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What is a signal ?

A signal is a function of an independent 

variable such as time, distance, position, 

temperature, pressure, etc.



For example…

• Electrical Engineering

voltages/currents in a circuit

speech signals

image signals

• Physics

radiation

• Mechanical Engineering

vibration studies

• Astronomy

space photos



or

• Biomedicine
EEG, ECG, MRI, X-Rays, Ultrasounds

• Seismology
tectonic plate movement, earthquake prediction

• Economics
stock market data





What is DSP?

Mathematical and algorithmic manipulation of discretized and

quantized or naturally digital signals in order to extract the most

relevant and pertinent information that is carried by the signal.

What is a signal?

What is a system?

What is processing?



Signals can be characterized in several ways

Continuous time signals vs. discrete time signals (x(t), x[n]).
Temperature in  London / signal on a CD-ROM.

Continuous valued signals vs. discrete signals.
Amount of current drawn by a device / average scores of TOEFL in a school 
over years.

–Continuous time and continuous valued : Analog signal.

–Continuous time and discrete valued: Quantized signal.

–Discrete time and continuous valued: Sampled signal.

–Discrete time and discrete values: Digital signal.

Real valued signals vs. complex valued signals.
Resident use electric power / industrial use reactive power.

Scalar signals vs. vector valued (multi-channel) signals.
Blood pressure signal / 128 channel EEG.

Deterministic vs. random signal: 
Recorded audio / noise.

One-dimensional vs. two dimensional vs. multidimensional 
signals.

Speech / still image / video.





Systems

• For our purposes, a DSP system is one that can mathematically 

manipulate (e.g., change, record, transmit, transform) digital 

signals.

• Furthermore, we are not interested in processing analog signals 

either, even though most signals in nature are analog signals.



Various Types of Processing

Modulation and demodulation.

Signal security. 

Encryption and decryption.

Multiplexing and de-multiplexing.

Data compression. 

Signal de-noising.

Filtering for noise reduction.

Speaker/system identification.

Signal enhancement –equalization.

Audio processing. 

Image processing –image de-noising, enhancement,

watermarking.

Reconstruction.

Data analysis and feature extraction.

Frequency/spectral analysis.



Filtering

• By far the most commonly used DSP operation
Filtering refers to deliberately changing the frequency content of the signal, 
typically, by removing certain frequencies from the signals.

For de-noising applications, the (frequency) filter removes those frequencies 
in the signal that correspond to noise.

In various applications, filtering is used to focus to that part of the spectrum 
that is of interest, that is, the part that carries the information.

• Typically we have the following types of filters
Low-pass (LPF) –removes high frequencies, and retains (passes) low 
frequencies.

High-pass (HPF) –removes low frequencies, and retains high frequencies.

Band-pass (BPF) –retains an interval of frequencies within a band, removes 
others.

Band-stop (BSF) –removes an interval of frequencies within a band, retains 
others.

Notch filter –removes a specific frequency.



A Common Application: Filtering



Components of a DSP System



Components of a DSP System



Components of a DSP System



Analog-to-Digital-to-Analog…?

• Why not just process the signals in continuous time domain? Isn’t it just a waste of time, 
money and resources to convert to digital and back to analog?

• Why DSP? We digitally process the signals in discrete domain, because it is

– 
 More flexible, more accurate, easier to mass produce.

– 
 Easier to design.

• System characteristics can easily be changed by programming.

• Any level of accuracy can be obtained by use of appropriate number

of bits.

– 
 More deterministic and reproducible-less sensitive to component values,

etc.

– 
 Many things that cannot be done using analog processors can be done

digitally.

• Allows multiplexing, time sharing, multi-channel processing, adaptive filtering.

• Easy to cascade, no loading effects, signals can be stored indefinitely w/o loss.

• Allows processing of very low frequency signals, which requires unpractical

component values in analog world.



Analog-to-Digital-to-Analog…?

• On the other hand, it can be 

– 
 Slower, sampling issues.

– 
 More expensive, increased system complexity,

consumes more power.

• Yet, the advantages far outweigh the 

disadvantages. Today, most continuous time 

signals are in fact processed in discrete time 

using digital signal processors.



Analog-Digital

Examples of analog technology

• photocopiers 

• telephones 

• audio tapes 

• televisions (intensity and color info per scan line) 

• VCRs (same as TV) 

Examples of digital technology

• Digital computers!



In the next few slides you can see some 

real-life signals



Electroencephalogram (EEG) Data



Stock Market Data



Satellite image

Volcano Kamchatka Peninsula, Russia



Satellite image

Volcano in Alaska



Medical Images:

MRI of normal brain



Medical Images:

X-ray knee



Medical Images: Ultrasound

Five-month Foetus (lungs, liver and bowel)



Astronomical images 



DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation

• Signals represented as sequences of 

numbers, called samples

• Sample value of a typical signal or sequence 

denoted as x[n] with n being an integer in 

the range 

• x[n] defined only for integer values of n and 

undefined for noninteger values of n

• Discrete-time signal represented by {x[n]}

∞≤≤∞− n



• Here, n-th sample is given by

• The spacing T is called the sampling interval or

sampling period

• Inverse of sampling interval T, denoted as      , is 

called the sampling frequency:

DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation

),()(][ nTxtxnx anTta == = KK ,1,0,1,2, −−=n

TF
1)( −= TFT



DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation
• Two types of discrete-time signals:

- Sampled-data signals in which samples 

are continuous-valued

- Digital signals in which samples are 

discrete-valued

• Signals in a practical digital signal 

processing system are digital signals 

obtained by quantizing the sample values 

either by rounding or truncation



256x256 64x64

2 Dimensions

From Continuous to Discrete: Sampling



Discrete (Sampled) and Digital (Quantized) Image



Discrete (Sampled) and Digital (Quantized) Image



256x256 256 levels 256x256 32 levels

Discrete (Sampled) and Digital (Quantized) Image



256x256 256 levels 256x256 2 levels

Discrete (Sampled) and Digital (Quantized) Image



DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation

• A discrete-time signal may be a finite-

length or an infinite-length sequence

• Finite-length (also called finite-duration or 

finite-extent) sequence is defined only for a 

finite time interval:

where                  and               with

• Length or duration of the above finite-

length sequence is

21 NnN ≤≤

1N<∞− ∞<2N 21 NN ≤

112 +−= NNN



DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation

• A right-sided sequence x[n] has zero-

valued samples for

• If             a right-sided sequence is called a 

causal sequence

,01 ≥N

1Nn <

n
N1

A right-sided sequence



DiscreteDiscrete--Time Signals:Time Signals:

TimeTime--Domain RepresentationDomain Representation

• A left-sided sequence x[n] has zero-valued 

samples for

• If             a left-sided sequence is called a 

anti-causal sequence

2Nn >

,02 ≤N

2N
n

A left-sided sequence



Operations on SequencesOperations on Sequences

• A single-input, single-output discrete-time 

system operates on a sequence, called the 

input sequence, according some prescribed 

rules and develops another sequence, called 

the output sequence, with more desirable 

properties

x[n] y[n]

Input sequence Output sequence

Discrete-time

system



Example of an Operation on a Sequence:Example of an Operation on a Sequence:

Noise RemovalNoise Removal

• For example, the input may be a signal 

corrupted with additive noise

• A discrete-time system may be designed to 

generate an output by removing the noise 

component from the input

• In most cases, the operation defining a 

particular discrete-time system is composed 

of some basic operations



Basic OperationsBasic Operations

• Product (modulation) operation:

– Modulator

• An application is the generation of a finite-length 

sequence from an infinite-length sequence by 

multiplying the latter with a finite-length sequence 

called an window sequence

• Process called windowing

×x[n] y[n]

w[n]
][][][ nwnxny ⋅=



Basic OperationsBasic Operations

• Addition operation:

– Adder

• Multiplication operation

– Multiplier

][][][ nwnxny +=

A
x[n] y[n] ][][ nxAny ⋅=

x[n] y[n]

w[n]

+



Basic OperationsBasic Operations

• Time-shifting operation:

where N is an integer

• If N > 0, it is a delay operation

– Unit delay

• If N < 0, it is an advance operation

– Unit advance

][][ Nnxny −=

y[n]x[n] z

1−z y[n]x[n] ][][ 1−= nxny

][][ 1+= nxny



Basic OperationsBasic Operations

• Time-reversal (folding) operation:

• Branching operation:  Used to provide 

multiple copies of a sequence

][][ nxny −=

x[n] x[n]

x[n]



Combinations of Basic Combinations of Basic 

OperationsOperations

• Example -

]3[]2[]1[][][ 4321 −+−+−+= nxnxnxnxny αααα



Sampling Rate AlterationSampling Rate Alteration

• Employed to generate a new sequence y[n]

with a sampling rate        higher or lower 

than that of the sampling rate       of a given 

sequence x[n]

• Sampling rate alteration ratio is

• If R > 1, the process called interpolation

• If R < 1, the process called decimation

TF

'
TF

T

T

F

F
R

'

=



Sampling Rate AlterationSampling Rate Alteration

• In up-sampling by an integer factor L > 1,

equidistant zero-valued samples are 

inserted by the up-sampler between each 

two consecutive samples of the input 

sequence x[n]:

1−L



 ±±=

=
otherwise,0

,2,,0],/[
][

LLLnLnx
nxu

L][nx ][nxu



Sampling Rate AlterationSampling Rate Alteration

• An example of the up-sampling operation

0 10 20 30 40 50
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1
Output sequence up-sampled by 3

Time index n
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Sampling Rate AlterationSampling Rate Alteration

• In down-sampling by an integer factor 

M > 1, every M-th samples of the input 

sequence are kept and            in-between 

samples are removed:

1−M

][][ nMxny =

][nx ][nyM



Sampling Rate AlterationSampling Rate Alteration

• An example of the down-sampling 

operation

0 10 20 30 40 50
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Output sequence down-sampled by 3
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Classification of Sequences Classification of Sequences 

Based on SymmetryBased on Symmetry

• Conjugate-symmetric sequence:

If x[n] is real, then it is an even sequence

][*][ nxnx −=

An even sequence



Classification of Sequences Classification of Sequences 

Based on SymmetryBased on Symmetry

• Conjugate-antisymmetric sequence:

If x[n] is real, then it is an odd sequence

][*][ nxnx −−=

An odd sequence



Classification of Sequences Classification of Sequences 

Based on SymmetryBased on Symmetry

• It follows from the definition that for a 

conjugate-symmetric sequence {x[n]}, x[0]

must be a real number

• Likewise, it follows from the definition that 

for a conjugate anti-symmetric sequence 

{y[n]}, y[0] must be an imaginary number

• From the above, it also follows that for an 

odd sequence {w[n]}, w[0] = 0



• Any complex sequence can be expressed as a 

sum of its conjugate-symmetric part and its 

conjugate-antisymmetric part:

where

Classification of Sequences Classification of Sequences 

Based on SymmetryBased on Symmetry

( )][*][][
2
1 nxnxnxcs −+=

( )][*][][
2
1 nxnxnxca −−=

][][][ nxnxnx cacs +=



Classification of Sequences Classification of Sequences 

Based on SymmetryBased on Symmetry

• Any real sequence can be expressed as a 

sum of its even part and its odd part:

where

][][][ nxnxnx odev +=

( )][][][
2
1 nxnxnxev −+=

( )][][][
2
1 nxnxnxod −−=



Classification of Sequences Classification of Sequences 

Based on PeriodicityBased on Periodicity
• A sequence         satisfying

is called a periodic sequence with a period N where N is 

a positive integer and k is any integer

• Smallest value of N satisfying

is called the fundamental period

• A sequence not satisfying the periodicity condition is 

called an aperiodic sequence

][~ nx ][~][~ kNnxnx +=

][~][~ kNnxnx +=



Classification of Sequences:Classification of Sequences:

Energy and Power SignalsEnergy and Power Signals

• Total energy of a sequence x[n] is defined by

• An infinite length sequence with finite sample 

values may or may not have finite energy

• A finite length sequence with finite sample 

values has finite energy

∑=
∞

−∞=n
nx
2

x ][ε



Classification of Sequences:Classification of Sequences:

Energy and Power SignalsEnergy and Power Signals

• The average power of an aperiodic

sequence is defined by

• We define the energy of a sequence x[n]

over a finite interval                     as

∑=
−=

+∞→

K

Kn
KK

nxP
2

12

1

x ][lim

KnK ≤≤−

∑=
−=

K

Kn
Kx nx

2

, ][ε



Classification of Sequences:Classification of Sequences:

Energy and Power SignalsEnergy and Power Signals

• The average power of a periodic sequence     

with a period N is given by

• The average power of an infinite-length 

sequence may be finite or infinite

∑
−

=
=

1

0

21
N

n
Nx nxP ][~

][~ nx



Classification of Sequences:Classification of Sequences:

Energy and Power SignalsEnergy and Power Signals

• Example - Consider the causal sequence 

defined by

• Note: x[n] has infinite energy

• Its average power is given by

5.4
12

)1(9
lim19

12

1
lim

0

=
+
+

=
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
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Classification of Sequences:Classification of Sequences:

Energy and Power SignalsEnergy and Power Signals

• An infinite energy signal with finite average 

power is called a power signal

Example - A periodic sequence which has a 

finite average power but infinite energy

• A finite energy signal with zero average 

power is called an energy signal



Classification of Sequences:Classification of Sequences:

DeterministicDeterministic--StochasticStochastic



Other Types of ClassificationsOther Types of Classifications

• A sequence x[n] is said to be bounded if

• Example - The sequence                           is a 

bounded sequence as

∞<≤ xBnx ][

nnx π= 3.0cos][

13.0cos][ ≤π= nnx



Other Types of ClassificationsOther Types of Classifications

• A sequence x[n] is said to be absolutely

summable if

• Example - The sequence                  

is an absolutely summable sequence as

∑ ∞<
∞

−∞=n
nx ][





<
≥=
00
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n
nny

n
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Other Types of ClassificationsOther Types of Classifications

• A sequence x[n] is said to be square-

summable if

• Example - The sequence

is square-summable but not absolutely 

summable

∑ ∞<
∞

−∞=n
nx
2
][

n
n

nh π= 4.0sin
][



Basic SequencesBasic Sequences

• Unit sample sequence -

• Unit step sequence -





≠

=
=

0,0

0,1
][

n

n
nδ

1

–4 –3 –2 –1 0 1 2 3 4 5 6
n





<

≥
=

0,0

0,1
][

n

n
nµ

–4 –3 –2 –1 0 1 2 3 4 5 6

1

n



Basic SequencesBasic Sequences
• Real sinusoidal sequence -

where A is the amplitude,      is the angular

frequency, and    is the phase of x[n]

Example -

)cos(][ φ+ω= nAnx o

oω
φ
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Basic SequencesBasic Sequences
• Complex exponential sequence -

where A and     are real or complex numbers

• If we write  

then we can express

where

,][ nAnx α= ∞<<∞− n

α
,
)( oo j

e
ω+σ=α ,φ= jeAA

],[][][
)(

nxjnxeeAnx imre
njj oo +== ω+σφ

),cos(][ φ+ω= σ
neAnx o

n
re

o

)sin(][ φ+ω= σ
neAnx o

n
im

o



Basic SequencesBasic Sequences
• and of a complex exponential 

sequence are real sinusoidal sequences with 

constant             , growing              , and 

decaying               amplitudes for n > 0

][nxre ][nxim

( )0=σo ( )0>σo

( )0<σo

njnx )exp(][
612

1 π+−=
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Basic SequencesBasic Sequences

• Real exponential sequence -

where A and α are real or complex numbers

,][ nAnx α= ∞<<∞− n
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Basic SequencesBasic Sequences

• Sinusoidal sequence                         and 

complex exponential sequence              

are periodic sequences of period N if 

where N and  r are positive integers

• Smallest value of N satisfying

is the fundamental period of the sequence

• To verify the above fact, consider

)cos( φ+ω nA o

)exp( njB oω
rNo π=ω 2

rNo π=ω 2

)cos(][1 φ+ω= nnx o

))(cos(][2 φ++ω= Nnnx o



Basic SequencesBasic Sequences

• Now

which will be equal to                                 

only if

and

• These two conditions are met if and only if

or                  

))(cos(][2 φ++ω= Nnnx o

NnNn oooo ωφ+ω−ωφ+ω= sin)sin(cos)cos(

][)cos( 1 nxno =φ+ω

0sin =ω No
1cos =ω No

rNo π=ω 2
r
N

o
=ω

π2



Basic SequencesBasic Sequences

• If              is a noninteger rational number, then 

the period will be a multiple of

• Otherwise, the sequence is aperiodic

• Example - is an aperiodic

sequence

oωπ/2

oωπ/2

)3sin(][ φ+= nnx



Basic SequencesBasic Sequences

• Here

• Hence period for r = 0

0=ωo

1
0

2
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=

r
N
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Basic SequencesBasic Sequences

• Here

• Hence for r = 1                     

π=ω 1.0o

20
1.0

2
==

π
πr

N
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Basic SequencesBasic Sequences

• Property 1 - Consider                             and 

with                    and  

where k is any positive 

integer 

• If                          then x[n] = y[n]

• Thus, x[n] and y[n] are indistinguishable

)exp(][ 1njnx ω=
)exp(][ 2njny ω= π<ω≤ 10

)1(22 2 +π<ω≤π kk

,212 kπ+ω=ω



Basic SequencesBasic Sequences

• Property 2 - The frequency of oscillation of

increases as      increases from 0

to π, and then decreases as      increases from        
to

• Thus, frequencies in the neighborhood of   

are called low frequencies, whereas, 

frequencies in the neighborhood of            are 

called high frequencies

)cos( nA oω oω

oω
π π2

π=ω
0=ω



Basic SequencesBasic Sequences

• Because of Property 1, a frequency       in 

the neighborhood of ω = 2π k is 
indistinguishable from a frequency               

in the neighborhood of ω = 0
and a frequency      in the neighborhood of      

is indistinguishable from a 

frequency                         in the 

neighborhood of ω = π

oω

ko π−ω 2

oω

)12( +π−ω ko

)12( +π=ω k



Basic SequencesBasic Sequences

• Frequencies in the neighborhood of ω = 2π k
are usually called low frequencies

• Frequencies in the neighborhood of              

ω = π (2k+1) are usually called high 
frequencies

• is a low-

frequency signal

• is a high-

frequency signal

)9.1cos()1.0cos(][1 nnnv π=π=

)2.1cos()8.0cos(][2 nnnv π=π=



Basic SequencesBasic Sequences
• An arbitrary sequence can be represented in 

the time-domain as a weighted sum of some 

basic sequence and its delayed (advanced) 

versions

]2[]1[5.1]2[5.0][ −−−++= nnnnx δδδ
]6[75.0]4[ −+−+ nn δδ



The Sampling ProcessThe Sampling Process
• Often, a discrete-time sequence x[n] is 

developed by uniformly sampling a 

continuous-time signal           as indicated 

below

• The relation between the two signals is

)(txa

),()(][ nTxtxnx anTta == =
KK ,2,1,0,1,2, −−=n



The Sampling ProcessThe Sampling Process

• Time variable t of         is related to the time 

variable n of x[n] only at discrete-time 

instants      given by

with                 denoting the sampling 

frequency and

denoting the sampling angular 

frequency

)(txa

TT
n

n
F
nnTt

Ω
π=== 2

nt

TFT /1=

TT Fπ=Ω 2



• Consider the continuous-time signal

• The corresponding discrete-time signal is

where

is the normalized digital angular frequency 

of x[n]

The Sampling ProcessThe Sampling Process

)cos()2cos()( φ+Ω=φ+π= tAtfAtx oo

)
2

cos()cos(][ φ+
Ω
Ωπ

=φ+Ω= nAnTAnx
T

o
o

)cos( φ+ω= nA o

ToToo Ω=ΩΩπ=ω /2

Hertz

seconds

radians per second

radians per sample



The Sampling ProcessThe Sampling Process

• If the unit of sampling period T is in 

seconds

• The unit of normalized digital angular 

frequency        is radians/sample

• The unit of normalized analog angular 

frequency        is radians/second

• The unit of analog frequency       is hertz

(Hz)

oω

oΩ

of



The Sampling ProcessThe Sampling Process
• The three continuous-time signals

of frequencies 3 Hz, 7 Hz, and 13 Hz, are 

sampled at a sampling rate of 10 Hz, i.e. 

with T = 0.1 sec. generating the three 

sequences

)6cos()(1 ttg π=
)14cos()(2 ttg π=
)26cos()(3 ttg π=

)6.2cos(][3 nng π=
)6.0cos(][1 nng π= )4.1cos(][2 nng π=



The Sampling ProcessThe Sampling Process
• Plots of these sequences (shown with circles) 

and their parent time functions are shown 

below:

• Note that each sequence has exactly the same 

sample value for any given n
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The Sampling ProcessThe Sampling Process

• This fact can also be verified by observing that

• As a result, all three sequences are identical 

and it is difficult to associate a unique 

continuous-time function with each of these 

sequences

( ) )6.0cos()6.02(cos)4.1cos(][2 nnnng π=π−π=π=

( ) )6.0cos()6.02(cos)6.2cos(][3 nnnng π=π+π=π=



The Sampling ProcessThe Sampling Process

• The above phenomenon of a continuous-

time signal of higher frequency acquiring 

the identity of a sinusoidal sequence of 

lower frequency after sampling is called

aliasing



The Sampling ProcessThe Sampling Process

• Since there are an infinite number of 

continuous-time signals that can lead to the 

same sequence when sampled periodically, 

additional conditions need to imposed so 

that the sequence                              can 

uniquely represent the parent continuous-

time signal

• In this case,           can be fully recovered 

from {x[n]}

)}({]}[{ nTxnx a=

)(txa

)(txa



The Sampling ProcessThe Sampling Process

• Example - Determine the discrete-time

signal v[n] obtained by uniformly sampling 

at a sampling rate of 200 Hz the continuous-

time signal

• Note:          is composed of 5 sinusoidal 

signals of frequencies 30 Hz, 150 Hz, 170

Hz, 250 Hz and 330 Hz

)340cos(2)300sin(3)60cos(6)( ttttva π+π+π=
)660sin(10)500cos(4 tt π+π+

)(tva



The Sampling ProcessThe Sampling Process

• The sampling period is

• The generated discrete-time signal v[n] is 

thus given by

sec005.0
200

1 ==T

)7.1cos(2)5.1sin(3)3.0cos(6][ nnnnv π+π+π=

)()( )3.02(cos2)5.02(sin3)3.0cos(6 nnn π−π+π−π+π=

)3.3sin(10)5.2cos(4 nn π+π+

)()( )7.04(sin10)5.02(cos4 nn π−π+π+π+



The Sampling ProcessThe Sampling Process

• Note: v[n] is composed of 3 discrete-time 

sinusoidal signals of normalized angular 

frequencies: 0.3π, 0.5π, and 0.7π

)5.0cos(4)3.0cos(2)5.0sin(3)3.0cos(6 nnnn π+π+π−π=

)7.0sin(10 nπ−

)7.0sin(10)6435.05.0cos(5)3.0cos(8 nnn π−+π+π=



The Sampling ProcessThe Sampling Process

• Note: An identical discrete-time signal is 

also generated by uniformly sampling at a

200-Hz sampling rate the following 

continuous-time signals:

)140sin(10)6435.0100cos(5)60cos(8)( ttttaw π−+π+π=

)260sin(10)100cos(4)60cos(2)( ttttag π+π+π=
)700sin(3)460cos(6 tt π+π+



The Sampling ProcessThe Sampling Process

• Recall

• Thus if                  , then the corresponding 

normalized digital angular frequency       of 

the discrete-time signal obtained by 

sampling the parent continuous-time 

sinusoidal signal will be in the range

• No aliasing

T

o
o Ω

Ωπ
=ω
2

oω
oT Ω>Ω 2

π<ω<π−



The Sampling ProcessThe Sampling Process

• On the other hand, if                  , the

normalized digital angular frequency will 

foldover into a lower digital frequency           

in the range                        

because of aliasing

• Hence, to prevent aliasing, the sampling 

frequency        should be greater than 2

times the frequency       of the sinusoidal 

signal being sampled

oT Ω<Ω 2

π<ω<π−π〉ΩΩπ〈=ω 2/2 Too

TΩ
oΩ



The Sampling ProcessThe Sampling Process

• Generalization: Consider an arbitrary 

continuous-time signal           composed of a 

weighted sum of a number of sinusoidal 

signals

• can be represented uniquely by its 

sampled version {x[n]} if the sampling 

frequency        is chosen to be greater than 2 

times the highest frequency contained in

)(txa

)(txa

TΩ

)(txa



The Sampling ProcessThe Sampling Process

• The condition to be satisfied by the 

sampling frequency to prevent aliasing is 

called the sampling theorem

• A formal proof of this theorem will be 

presented later



DiscreteDiscrete--Time SystemsTime Systems

• A discrete-time system processes a given 

input sequence x[n] to generates an output

sequence y[n] with more desirable 

properties

• In most applications, the discrete-time 

system is a single-input, single-output 

system:

System
timeDiscrete−

x[n] y[n]

Input sequence Output sequence



DiscreteDiscrete--Time Systems: Time Systems: 

ExamplesExamples

• 2-input, 1-output discrete-time systems -

Modulator, adder

• 1-input, 1-output discrete-time systems -

Multiplier, unit delay, unit advance



DiscreteDiscrete--Time Systems: ExamplesTime Systems: Examples

• Accumulator -

• The output y[n] at time instant n is the sum 

of the input sample x[n] at time instant n

and the previous output               at time 

instant            which is the sum of all 

previous input sample values from         to

• The system cumulatively adds, i.e., it 

accumulates all input sample values

∑=
−∞=

n

xny
l

l][][ ][]1[][][
1

nxnynxx
n

+−=+∑=
−
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]1[ −ny

,1−n

1−n∞−



DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• Accumulator - Input-output relation can 

also be written in the form

• The second form is used for a causal input 

sequence, in which case              is called 

the initial condition

∑+∑=
=

−

−∞=

n

xxny
0

1

][][][
ll

ll

,][]1[
0

∑+−=
=

n

xy
l

l

]1[−y

0≥n



DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• M-point moving-average system -

• Used in smoothing random variations in 

data

• An application:  Consider 

x[n] = s[n] + d[n], 

where s[n] is the signal corrupted by a noise

d[n]

∑ −=
−

=

1

0

][1][
M

k

knx
M

ny



d[n] - random signal],)9.0([2][ nnns =

DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples
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DiscreteDiscrete--Time Systems:ExamplesTime Systems:Examples

• Linear interpolation - Employed to estimate 

sample values between pairs of adjacent 

sample values of a discrete-time sequence

• Factor-of-4 interpolation

0 1 2

3 4

5 6 7 8 9 10 11 12
n

y[n]



DiscreteDiscrete--Time Systems: Time Systems: 

ExamplesExamples

• Factor-of-2 interpolator -

• Factor-of-3 interpolator -

( )]1[]1[
2
1][][ ++−+= nxnxnxny uuu

( )]2[]1[
3
1][][ ++−+= nxnxnxny uuu

( )]1[]2[
3
2 ++−+ nxnx uu



DiscreteDiscrete--Time Systems: Time Systems: 

ClassificationClassification

• Linear System

• Shift-Invariant System

• Causal System

• Stable System

• Passive and Lossless Systems



Linear DiscreteLinear Discrete--Time SystemsTime Systems

• Definition - If          is the output due to an 

input          and is the output due to an 

input           then for an input

the output is given by

• Above property must hold for any arbitrary 

constants      and       and for all possible 

inputs         and

][1 ny

][1 nx

][2 nx

][2 ny

][][][ 21 nxnxnx βα +=

][][][ 21 nynyny βα +=

α ,β
][1 nx ][2 nx



AccumulatorAccumulator::

Linear DiscreteLinear Discrete--Time System?Time System?

• Accumulator -

• For an input

the output is

• Hence, the above system is linear

∑=∑=
−∞=−∞=

nn

xnyxny
ll

ll ][][,][][ 2211

][][][ 21 nxnxnx βα +=

( )∑ +=
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xxny
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ll ][][][ 21 βα

][][][][ 2121 nynyxx
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Causal AccumulatorCausal Accumulator::

Linear DiscreteLinear Discrete--Time System?Time System?

• The outputs         and           for inputs         

and          are given by

• The output y[n] for an input                         

is given by

∑
=

+−=
n

xyny
0
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l

l][][][
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Causal AccumulatorCausal Accumulator cont.:cont.:

Linear DiscreteLinear Discrete--Time System?Time System?

• Now

• Thus                                        if

][][ nyny 21 βα +

)][][( ∑
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+−+
n

xy
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Causal Accumulator Causal Accumulator cont.:cont.:

Linear DiscreteLinear Discrete--Time System?Time System?

• For the causal accumulator to be linear the 

condition

must hold for all initial conditions         ,         

,            , and all constants α and β
• This condition cannot be satisfied unless the 

accumulator is initially at rest with zero 

initial condition

• For nonzero initial condition, the system is 

nonlinear

][][][ 111 21 −+−=− yyy βα
][ 1−y

][ 11 −y ][ 12 −y



A Nonlinear DiscreteA Nonlinear Discrete--Time SystemTime System

• Consider

• Outputs          and           for inputs           

and           are given by

][][][][ 112 +−−= nxnxnxny

][ny1

][][][][ 11 11
2
11 +−−= nxnxnxny

][ny2

][][][][ 11 22
2
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A Nonlinear DiscreteA Nonlinear Discrete--Time System cont.Time System cont.

• Output y[n] due to an input                           

is given by

][][ nxnx 21 βα +

2
21 ]}[][{][ nxnxny βα +=

]}[][]}{[][{ 1111 2121 +++−+−− nxnxnxnx βαβα
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A Nonlinear DiscreteA Nonlinear Discrete--Time System cont.Time System cont.

• On the other hand

• Hence, the system is nonlinear

][][ nyny 21 βα +

]}[][][{ 11 11
2
1 +−−= nxnxnxα

]}[][][{ 11 22
2
2 +−−+ nxnxnxβ
][ny≠



Shift (Time)Shift (Time)--Invariant SystemInvariant System

• For a shift-invariant system, if           is the 

response to an input         , then the response to 

an input                       .

is simply

where      is any positive or negative integer

• The above relation must hold for any arbitrary 

input and its corresponding output

• If n is discrete time, the above property is called 

time-invariance property

][ny1
][nx1
][][ onnxnx −= 1

][][ onnyny −= 1

on



UpUp--SamplerSampler::

ShiftShift--Invariant System?Invariant System?

• Example - Consider the up-sampler with an 

input-output relation given by

• For an input                            the output          

is given by



 ±±==

otherwise,
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UpUp--SamplerSampler::

ShiftShift--Invariant System?Invariant System?

• However from the definition of the up-sampler

• Hence, the up-sampler is a time-varying system

][ ou nnx −



 ±±=−=

otherwise,
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0

2LnLnnnLnnx oooo
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Linear TimeLinear Time--Invariant SystemInvariant System

• Linear Time-Invariant (LTI) System -

A system satisfying both the linearity and 

the time-invariance property

• LTI systems are mathematically easy to 

analyze and characterize, and consequently, 

easy to design

• Highly useful signal processing algorithms 

have been developed utilizing this class of 

systems over the last several decades



Causal SystemCausal System

• In a causal system, the     -th output sample    

depends only on input samples x[n] 

for        and does not depend on input 

samples for

• Let          and           be the responses of a 

causal discrete-time system to the inputs              

and          , respectively

on

onn ≤
onn >

][ ony

][ny1 ][ny2

][nx2

][nx1



Causal SystemCausal System

• Then

for n < N

implies also that

for n < N

• For a causal system, changes in output 

samples do not precede changes in the input 

samples

][][ 21 nxnx =

][][ 21 nyny =



Causal SystemCausal System
• Examples of causal systems:

• Examples of noncausal systems:

][][][][][ 321 4321 −+−+−+= nxnxnxnxny αααα

][][][][ 21 210 −+−+= nxbnxbnxbny

][][ 21 21 −+−+ nyanya

][][][ nxnyny +−= 1

])[][(][][ 11
2

1 ++−+= nxnxnxny uuu



Causal SystemCausal System

• A noncausal system can be implemented as 

a causal system by delaying the output by 

an appropriate number of samples

• For example a causal implementation of the 

factor-of-2 interpolator is given by

])[][(][][ nxnxnxny uuu +−+−= 21
2

1



Stable SystemStable System

• There are various definitions of stability

• We consider here the bounded-input,

bounded-output (BIBO) stability

• If y[n] is the response to an input x[n] and if

for all values of n

then

for all values of n

xBnx ≤][

yBny ≤][



Stable SystemStable System

• Example - The M-point moving average 

filter is BIBO stable:

• For a bounded input                 we have
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Passive and Lossless SystemsPassive and Lossless Systems

• A discrete-time system is defined to be

passive if, for every finite-energy input x[n],

the output y[n] has, at most, the same energy, 

i.e.

• For a lossless system, the above inequality is 

satisfied with an equal sign for every input

∞<≤ ∑∑
∞

−∞=

∞

−∞= nn

nxny
22
][][



Passive and Lossless SystemsPassive and Lossless Systems

• Example - Consider the discrete-time 

system defined by                             with N

a positive integer

• Its output energy is given by

• Hence, it is a passive system if            and is 

a lossless system if

][][ Nnxny −=α
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Impulse and Step ResponsesImpulse and Step Responses

• The response of a discrete-time system to a 

unit sample sequence {δ[n]} is called the 
unit sample response or simply, the 

impulse response, and is denoted by {h[n]}

• The response of a discrete-time system to a 

unit step sequence {µ[n]} is called the unit
step response or simply, the step response, 

and is denoted by {s[n]}



Impulse ResponseImpulse Response

• Example - The impulse response of the 

system

is obtained by setting x[n] = δ[n] resulting 
in

• The impulse response is thus a finite-length 

sequence of length 4 given by

][][][][][ 321 4321 −+−+−+= nxnxnxnxny αααα

][][][][][ 321 4321 −+−+−+= nnnnnh δαδαδαδα

},,,{]}[{ 4321 αααα
↑

=nh



Impulse ResponseImpulse Response

• Example - The impulse response of the 

discrete-time accumulator

is obtained by setting x[n] = δ[n] resulting 
in

∑
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=
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Impulse ResponseImpulse Response

• Example - The impulse response {h[n]} of 

the factor-of-2 interpolator

is obtained by setting                      and is 

given by

• The impulse response is thus a finite-length 

sequence of length 3:

])[][(][][ 11
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1 ++−+= nxnxnxny uuu
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TimeTime--Domain Characterization Domain Characterization 

of LTI Discreteof LTI Discrete--Time SystemTime System

• Input-Output Relationship -

It can be shown that a consequence of the 

linear, time-invariance property is that an 

LTI discrete-time system is completely 

characterized by its impulse response

• Knowing the impulse response one 

can compute the output of the system for 

any arbitrary input



TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Let h[n] denote the impulse response of a 

LTI discrete-time system

• We compute its output y[n] for the input:

• As the system is linear, we can compute its 

outputs for each member of the input 

separately and add the individual outputs to 

determine y[n] 

]5[75.0]2[]1[5.1]2[5.0][ −δ+−δ−−δ++δ= nnnnnx



TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Since the system is time-invariant

input output

]2[]2[ +→+δ nhn

]1[]1[ −→−δ nhn

]2[]2[ −→−δ nhn

]5[]5[ −→−δ nhn



TimeTime--Domain Characterization Domain Characterization 
of LTI Discreteof LTI Discrete--Time SystemTime System

• Likewise, as the system is linear

• Hence because of the linearity property we 

get

]5[75.0]5[75.0 −→−δ nhn

input                    output

]2[5.0]2[5.0 +→+δ nhn

]2[]2[ −−→−δ− nhn

]1[5.1]1[5.1 −→−δ nhn

][.][.][ 151250 −++= nhnhny

][.][ 57502 −+−− nhnh



TimeTime--Domain Characterization Domain Characterization 

of LTI Discreteof LTI Discrete--Time SystemTime System

• Now, any arbitrary input sequence x[n] can 

be expressed as a linear combination of 

delayed and advanced unit sample 

sequences in the form

• The response of the LTI system to an input   

will be

∑ −δ=
∞

−∞=k
knkxnx ][][][

][][ knkx −δ ][][ knhkx −



TimeTime--Domain Characterization Domain Characterization 

of LTI Discreteof LTI Discrete--Time SystemTime System

• Hence, the response y[n] to an input

will be

which can be alternately written as

∑ −δ=
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Convolution SumConvolution Sum

• The summation

is called the convolution sum of the 

sequences x[n] and h[n] and represented 

compactly as

∑∑
∞

−∞=

∞

−∞=
−=−=

kk

nhknxknhkxny ][][][][][

y[n] = x[n]     h[n]*



Convolution SumConvolution Sum

• Properties -

• Commutative property:

• Associative property :

• Distributive property :

x[n]     h[n] = h[n]     x[n]* *

(x[n]    h[n])    y[n] = x[n]    (h[n]    y[n])****

x[n]    (h[n] + y[n]) = x[n]    h[n] + x[n]    y[n]** *



Simple Interconnection Simple Interconnection 

SchemesSchemes

• Two simple interconnection schemes are:

• Cascade Connection

• Parallel Connection



Cascade ConnectionCascade Connection

• Impulse response h[n] of the cascade of two 

LTI discrete-time systems with impulse 

responses         and          is given by

][nh1][nh2][nh1 ][nh2≡

][][ nhnh 1=
][nh2][nh1 *≡

][nh1 ][nh2

][nh2][][ nhnh 1= *



Cascade ConnectionCascade Connection

• Note: The ordering of the systems in the 

cascade has no effect on the overall impulse 

response because of the commutative 

property of convolution

• A cascade connection of two stable systems 

is stable

• A cascade connection of two passive 

(lossless) systems is passive (lossless)



Cascade ConnectionCascade Connection

• An application is in the development of an 

inverse system

• If the cascade connection satisfies the 

relation

then the LTI system         is said to be the 

inverse of           and vice-versa

][nh1
][nh2

][nh2][1 nh ][nδ=*



Cascade ConnectionCascade Connection
• An application of the inverse system 

concept is in the recovery of a signal x[n]

from its distorted version          appearing at 

the output of a transmission channel

• If the impulse response of the channel is 

known, then x[n] can be recovered by 

designing an inverse system of the channel

][ˆ nx

][nh2][nh1][nx ][nx

channel inverse system
][nx̂

][nh2][nh1 ][nδ=*



Cascade ConnectionCascade Connection

• Example - Consider the discrete-time 

accumulator with an impulse response µ[n]
• Its inverse system satisfy the condition

• It follows from the above that                for  

n < 0 and

for

02 =][nh

112 =][h

0
0
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n

h
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l][ 2≥n

][nh2][nµ ][nδ=*



Cascade ConnectionCascade Connection

• Thus the impulse response of the inverse 

system of the discrete-time accumulator is 

given by

which is called a backward difference 

system

]1[][][2 −δ−δ= nnnh



Parallel Connection

• Impulse response h[n] of the parallel 

connection of two LTI discrete-time 

systems with impulse responses         and           

is given by

][nh2

][nh1
+ ][][ nhnh 1=

][nh2][nh1≡ +

][nh1
][nh2

][][][ nhnhnh 21 +=



Simple Interconnection SchemesSimple Interconnection Schemes

• Consider the discrete-time system where

][nh2

][nh1 +

+

][nh4

][nh3

],1[5.0][][1 −δ+δ= nnnh

],1[25.0][5.0][2 −δ−δ= nnnh
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Simple Interconnection SchemesSimple Interconnection Schemes

• Simplifying the block-diagram we obtain

][nh2

][nh1 +

][][ 43 nhnh +
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])[][(][ 432 nhnhnh +*
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Simple Interconnection SchemesSimple Interconnection Schemes

• Overall impulse response h[n] is given by

• Now,

][][][][][ nhnhnhnhnh 42321 ++=
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Simple Interconnection SchemesSimple Interconnection Schemes

• Therefore
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BIBO Stability Condition of an BIBO Stability Condition of an 

LTI DiscreteLTI Discrete--Time SystemTime System

• BIBO Stability Condition - A discrete-

time is BIBO stable if the output sequence 

{y[n]} remains bounded for all bounded 

input sequence {x[n]}

• An LTI discrete-time system is BIBO stable 

if and only if its impulse response sequence 

{h[n]} is absolutely summable, i.e.

∞<= ∑
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BIBO Stability Condition of an BIBO Stability Condition of an 

LTI DiscreteLTI Discrete--Time SystemTime System

• Proof: Assume h[n] is a real sequence

• Since the input sequence x[n] is bounded we 

have

• Therefore

∞<≤ xBnx ][
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BIBO Stability Condition of an BIBO Stability Condition of an 

LTI DiscreteLTI Discrete--Time SystemTime System

• Thus, S <       implies                      

indicating that y[n] is also bounded

• To prove the converse, assume y[n] is 

bounded, i.e.,

• Consider the input given by
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BIBO Stability Condition of an BIBO Stability Condition of an 

LTI DiscreteLTI Discrete--Time SystemTime System

where sgn(c) = +1 if c > 0 and sgn(c) =      

if c < 0  and

• Note: Since , {x[n]} is obviously 

bounded

• For this input, y[n] at n = 0 is

• Therefore,                  implies S <   

1−
1≤K

yBny ≤][ ∞

1≤][nx

Skhkhy
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== ][])[sgn(]0[ ∞<≤ yB



• Example - Consider a causal LTI discrete-time 
system with an impulse response

• For this system

,

• Therefore S <      if            for which the system is 
BIBO stable

• If , the system is not BIBO stable

Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• Let and          be two input sequences 

with

• The corresponding output samples at          

of an LTI system with an impulse response

{h[n]} are then given by

][nx1 ][nx2
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• If the LTI system is also causal, then

• As

• This implies
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• As                       for             the only way 

the condition

will hold if both sums are equal to zero, 

which is satisfied if
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• An LTI discrete-time system is causal

if and only if its impulse response {h[n]} is a 

causal sequence

• Example - The discrete-time system defined 

by

is a causal system as it has a causal impulse 

response
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• Example - The discrete-time accumulator 

defined by

is a causal system as it has a causal impulse 

response given by
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• Example - The factor-of-2 interpolator 

defined by

is noncausal as it has a noncausal impulse 

response given by
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2
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Causality Condition of an LTI Causality Condition of an LTI 

DiscreteDiscrete--Time SystemTime System

• Note: A noncausal LTI discrete-time system 

with a finite-length impulse response can 

often be realized as a causal system by 

inserting an appropriate amount of delay

• For example, a causal version of the factor-

of-2 interpolator is obtained by delaying the 

input by one sample period:
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• An important subclass of LTI discrete-time 

systems is characterized by a linear constant 

coefficient difference equation of the form

• x[n] and y[n] are, respectively, the input and 

the output of the system

• and          are constants characterizing 

the system
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FiniteFinite--Dimensional LTI Dimensional LTI 

DiscreteDiscrete--Time SystemsTime Systems

• The order of the system is given by

max(N,M), which is the order of the difference 

equation

• It is possible to implement an LTI system 

characterized by a constant coefficient 

difference equation as here the computation 

involves two finite sums of products



FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• If we assume the system to be causal, then 

the output y[n] can be recursively computed 

using

provided

• y[n] can be computed for all            ,

knowing x[n] and the initial conditions
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

Based on Impulse Response Length -

• If the impulse response h[n] is of finite 

length, i.e.,

then it is known as a finite impulse

response (FIR) discrete-time system

• The convolution sum description here is
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• The output y[n] of an FIR LTI discrete-time 

system can be computed directly from the 

convolution sum as it is a finite sum of 

products

• Examples of FIR LTI discrete-time systems 

are the moving-average system and the 

linear interpolators



Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• If the impulse response is of infinite length, 

then it is known as an infinite impulse

response (IIR) discrete-time system

• The class of IIR systems we are concerned 

with in this course are characterized by 

linear constant coefficient difference 

equations



Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• Example - The discrete-time accumulator 

defined by

is seen to be an IIR system
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• Example - The familiar numerical 

integration formulas that are used to 

numerically solve integrals of the form

can be shown to be characterized by linear 

constant coefficient difference equations, 

and hence, are examples of IIR systems
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• If we divide the interval of integration into n

equal parts of length T, then the previous 

integral can be rewritten as

where we have set t = nT and used the 

notation

∫
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Tn

dxTnynTy
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• Using the trapezoidal method we can write

• Hence, a numerical representation of the 

definite integral is given by
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

• Let y[n] = y(nT) and x[n] = x(nT)

• Then 

reduces to

which is recognized as the difference 

equation representation of a first-order IIR 

discrete-time system
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Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

Based on the Output Calculation Process

• Nonrecursive System - Here the output can 

be calculated sequentially, knowing only 

the present and past input samples

• Recursive System - Here the output 

computation involves past output samples in 

addition to the present and past input 

samples



Classification of LTI DiscreteClassification of LTI Discrete--

Time SystemsTime Systems

Based on the Coefficients -

• Real Discrete-Time System - The impulse 

response samples are real valued

• Complex Discrete-Time System - The 

impulse response samples are complex 

valued



Correlation of SignalsCorrelation of Signals

Definitions

• A measure of similarity between a pair of 

energy signals, x[n] and y[n], is given by the 

cross-correlation sequence defined by 

• The parameter    called lag, indicates the 

time-shift between the pair of signals
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Correlation of SignalsCorrelation of Signals

• If y[n] is made the reference signal and we 

wish to shift x[n] with respect to y[n], then 

the corresponding cross-correlation 

sequence is given by

• Thus,           is obtained by time-reversing
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Correlation of SignalsCorrelation of Signals

• The autocorrelation sequence of x[n] is 

given by

obtained by setting y[n] = x[n] in the 

definition of the cross-correlation sequence

• Note:                                           , the energy 

of the signal x[n]
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Correlation of SignalsCorrelation of Signals

• From the relation                          it follows 

that                           implying that           is 

an even function for real x[n]

• An examination of                               

reveals that the expression for the cross-

correlation looks quite similar to that of the 

linear convolution
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Correlation of SignalsCorrelation of Signals

• This similarity is much clearer if we rewrite 

the expression for the cross-correlation as

• The cross-correlation of y[n] with the 

reference signal x[n] can be computed by 

processing x[n] with an LTI discrete-time 

system of impulse response ][ ny −

][][)]([][][ llll −=−−=∑∞
−∞= yxnynxr

nxy *

][ ny −][nx ][nrxy



Correlation of SignalsCorrelation of Signals

• Likewise, the autocorrelation of x[n] can be 

computed by processing x[n] with an LTI 

discrete-time system of impulse response

][ nx −][nx ][nrxx

][ nx −



Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• Consider two finite-energy sequences x[n] 

and y[n]

• The energy of the combined sequence        

is also finite and 

nonnegative, i.e.,
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Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• Thus

where                          and

• We can rewrite the equation on the previous 

slide as

for any finite value of a
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Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• Or, in other words, the matrix

is positive semidefinite

•





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
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Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• The last inequality on the previous slide 

provides an upper bound for the cross-

correlation samples

• If we set y[n] = x[n], then the inequality 

reduces to
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Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• Thus, at zero lag (        ), the sample value 

of the autocorrelation sequence has its 

maximum value

• Now consider the case

where N is an integer and b > 0 is an 

arbitrary number

• In this case

0=l
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Properties of Autocorrelation and Properties of Autocorrelation and 

CrossCross--correlation Sequencescorrelation Sequences

• Therefore

• Using the above result in

we get

xxyx bb EEEE == 22

yxyyxxxy rrr EE=≤ ][][|][| 00l

][][][ 00 xxxyxx rbrrb ≤≤− l



Correlation Computation Correlation Computation 

Using MATLABUsing MATLAB

• The cross-correlation and autocorrelation 

sequences can easily be computed using

MATLAB

• Example - Consider the two finite-length 

sequences

[ ]244121231 −−=][nx

[ ]321412 −−=][ny



Correlation Computation Correlation Computation 

Using MATLABUsing MATLAB

• The cross-correlation sequence       

computed using Program 2_7 of text is 

plotted below
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Correlation Computation Correlation Computation 

Using MATLABUsing MATLAB

• The autocorrelation sequence           

computed using Program 2_7 is shown below

• Note: At zero lag,           is the maximum
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Correlation Computation Correlation Computation 

Using MATLABUsing MATLAB

• The plot below shows the cross-correlation 

of x[n] and                          for N = 4

• Note: The peak of the cross-correlation is 

precisely the value of the delay N
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The plot below shows the autocorrelation of

x[n] corrupted with an additive random 
noise generated using the function randn

• Note: The autocorrelation still exhibits a 

peak at zero lag
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Correlation Computation Correlation Computation 

Using MATLABUsing MATLAB

• The autocorrelation and the cross-

correlation can also be computed using the 
function xcorr

• However, the correlation sequences 

generated using this function are the time-

reversed version of those generated using

Programs 2_7 and 2_8



Normalized Forms of Normalized Forms of 
Correlation Correlation 

• Normalized forms of autocorrelation and 

cross-correlation are given by

• They are often used for convenience in 

comparing and displaying

• Note:                   and                    

independent of the range of values of x[n]

and y[n]
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Correlation Computation for Correlation Computation for 

Power SignalsPower Signals

• The cross-correlation sequence for a pair of 

power signals, x[n] and y[n], is defined as

• The autocorrelation sequence of a power 

signal x[n] is given by
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Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals

• The cross-correlation sequence for a pair of 

periodic signals of period N, and ,

is defined as

• The autocorrelation sequence of a periodic 

signal         of period N is given by
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Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals

• Note: Both           and           are also 

periodic signals with a period N

• The periodicity property of the 

autocorrelation sequence can be exploited to 

determine the period of a periodic signal 

that may have been corrupted by an additive 

random disturbance
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Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals

• Let be a periodic signal corrupted by 

the random noise d[n] resulting in the signal

which is observed for                       where

][nx~

][][][ ndnxnw += ~

10 −≤≤ Mn
NM >>



Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals

• The autocorrelation of w[n] is given by
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Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals

• In the last equation on the previous slide,     

is a periodic sequence with a period N and 

hence will have peaks at                           

with the same amplitudes as    approachesM

• As        and d[n] are not correlated, samples 

of cross-correlation sequences          and          

are likely to be very small relative to the 

amplitudes of
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Correlation Computation for Correlation Computation for 

Periodic SignalsPeriodic Signals
• The autocorrelation            of d[n] will show

a peak at = 0 with other samples having 

rapidly decreasing amplitudes with 

increasing values of

• Hence, peaks of            for > 0 are 

essentially due to the peaks of          and can 

be used to determine whether         is a 

periodic sequence and also its period N if 

the peaks occur at periodic intervals
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Correlation Computation of a Correlation Computation of a 

Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• Example - We determine the period of the 

sinusoidal sequence                             ,             

corrupted by an additive 

uniformly distributed random noise of 

amplitude in the range

• Using Program 2_8 of text we arrive at the 

plot of shown on the next slide
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Correlation Computation of a Correlation Computation of a 
Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• As can be seen from the plot given above, 

there is a strong peak at zero lag

• However, there are distinct peaks at lags that 
are multiples of 8 indicating the period of the 
sinusoidal sequence to be 8 as expected
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Correlation Computation of a Correlation Computation of a 
Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• Figure below shows the plot of

• As can be seen           shows a very strong 

peak at only zero lag
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