N-1} h[n] W_{N}^{n k}, 0 \leq k \leq 2 N-1
\end{aligned}
$$

2N-Point DFT of a Real

Sequence Using an N-point DFT

- i.e.,

$$
V[k]=G\left[\langle k\rangle_{N}\right]+W_{2 N}^{k} H\left[\langle k\rangle_{N}\right], 0 \leq k \leq 2 N-1
$$

- Example - Let us determine the 8 -point DFT V[k] of the length- 8 real sequence

$$
\left.\{v[n]\}=\underset{\uparrow}{\{1} \begin{array}{llllllll}
& 2 & 2 & 2 & 0 & 1 & 1 & 1
\end{array}\right\}
$$

- We form two length-4 real sequences as follows

2N-Point DFT of a Real

Sequence Using an N-point DFT

$$
\begin{aligned}
& \left.\{g[n]\}=\{v[2 n]\}=\underset{\uparrow}{\{1} \begin{array}{llll}
2 & 0 & 1
\end{array}\right\} \\
& \left.\{h[n]\}=\{v[2 n+1]\}=\underset{\uparrow}{\{ } \begin{array}{llll}
2 & 2 & 1 & 1
\end{array}\right\}
\end{aligned}
$$

- Now

$$
V[k]=G\left[\langle k\rangle_{4}\right]+W_{8}^{k} H\left[\langle k\rangle_{4}\right], \quad 0 \leq k \leq 7
$$

- Substituting the values of the 4-point DFTs $G[k]$ and $H[k]$ computed earlier we get

$2 N$-Point DFT of a Real

Sequence Using an N -point DFT

$$
\begin{aligned}
V[0] & =G[0]+H[0]=4+6=10 \\
V[1] & =G[1]+W_{8}^{1} H[1] \\
& =(1-j)+e^{-j \pi / 4}(1-j)=1-j 2.4142 \\
V[2] & =G[2]+W_{8}^{2} H[2]=-2+e^{-j \pi / 2} \cdot 0=-2 \\
V[3] & =G[3]+W_{8}^{3} H[3] \\
& =(1+j)+e^{-j 3 \pi / 4}(1+j)=1-j 0.4142 \\
V[4] & =G[0]+W_{8}^{4} H[0]=4+e^{-j \pi} \cdot 6=-2
\end{aligned}
$$

2N-Point DFT of a Real

Sequence Using an N -point DFT

$$
\begin{aligned}
V[5] & =G[1]+W_{8}^{5} H[1] \\
& =(1-j)+e^{-j 5 \pi / 4}(1-j)=1+j 0.4142 \\
V[6] & =G[2]+W_{8}^{6} H[2]=-2+e^{-j 3 \pi / 2} \cdot 0=-2 \\
V[7] & =G[3]+W_{8}^{7} H[3] \\
& =(1+j)+e^{-j 7 \pi / 4}(1+j)=1+j 2.4142
\end{aligned}
$$

Linear Convolution Using the DFT

- Linear convolution is a key operation in many signal processing applications
- Since a DFT can be efficiently implemented using FFT algorithms, it is of interest to develop methods for the implementation of linear convolution using the DFT

Linear Convolution of Two Finite-Length Sequences

- Let $g[n]$ and $h[n]$ be two finite-length sequences of length N and M, respectively
- Denote $L=N+M-1$
- Define two length- L sequences

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq L-1
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq M-1 \\
0, & M \leq n \leq L-1
\end{array}\right.
\end{aligned}
$$

Linear Convolution of Two Finite-Length Sequences

- Then

$$
y_{L}[n]=g[n] \circledast h[n]=y_{C}[n]=g[n](L) h[n]
$$

- The corresponding implementation scheme is illustrated below

Linear Convolution of a FiniteLength Sequence with an Infinite-Length Sequence

- We next consider the DFT-based implementation of

$$
y[n]=\sum_{\ell=0}^{M-1} h[\ell] x[n-\ell]=h[n] \circledast x[n]
$$

where $h[n]$ is a finite-length sequence of length M and $x[n]$ is an infinite length (or a finite length sequence of length much greater than M)

Overlap-Add Method

- We first segment $x[n]$, assumed to be a causal sequence here without any loss of generality, into a set of contiguous finitelength subsequences $x_{m}[n]$ of length N each:

$$
x[n]=\sum_{m=0}^{\infty} x_{m}[n-m N]
$$

where

$$
x_{m}[n]=\left\{\begin{array}{cc}
x[n+m N], & 0 \leq n \leq N-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Overlap-Add Method

- Thus we can write

$$
y[n]=h[n] * x[n]=\sum_{m=0}^{\infty} y_{m}[n-m N]
$$

where

$$
y_{m}[n]=h[n] \circledast x_{m}[n]
$$

- Since $h[n]$ is of length M and $x_{m}[n]$ is of length N, the linear convolution $h[n] \circledast x_{m}[n]$ is of length $N+M-1$

Overlap-Add Method

- As a result, the desired linear convolution $y[n]=h[n] * x[n]$ has been broken up into a sum of infinite number of short-length linear convolutions of length $N+M-1$ each: $y_{m}[n]=x_{m}[n](L) h[n]$
- Each of these short convolutions can be implemented using the DFT-based method discussed earlier, where now the DFTs (and the IDFT) are computed on the basis of ($N+M-1$) points

Overlap-Add Method

- There is one more subtlety to take care of before we can implement

$$
y[n]=\sum_{m=0}^{\infty} y_{m}[n-m N]
$$

using the DFT-based approach

- Now the first convolution in the above sum, $y_{0}[n]=h[n] * x_{0}[n]$, is of length $N+M-1$ and is defined for $0 \leq n \leq N+M-2$

Overlap-Add Method

- The second short convolution $y_{1}[n]=$ $h[n] \circledast x_{1}[n]$, is also of length $N+M-1$ but is defined for $N \leq n \leq 2 N+M-2$
- \longrightarrow There is an overlap of $M-1$ samples between these two short linear convolutions
- Likewise, the third short convolution $y_{2}[n]=$ $h[n] * x_{2}[n]$, is also of length $N+M-1$ but is defined for $0 \leq n \leq N+M-2$

Overlap-Add Method

- Thus there is an overlap of $M-1$ samples between $h[n] \circledast x_{1}[n]$ and $h[n] \circledast x_{2}[n]$
- In general, there will be an overlap of $M-1$ samples between the samples of the short convolutions $h[n] \circledast x_{r-1}[n]$ and $h[n] \circledast x_{r}[n]$ for
- This process is illustrated in the figure on the next slide for $M=5$ and $N=7$

Overlap-Add Method

Overlap-Add Method

Overlap-Add Method

- Therefore, $y[n]$ obtained by a linear convolution of $x[n]$ and $h[n]$ is given by

$$
\begin{array}{lr}
y[n]=y_{0}[n], & 0 \leq n \leq 6 \\
y[n]=y_{0}[n]+y_{1}[n-7], & 7 \leq n \leq 10 \\
y[n]=y_{1}[n-7], & 11 \leq n \leq 13 \\
y[n]=y_{1}[n-7]+y_{2}[n-14], & 14 \leq n \leq 17 \\
y[n]=y_{2}[n-14], & 18 \leq n \leq 20
\end{array}
$$

Overlap-Add Method

- The above procedure is called the overlapadd method since the results of the short linear convolutions overlap and the overlapped portions are added to get the correct final result
- The function fftfilt can be used to implement the above method

Overlap-Add Method

- We have created a program which uses fftfilt for the filtering of a noise-corrupted signal $y[n]$ using a length 3 moving average filter. The
- The plots generated by running this program is shown below

Overlap-Save Method

- In implementing the overlap-add method using the DFT, we need to compute two ($N+M-1$)-point DFTs and one ($N+M-1$)point IDFT since the overall linear convolution was expressed as a sum of short-length linear convolutions of length ($N+M-1$) each
- It is possible to implement the overall linear convolution by performing instead circular convolution of length shorter than $(N+M-1)$

Overlap-Save Method

- To this end, it is necessary to segment $x[n]$ into overlapping blocks $x_{m}[n]$, keep the terms of the circular convolution of $h[n]$ with $x_{m}[n]$ that corresponds to the terms obtained by a linear convolution of $h[n]$ and $x_{m}[n]$, and throw away the other parts of the circular convolution

Overlap-Save Method

- To understand the correspondence between the linear and circular convolutions, consider a length 4 sequence $x[n]$ and a length-3 sequence $h[n]$
- Let $y_{L}[n]$ denote the result of a linear convolution of $x[n]$ with $h[n]$
- The six samples of $y_{L}[n]$ are given by

Overlap-Save Method

$$
\begin{aligned}
y_{L}[0] & =h[0] x[0] \\
y_{L}[1] & =h[0] x[1]+h[1] x[0] \\
y_{L}[2] & =h[0] x[2]+h[1] x[1]+h[2] x[0] \\
y_{L}[3] & =h[0] x[3]+h[1] x[2]+h[2] x[1] \\
y_{L}[4] & =h[1] x[3]+h[2] x[2] \\
y_{L}[5] & =h[2] x[3]
\end{aligned}
$$

Overlap-Save Method

- If we append $h[n]$ with a single zero-valued sample and convert it into a length-4 sequence $h_{e}[n]$, the 4 -point circular convolution $y_{C}[n]$ of $h_{e}[n]$ and $x[n]$ is given by

$$
\begin{aligned}
y_{C}[0] & =h[0] x[0]+h[1] x[3]+h[2] x[2] \\
y_{C}[1] & =h[0] x[1]+h[1] x[0]+h[2] x[3] \\
y_{C}[2] & =h[0] x[2]+h[1] x[1]+h[2] x[0] \\
y_{C}[3] & =h[0] x[3]+h[1] x[2]+h[2] x[1]
\end{aligned}
$$

Overlap-Save Method

- If we compare the expressions for the samples of $y_{L}[n]$ with the samples of $y_{C}[n]$, we observe that the first 2 terms of $y_{C}[n]$ do not correspond to the first 2 terms of $y_{L}[n]$, whereas the last 2 terms of $y_{C}[n]$ are precisely the same as the 3 rd and 4 th terms of $y_{L}[n]$, i.e.,

$$
\begin{array}{ll}
y_{L}[0] \neq y_{C}[0], & y_{L}[1] \neq y_{C}[1] \\
y_{L}[2]=y_{C}[2], & y_{L}[3]=y_{C}[3]
\end{array}
$$

Overlap-Save Method

- General case: N-point circular convolution of a length- M sequence $h[n]$ with a length- N sequence $x[n]$ with $N>M$
- First $M-1$ samples of the circular convolution are incorrect and are rejected
- Remaining $N-M+1$ samples correspond to the correct samples of the linear convolution of $h[n]$ with $x[n]$

Overlap-Save Method

- Now, consider an infinitely long or very long sequence $x[n]$
- Break it up as a collection of smaller length (length-4) overlapping sequences $x_{m}[n]$ as

$$
x_{m}[n]=x[n+2 m], \quad 0 \leq n \leq 3, \quad 0 \leq m \leq \infty
$$

- Next, form

$$
w_{m}[n]=h[n](4) x_{m}[n]
$$

Overlap-Save Method

- Or, equivalently,

$$
\begin{aligned}
w_{m}[0] & =h[0] x_{m}[0]+h[1] x_{m}[3]+h[2] x_{m}[2] \\
w_{m}[1] & =h[0] x_{m}[1]+h[1] x_{m}[0]+h[2] x_{m}[3] \\
w_{m}[2] & =h[0] x_{m}[2]+h[1] x_{m}[1]+h[2] x_{m}[0] \\
w_{m}[3] & =h[0] x_{m}[3]+h[1] x_{m}[2]+h[2] x_{m}[1]
\end{aligned}
$$

- Computing the above for $m=0,1,2,3, \ldots$, and substituting the values of $x_{m}[n]$ we arrive at

Overlap-Save Method

$$
\begin{array}{ll}
w_{0}[0]=h[0] x[0]+h[1] x[3]+h[2] x[2] & \leftarrow \text { Reject } \\
w_{0}[1]=h[0] x[1]+h[1] x[0]+h[2] x[3] & \leftarrow \text { Reject } \\
w_{0}[2]=h[0] x[2]+h[1] x[1]+h[2] x[0]=y[2] & \leftarrow \text { Save } \\
w_{0}[3]=h[0] x[3]+h[1] x[2]+h[2] x[1]=y[3] & \leftarrow \text { Save } \\
w_{1}[0]=h[0] x[2]+h[1] x[5]+h[2] x[4] & \leftarrow \text { Reject } \\
w_{1}[1]=h[0] x[3]+h[1] x[2]+h[2] x[5] & \leftarrow \text { Reject } \\
w_{1}[2]=h[0] x[4]+h[1] x[3]+h[2] x[2]=y[4] \leftarrow \text { Save } \\
w_{1}[3]=h[0] x[5]+h[1] x[4]+h[2] x[3]=y[5] & \leftarrow \text { Save }
\end{array}
$$

Overlap-Save Method

$$
\begin{aligned}
& w_{2}[0]=h[0] x[4]+h[1] x[5]+h[2] x[6] \leftarrow \text { Reject } \\
& w_{2}[1]=h[0] x[5]+h[1] x[4]+h[2] x[7] \leftarrow \text { Reject } \\
& w_{2}[2]=h[0] x[6]+h[1] x[5]+h[2] x[4]=y[6] \leftarrow \text { Save } \\
& w_{2}[3]=h[0] x[7]+h[1] x[6]+h[2] x[5]=y[7] \leftarrow \text { Save }
\end{aligned}
$$

Overlap-Save Method

- It should be noted that to determine $y[0]$ and $y[1]$, we need to form $x_{-1}[n]$:

$$
\begin{aligned}
& x_{-1}[0]=0, \quad x_{-1}[1]=0, \\
& x_{-1}[2]=x[0], \quad x_{-1}[3]=x[1]
\end{aligned}
$$

and compute $w_{-1}[n]=h[n](4) x_{-1}[n]$ for $0 \leq n \leq 3$ reject $w_{-1}[0]$ and $w_{-1}[1]$, and save $w_{-1}[2]=y[0]$ and $w_{-1}[3]=y[1]$

Overlap-Save Method

- General Case: Let $h[n]$ be a length $-N$ sequence
- Let $x_{m}[n]$ denote the m-th section of an infinitely long sequence $x[n]$ of length N and defined by
$x_{m}[n]=x[n+m(N-m+1)], \quad 0 \leq n \leq N-1$
with $M<N$

Overlap-Save Method

- Let $w_{m}[n]=h[n] ® x_{m}[n]$
- Then, we reject the first $M-1$ samples of $w_{m}[n]$ and "abut" the remaining $N-M+1$ samples of $w_{m}[n]$ to form $y_{L}[n]$, the linear convolution of $h[n]$ and $x[n]$
- If $y_{m}[n]$ denotes the saved portion of $w_{m}[n]$, i.e.

$$
y_{m}[n]=\left\{\begin{array}{cc}
0, & 0 \leq n \leq M-2 \\
w_{m}[n], & M-1 \leq n \leq N-2
\end{array}\right.
$$

Overlap-Save Method

- Then
$y_{L}[n+m(N-M+1)]=y_{m}[n], \quad M-1 \leq n \leq N-1$
- The approach is called overlap-save method since the input is segmented into overlapping sections and parts of the results of the circular convolutions are saved and abutted to determine the linear convolution result

Overlap-Save Method

- Process is illustrated next

Overlap-Save Method

z-Transform

- The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems
- Because of the convergence condition, in many cases, the DTFT of a sequence may not exist
- As a result, it is not possible to make use of such frequency-domain characterization in these cases

z-Transform

- A generalization of the DTFT defined by

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

leads to the z-transform

- z-transform may exist for many sequences for which the DTFT does not exist
- Moreover, use of z-transform techniques permits simple algebraic manipulations

z-Transform

- Consequently, z-transform has become an important tool in the analysis and design of digital filters
- For a given sequence $g[n]$, its z-transform $G(z)$ is defined as

$$
G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

where $z=\operatorname{Re}(z)+\mathrm{j} \operatorname{lm}(z)$ is a complex variable

z-Transform

- If we let $z=r e^{j \omega}$, then the z-transform reduces to

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

- The above can be interpreted as the DTFT of the modified sequence $\left\{g[n] r^{-n}\right\}$
- For $r=1$ (i.e., $|z|=1$), z-transform reduces to its DTFT, provided the latter exists

z-Transform

- The contour $|\mathrm{z}|=1$ is a circle in the z-plane of unity radius and is called the unit circle
- Like the DTFT, there are conditions on the convergence of the infinite series

$$
\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

- For a given sequence, the set R of values of z for which its z-transform converges is called the region of convergence (ROC)

z-Transform

- From our earlier discussion on the uniform convergence of the DTFT, it follows that the series

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

converges if $\left\{g[n] r^{-n}\right\}$ is absolutely summable, i.e., if

$$
\sum_{n=-\infty}^{\infty}\left|g[n] r^{-n}\right|<\infty
$$

z-Transform

- In general, the ROC R of a z-transform of a sequence $g[n]$ is an annular region of the z plane:

$$
R_{g^{-}}<|z|<R_{g^{+}}
$$

where $0 \leq R_{g^{-}}<R_{g^{+}} \leq \infty$

- Note: The z-transform is a form of a Laurent series and is an analytic function at every point in the ROC

z-Transform

- Example - Determine the z-transform $X(z)$ of the causal sequence $x[n]=\alpha^{n} \mu[n]$ and its ROC
- Now $X(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} \mu[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}$
- The above power series converges to

$$
X(z)=\frac{1}{1-\alpha z^{-1}}, \quad \text { for }\left|\alpha z^{-1}\right|<1
$$

- ROC is the annular region $|z|>|\alpha|$

z-Transform

- Example - The z-transform $\mu(z)$ of the unit step sequence $\mu[n]$ can be obtained from

$$
X(z)=\frac{1}{1-\alpha z^{-1}}, \quad \text { for } \mid \alpha z^{-1}<1
$$

by setting $\alpha=1$:

$$
\mu(z)=\frac{1}{1-z^{-1}}, \quad \text { for }\left|z^{-1}\right|<1
$$

- ROC is the annular region $1<|z| \leq \infty$

z-Transform

- Note: The unit step sequence $\mu[n]$ is not absolutely summable, and hence its DTFT does not converge uniformly
- Example - Consider the anti-causal sequence

$$
y[n]=-\alpha^{n} \mu[-n-1]
$$

z-Transform

- Its z-transform is given by

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{-1}-\alpha^{n} z^{-n}=-\sum_{m=1}^{\infty} \alpha^{-m} z^{m} \\
& =-\alpha^{-1} z \sum_{m=0}^{\infty} \alpha^{-m} z^{m}=-\frac{\alpha^{-1} z}{1-\alpha^{-1} z} \\
& =\frac{1}{1-\alpha z^{-1}}, \text { for }\left|\alpha^{-1} z\right|<1
\end{aligned}
$$

- ROC is the annular region $|z|<\alpha \mid$

z-Transform

- Note: The z-transforms of the two sequences $\alpha^{n} \mu[n]$ and $-\alpha^{n} \mu[-n-1]$ are identical even though the two parent sequences are different
- Only way a unique sequence can be associated with a z-transform is by specifying its ROC

z-Transform

- The DTFT $G\left(e^{j \omega}\right)$ of a sequence $g[n]$ converges uniformly if and only if the ROC of the z-transform $G(z)$ of $g[n]$ includes the unit circle
- The existence of the DTFT does not always imply the existence of the z-transform

z-Transform

- Example - The finite energy sequence

$$
h_{L P}[n]=\frac{\sin \omega_{c} n}{\pi n}, \quad-\infty<n<\infty
$$

has a DTFT given by

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq \mid \omega \leq \omega_{c} \\ 0, & \omega_{c}<\omega \mid \leq \pi\end{cases}
$$

which converges in the mean-square sense

z-Transform

- However, $h_{L P}[n]$ does not have a z-transform as it is not absolutely summable for any value of r
- Some commonly used z-transform pairs are listed on the next slide

Table: Commonly Used zTransform Pairs

Sequence
z-Transform
ROC

All values of z

$$
|z|>1
$$

$$
|z|>|\alpha|
$$

$$
|z|>r
$$

$$
|z|>r
$$

Rational z-Transforms

- In the case of LTI discrete-time systems we are concerned with in this course, all pertinent z-transforms are rational functions of z^{-1}
- That is, they are ratios of two polynomials in z^{-1} :
$G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\cdots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\cdots \cdot+d_{N-1} z^{-(N-1)}+d_{N} z^{-N}}$

Rational z-Transforms

- The degree of the numerator polynomial $P(z)$ is M and the degree of the denominator polynomial $D(z)$ is N
- An alternate representation of a rational z transform is as a ratio of two polynomials in z :

$$
G(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+\cdots+p_{M-1} z+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+\cdots \cdot+d_{N-1} z+d_{N}}
$$

Rational z-Transforms

- A rational z-transform can be alternately written in factored form as

$$
\begin{aligned}
G(z) & =\frac{p_{0} \prod_{\ell=1}^{M}\left(1-\xi_{\ell} z^{-1}\right)}{d_{0} \prod_{\ell=1}^{N}\left(1-\lambda_{\ell} z^{-1}\right)} \\
& =z^{(N-M)} \frac{p_{0} \prod_{\ell=1}^{M}\left(z-\xi_{\ell}\right)}{d_{0} \prod_{\ell=1}^{N}\left(z-\lambda_{\ell}\right)}
\end{aligned}
$$

Rational \mathbf{z}-Transforms

- At a root $z=\xi_{\ell}$ of the numerator polynomial $G\left(\xi_{\ell}\right)=0$, and as a result, these values of z are known as the zeros of $G(z)$
- At a root $z=\lambda_{\ell}$ of the denominator polynomial $G\left(\lambda_{\ell}\right) \rightarrow \infty$, and as a result, these values of z are known as the poles of $G(z)$

Rational z-Transforms

- Consider

$$
G(z)=z^{(N-M)} \frac{p_{0} \prod_{\ell=1}^{M}\left(z-\xi_{\ell}\right)}{d_{0} \prod_{\ell=1}^{N}\left(z-\lambda_{\ell}\right)}
$$

- Note $G(z)$ has M finite zeros and N finite poles
- If $N>M$ there are additional $N-M$ zeros at $z=0$ (the origin in the z-plane)
- If $N<M$ there are additional $M-N$ poles at $z=0$

Rational z-Transforms

- Example - The z-transform

$$
\mu(z)=\frac{1}{1-z^{-1}}, \quad \text { for } z>1
$$

has a zero at $z=0$ and a pole at $z=1$

Rational z-Transforms

- A physical interpretation of the concepts of poles and zeros can be given by plotting the \log-magnitude $20 \log _{10} G(z)$ as shown on next slide for

$$
G(z)=\frac{1-2.4 z^{-1}+2.88 z^{-2}}{1-0.8 z^{-1}+0.64 z^{-2}}
$$

Rational z-Transforms

Rational z-Transforms

- Observe that the magnitude plot exhibits very large peaks around the points $z=0.4 \pm j 0.6928$ which are the poles of $G(z)$
- It also exhibits very narrow and deep wells around the location of the zeros at
$z=1.2 \pm j 1.2$

ROC of a Rational z-Transform

- ROC of a z-transform is an important concept
- Without the knowledge of the ROC, there is no unique relationship between a sequence and its z-transform
- Hence, the z-transform must always be specified with its ROC

ROC of a Rational z-Transform

- Moreover, if the ROC of a z-transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the z-transform on the unit circle
- There is a relationship between the ROC of the z-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability

ROC of a Rational z-Transform

- The ROC of a rational z-transform is bounded by the locations of its poles
- To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a z-transform
- Consider again the pole-zero plot of the z transform $\mu(z)$

ROC of a Rational z-Transform

- In this plot, the ROC, shown as the shaded area, is the region of the z-plane just outside the circle centered at the origin and going through the pole at $z=1$

ROC of a Rational z-Transform

- Example - The z-transform $H(z)$ of the sequence $h[n]=(-0.6)^{n} \mu[n]$ is given by

$$
H(z)=\frac{1}{1+0.6 z^{-1}} \begin{gathered}
\text { reseme } \\
|z|>0.6
\end{gathered}
$$

- Here the ROC is just outside the circle going through the point $z=-0.6$

ROC of a Rational z-Transform

- A sequence can be one of the following types: finite-length, right-sided, left-sided and two-sided
- In general, the ROC depends on the type of the sequence of interest

ROC of a Rational z-Transform

- Example - Consider a finite-length sequence $g[n]$ defined for $-M \leq n \leq N$, where M and N are non-negative integers and $g[n]<\infty$
- Its z-transform is given by

$$
G(z)=\sum_{n=-M}^{N} g[n] z^{-n}=\frac{\sum_{0}^{N+M} g[n-M] z^{N+M-n}}{z^{N}}
$$

ROC of a Rational z-Transform

- Note: $G(z)$ has M poles at $z=\infty$ and N poles at $z=0$ (explain why)
- As can be seen from the expression for $G(z)$, the z-transform of a finite-length bounded sequence converges everywhere in the z-plane except possibly at $z=0$ and/or at $z=\infty$

ROC of a Rational z-Transform

- Example - A right-sided sequence with nonzero sample values for $n \geq 0$ is sometimes called a causal sequence
- Consider a causal sequence $u_{1}[n]$
- Its z-transform is given by

$$
U_{1}(z)=\sum_{n=0}^{\infty} u_{1}[n] z^{-n}
$$

ROC of a Rational z-Transform

- It can be shown that $U_{1}(z)$ converges exterior to a circle $z=R_{1}$, including the point $z=\infty$
- On the other hand, a right-sided sequence $u_{2}[n]$ with nonzero sample values only for $n \geq-M$ with M nonnegative has a z-transform $U_{2}(z)$ with M poles at $z=\infty$
- The ROC of $U_{2}(z)$ is exterior to a circle $z=R_{2}$, excluding the point $z=\infty$

ROC of a Rational z-Transform

- Example - A left-sided sequence with nonzero sample values for $n \leq 0$ is sometimes called a anticausal sequence
- Consider an anticausal sequence $v_{1}[n]$
- Its z-transform is given by

$$
V_{1}(z)=\sum_{n=-\infty}^{0} v_{1}[n] z^{-n}
$$

ROC of a Rational z-Transform

- It can be shown that $V_{1}(z)$ converges interior to a circle $\mid z=R_{3}$, including the point $z=0$
- On the other hand, a left-sided sequence with nonzero sample values only for $n \leq N$ with N nonnegative has a z-transform $V_{2}(z)$ with N poles at $z=0$
- The ROC of $V_{2}(z)$ is interior to a circle $|z|=R_{4}$, excluding the point $z=0$

ROC of a Rational z-Transform

- Example - The z-transform of a two-sided sequence $w[n]$ can be expressed as

$$
W(z)=\sum_{n=-\infty}^{\infty} w[n] z^{-n}=\sum_{n=0}^{\infty} w[n] z^{-n}+\sum_{n=-\infty}^{-1} w[n] z^{-n}
$$

- The first term on the RHS, $\sum_{n=0}^{\infty} w[n] z^{-n}$, can be interpreted as the z-transform of a right-sided sequence and it thus converges exterior to the circle $|z|=R_{5}$

ROC of a Rational z-Transform

- The second term on the RHS, $\sum_{n=-\infty}^{-1} w[n] z^{-n}$, can be interpreted as the z-transform of a leftsided sequence and it thus converges interior to the circle $|z|=R_{6}$
- If $R_{5}<R_{6}$, there is an overlapping ROC given by $R_{5}<|z|<R_{6}$
- If $R_{5}>R_{6}$, there is no overlap and the z-transform does not exist

ROC of a Rational z-Transform

- Example - Consider the two-sided sequence

$$
u[n]=\alpha^{n}
$$

where α can be either real or complex

- Its z-transform is given by

$$
U(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}+\sum_{n=-\infty}^{-1} \alpha^{n} z^{-n}
$$

- The first term on the RHS converges for $|z|>\alpha$, whereas the second term converges for $z<\alpha$

ROC of a Rational z-Transform

- There is no overlap between these two regions
- Hence, the z-transform of $u[n]=\alpha^{n}$ does not exist

ROC of a Rational z-Transform

- The ROC of a rational z-transform cannot contain any poles and is bounded by the poles
- To show that the z-transform is bounded by the poles, assume that the z-transform $X(z)$ has simple poles at $z=\alpha$ and $z=\beta$
- Assume that the corresponding sequence $x[n]$ is a right-sided sequence

ROC of a Rational z-Transform

- Then $x[n]$ has the form

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[n-N_{o}\right], \quad \alpha|<\beta|
$$

where N_{o} is a positive or negative integer

- Now, the z-transform of the right-sided sequence $\gamma^{n} \mu\left[n-N_{o}\right]$ exists if

$$
\sum_{n=N_{o}}^{\infty}\left|\gamma^{n} z^{-n}\right|<\infty
$$

for some z

ROC of a Rational z-Transform

- The condition

$$
\sum_{n=N_{o}}^{\infty} \mid \gamma^{n} z^{-n}<\infty
$$

holds for $|z|>\gamma \mid$ but not for $z \mid \leq \gamma$

- Therefore, the z-transform of

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[n-N_{o}\right], \quad \alpha|<|\beta|
$$

has an ROC defined by $|\beta|<z \mid \leq \infty$

ROC of a Rational z-Transform

- Likewise, the z-transform of a left-sided sequence

$$
x[n]=\left(r_{1} \alpha^{n}+r_{2} \beta^{n}\right) \mu\left[-n-N_{o}\right], \quad|\alpha|<|\beta|
$$

has an ROC defined by $0 \leq z|<|\alpha|$

- Finally, for a two-sided sequence, some of the poles contribute to terms in the parent sequence for $n<0$ and the other poles contribute to terms $n \geq 0$

ROC of a Rational z-Transform

- The ROC is thus bounded on the outside by the pole with the smallest magnitude that contributes for $n<0$ and on the inside by the pole with the largest magnitude that contributes for $n \geq 0$
- There are three possible ROCs of a rational z-transform with poles at $z=\alpha$ and $z=\beta$ $(\mid \alpha<\beta)$

ROC of a Rational z-Transform

(c)

ROC of a Rational z-Transform

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has $R+1$ ROCs
- Thus, there are $R+1$ distinct sequences with the same z-transform
- Hence, a rational z-transform with a specified ROC has a unique sequence as its inverse z-transform

ROC of a Rational z-Transform

- The ROC of a rational z-transform can be easily determined using MATLAB

$$
[z, p, k]=t f 2 z p(n u m, d e n)
$$

determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by the vector num and the denominator coefficients specified by the vector den

ROC of a Rational z-Transform

- [num, den] $=$ zp2tf(z,p,k) implements the reverse process
- The factored form of the z-transform can be obtained using sos $=z p 2 \operatorname{sos}(z, p, k)$
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos

ROC of a Rational z-Transform

$$
s O S=\left[\begin{array}{cccccc}
b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{12} \\
b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{0 L} & b_{1 L} & b_{2 L} & a_{0 L} & a_{1 L} & a_{2 L}
\end{array}\right]
$$

where

$$
G(z)=\prod_{k=1}^{L} \frac{b_{0 k}+b_{1 k} z^{-1}+b_{2 k} z^{-2}}{a_{0 k}+a_{1 k} z^{-1}+a_{2 k} z^{-2}}
$$

ROC of a Rational z-Transform

- The pole-zero plot is determined using the function zplane
- The z-transform can be either described in terms of its zeros and poles:
zplane(zeros,poles)
- or, it can be described in terms of its numerator and denominator coefficients:
zplane (num, den)

ROC of a Rational z-Transform

- Example - The pole-zero plot of

$$
G(z)=\frac{2 z^{4}+16 z^{3}+44 z^{2}+56 z+32}{3 z^{4}+3 z^{3}-15 z^{2}+18 z-12}
$$

obtained using MATLAB is shown below

Inverse z-Transform

- General Expression: Recall that, for $z=r e^{j \omega}$, the z-transform $G(z)$ given by
$G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}$ is merely the DTFT of the modified sequence $g[n] r^{-n}$
- Accordingly, the inverse DTFT is thus given by

$$
g[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega
$$

Inverse z-Transform

- By making a change of variable $z=r e^{j \omega}$, the previous equation can be converted into a contour integral given by

$$
g[n]=\frac{1}{2 \pi j} \oint_{C^{\prime}} G(z) z^{n-1} d z
$$

where C^{\prime} is a counterclockwise contour of integration defined by $|z|=r$

Inverse z-Transform

- But the integral remains unchanged when is replaced with any contour C encircling the point $z=0$ in the ROC of $G(z)$
- The contour integral can be evaluated using the Cauchy's residue theorem resulting in

$$
g[n]=\sum\left[\begin{array}{l}
\text { residues of } G(z) z^{n-1} \\
\text { at the poles inside } C
\end{array}\right]
$$

- The above equation needs to be evaluated at all values of n and is not pursued here

Inverse Transform by Partial-Fraction Expansion

- A rational z-transform $G(z)$ with a causal inverse transform $g[n]$ has an ROC that is exterior to a circle
- Here it is more convenient to express $G(z)$ in a partial-fraction expansion form and then determine $g[n]$ by summing the inverse transform of the individual simpler terms in the expansion

Inverse Transform by Partial-Fraction Expansion

- A rational $G(z)$ can be expressed as

$$
G(z)=\frac{P(z)}{D(z)}=\frac{\sum_{i=0}^{M} p_{i} z^{-i}}{\sum_{i=0}^{N} d_{i} z^{-i}}
$$

- If $M \geq N$ then $G(z)$ can be re-expressed as

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\frac{P_{1}(z)}{D(z)}
$$

where the degree of $P_{1}(z)$ is less than N

Inverse Transform by

Partial-Fraction Expansion

- The rational function $P_{1}(z) / D(z)$ is called a proper fraction
- Example - Consider

$$
G(z)=\frac{2+0.8 z^{-1}+0.5 z^{-2}+0.3 z^{-3}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

- By long division we arrive at

$$
G(z)=-3.5+1.5 z^{-1}+\frac{5.5+2.1 z^{-1}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

Inverse Transform by Partial-Fraction Expansion

- Simple Poles: In most practical cases, the rational z-transform of interest $G(z)$ is a proper fraction with simple poles
- Let the poles of $G(\mathrm{z})$ be at $z=\lambda_{k}, 1 \leq k \leq N$
- A partial-fraction expansion of $G(z)$ is then of the form

$$
G(z)=\sum_{\ell=1}^{N}\left(\frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}\right)
$$

Inverse Transform by Partial-Fraction Expansion

- The constants ρ_{ℓ} in the partial-fraction expansion are called the residues and are given by

$$
\rho_{\ell}=\left(1-\lambda_{\ell} z^{-1}\right) G(z)_{z=\lambda_{\ell}}
$$

- Each term of the sum in partial-fraction expansion has an ROC given by $z>\lambda_{\ell} \mid$ and, thus has an inverse transform of the form $\rho_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]$

Inverse Transform by Partial-Fraction Expansion

- Therefore, the inverse transform $g[n]$ of $G(z)$ is given by

$$
g[n]=\sum_{\ell=1}^{N} \rho_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]
$$

- Note: The above approach with a slight modification can also be used to determine the inverse of a rational z-transform of a noncausal sequence

Inverse Transform by Partial-Fraction Expansion

- Example - Let the z-transform $H(z)$ of a causal sequence $h[n]$ be given by

$$
H(z)=\frac{z(z+2)}{(z-0.2)(z+0.6)}=\frac{1+2 z^{-1}}{\left(1-0.2 z^{-1}\right)\left(1+0.6 z^{-1}\right)}
$$

- A partial-fraction expansion of $H(z)$ is then of the form

$$
H(z)=\frac{\rho_{1}}{1-0.2 z^{-1}}+\frac{\rho_{2}}{1+0.6 z^{-1}}
$$

Inverse Transform by Partial-Fraction Expansion

- Now

$$
\rho_{1}=\left.\left(1-0.2 z^{-1}\right) H(z)\right|_{z=0.2}=\left.\frac{1+2 z^{-1}}{1+0.6 z^{-1}}\right|_{z=0.2}=2.75
$$

and

$$
\rho_{2}=\left.\left(1+0.6 z^{-1}\right) H(z)\right|_{z=-0.6}=\left.\frac{1+2 z^{-1}}{1-0.2 z^{-1}}\right|_{z=-0.6}=-1.75
$$

Inverse Transform by Partial-Fraction Expansion

- Hence

$$
H(z)=\frac{2.75}{1-0.2 z^{-1}}-\frac{1.75}{1+0.6 z^{-1}}
$$

- The inverse transform of the above is therefore given by

$$
h[n]=2.75(0.2)^{n} \mu[n]-1.75(-0.6)^{n} \mu[n]
$$

Inverse Transform by Partial-Fraction Expansion

- Multiple Poles: If $G(z)$ has multiple poles, the partial-fraction expansion is of slightly different form
- Let the pole at $z=v$ be of multiplicity L and the remaining $N-L$ poles be simple and at $z=\lambda_{\ell}, 1 \leq \ell \leq N-L$

Inverse Transform by Partial-Fraction Expansion

- Then the partial-fraction expansion of $G(z)$ is of the form

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\sum_{\ell=1}^{N-L} \frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}+\sum_{i=1}^{L} \frac{\gamma_{i}}{\left(1-v z^{-1}\right)^{i}}
$$

where the constants γ_{i} are computed using

$$
\begin{aligned}
& \gamma_{i}=\frac{1}{(L-i)!(-v)^{L-i}} \frac{d^{L-i}}{d\left(z^{-1}\right)^{L-i}}\left[\left(1-v z^{-1}\right)^{L} G(z)\right]_{z=v} \\
& 1 \leq i \leq L
\end{aligned}
$$

Partial-Fraction Expansion Using MATLAB

- $[r, p, k]=r e s i d u e z(n u m, d e n)$ develops the partial-fraction expansion of a rational z-transform with numerator and denominator coefficients given by vectors num and den
- Vector r contains the residues
- Vector p contains the poles
- Vector k contains the constants η_{ℓ}

Partial-Fraction Expansion Using MATLAB

- [num, den] =residuez (r, p,k) converts a z-transform expressed in a partial-fraction expansion form to its rational form

Inverse z-Transform via Long Division

- The z-transform $G(z)$ of a causal sequence $\{g[n]\}$ can be expanded in a power series in z^{-1}
- In the series expansion, the coefficient multiplying the term z^{-n} is then the n-th sample $g[n]$
- For a rational z-transform expressed as a ratio of polynomials in z^{-1}, the power series expansion can be obtained by long division

Inverse z-Transform via Long Division

- Example - Consider

$$
H(z)=\frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}}
$$

- Long division of the numerator by the denominator yields
$H(z)=1+1.6 z^{-1}-0.52 z^{-2}+0.4 z^{-3}-0.2224 z^{-4}+\cdots$
- As a result

$$
\left.\{h[n]\}=\underset{\uparrow}{\{1} \begin{array}{lllllll}
1.6 & -0.52 & 0.4 & -0.2224 & \cdots .
\end{array}\right\}, \quad n \geq 0
$$

Inverse z-Transform Using MATLAB

- The function impz can be used to find the inverse of a rational z-transform $G(z)$
- The function computes the coefficients of the power series expansion of $G(z)$
- The number of coefficients can either be user specified or determined automatically

Table: z-Transform Properties

Property	Sequence	z-Transform	ROC
	$\begin{aligned} & g[n] \\ & h[n] \end{aligned}$	$\begin{aligned} & G(z) \\ & H(z) \end{aligned}$	$\begin{aligned} & \mathcal{R}_{g} \\ & \mathcal{R}_{h} \end{aligned}$
Conjugation	$g^{*}[n]$	$G^{*}\left(z^{*}\right)$	\mathcal{R}_{g}
Time-reversal	$g[-n]$	$G(1 / z)$	$1 / \mathcal{R}_{g}$
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G(z)+\beta H(z)$	Includes $\mathcal{R}_{g} \cap \mathcal{R}_{h}$
Time-shifting	$g\left[n-n_{o}\right]$	$z^{-n_{o}} G(z)$	\mathcal{R}_{g}, except possibly the point $z=0$ or ∞
Multiplication by an exponential sequence	$\alpha^{n} g[n]$	$G(z / \alpha)$	$\|\alpha\| \mathcal{R} g$
Differentiation of $G(z)$	$n g[n]$	$-z \frac{d G(z)}{d z}$	\mathcal{R}_{g}, except possibly the point $z=0$ or ∞
Convolution	$g[n] * h[n]$	$G(z) H(z)$	Includes $\mathcal{R}_{g} \cap \mathcal{R}_{h}$
Modulation	$g[n] h[n]$	$\frac{1}{2 \pi j} \oint_{C} G(v) H(z / v) v^{-1} d v$	Includes $\mathcal{R}_{g} \mathcal{R}_{h}$
Parseval's relation		$\sum_{n=-\infty}^{\infty} g[n] h^{*}[n]=\frac{1}{2 \pi j} \oint_{C}$	v) $H^{*}\left(1 / v^{*}\right) v^{-1} d v$
Note: If \mathcal{R}_{g} denotes the region $R_{g^{-}}<\|z\|<R_{g^{+}}$and \mathcal{R}_{h} denotes the region $R_{h^{-}}<\|z\|<$ $R_{h^{+}}$, then $1 / \mathcal{R}_{g}$ denotes the region $1 / R_{g^{+}}<\|z\|<1 / R_{g^{-}}$and $\mathcal{R}_{g} \mathcal{R}_{h}$ denotes the region $R_{g^{-}} R_{h^{-}}<\|z\|<R_{g^{+}} R_{h^{+}}$.			

z-Transform Properties

- Example - Consider the two-sided sequence

$$
v[n]=\alpha^{n} \mu[n]-\beta^{n} \mu[-n-1]
$$

- Let $x[n]=\alpha^{n} \mu[n]$ and $y[n]=-\beta^{n} \mu[-n-1]$ with $X(z)$ and $Y(z)$ denoting, respectively, their z-transforms
- Now $X(z)=\frac{1}{1-\alpha z^{-1}},|z|>\alpha$
and $\quad Y(z)=\frac{1}{1-\beta z^{-1}},|z|<|\beta|$

z-Transform Properties

- Using the linearity property we arrive at

$$
V(z)=X(z)+Y(z)=\frac{1}{1-\alpha z^{-1}}+\frac{1}{1-\beta z^{-1}}
$$

- The ROC of $V(z)$ is given by the overlap regions of $|z|>\mid \alpha$ and $|z|<\beta \mid$
- If $\alpha<\beta$, then there is an overlap and the ROC is an annular region $|\alpha<|z|<\beta|$
- If $\mid \alpha>\beta$, then there is no overlap and $V(z)$ does not exist

z-Transform Properties

- Example - Determine the z-transform and its ROC of the causal sequence

$$
x[n]=r^{n}\left(\cos \omega_{o} n\right) \mu[n]
$$

- We can express $x[n]=v[n]+v^{*}[n]$ where

$$
v[n]=\frac{1}{2} r^{n} e^{j \omega_{o} n} \mu[n]=\frac{1}{2} \alpha^{n} \mu[n]
$$

- The z-transform of $v[n]$ is given by

$$
V(z)=\frac{1}{2} \cdot \frac{1}{1-\alpha z^{-1}}=\frac{1}{2} \cdot \frac{1}{1-r e^{j \omega_{o}} z^{-1}}, \quad|z|>|\alpha|=r
$$

z-Transform Properties

- Using the conjugation property we obtain the z-transform of $v^{*}[n]$ as

$$
\begin{array}{r}
V^{*}\left(z^{*}\right)=\frac{1}{2} \cdot \frac{1}{1-\alpha^{*} z^{-1}}=\frac{1}{2} \cdot \frac{1}{1-r e^{-j \omega_{o} z^{-1}}}, \\
|z|>|\alpha|
\end{array}
$$

- Finally, using the linearity property we get

$$
\begin{aligned}
X(z) & =V(z)+V^{*}\left(z^{*}\right) \\
& =\frac{1}{2}\left(\frac{1}{1-r e^{j \omega_{o} z^{-1}}}+\frac{1}{1-r e^{-j \omega_{o} z^{-1}}}\right)
\end{aligned}
$$

z-Transform Properties

- or,

$$
X(z)=\frac{1-\left(r \cos \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}}, \quad|z|>r
$$

- Example - Determine the z-transform $Y(z)$ and the ROC of the sequence

$$
y[n]=(n+1) \alpha^{n} \mu[n]
$$

- We can write $y[n]=n x[n]+x[n]$ where

$$
x[n]=\alpha^{n} \mu[n]
$$

z-Transform Properties

- Now, the z-transform $X(z)$ of $x[n]=\alpha^{n} \mu[n]$ is given by

$$
X(z)=\frac{1}{1-\alpha z^{-1}},|z|>|\alpha|
$$

- Using the differentiation property, we arrive at the z-transform of $n x[n]$ as

$$
-z \frac{d X(z)}{d z}=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)}, \quad|z|>|\alpha|
$$

z-Transform Properties

- Using the linearity property we finally obtain

$$
\begin{aligned}
Y(z)=\frac{1}{1-\alpha z^{-1}} & +\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}} \\
& =\frac{1}{\left(1-\alpha z^{-1}\right)^{2}}, \quad z>|\alpha|
\end{aligned}
$$

