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What is a signal ?

A signal is a function of an independent
variable such as time, distance, position,
temperature, pressure, etc.



For example...

Electrical Engineering
voltages/currents in a circuit
speech signals

image signals

Physics

radiation

Mechanical Engineering
vibration studies
Astronomy

space photos



or

 Biomedicine
EEG, ECG, MRI, X-Rays, Ultrasounds

* Seismology
tectonic plate movement, earthquake prediction

e Economics
stock market data
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What is DSP?

Mathematical and algorithmic manipulation of discretized and
quantized or naturally digital signals in order to extract the most
relevant and pertinent information that is carried by the signal.

Signal to be R
processed

What 1s a signal?

, Processed
signal

What 1s a system?
What is processing?



Signals can be characterized in several ways

Continuous time signals vs. discrete time signals (x(?), x[n]).
Temperature in London / signal on a CD-ROM.

Continuous valued signals vs. discrete signals.

Amount of current drawn by a device / average scores of TOEFL in a school
OVer years.

—Continuous time and continuous valued : Analog signal.
—Continuous time and discrete valued: Quantized signal.
—Discrete time and continuous valued: Sampled signal.
—Discrete time and discrete values: Digital signal.

Real valued signals vs. complex valued signals.
Resident use electric power / industrial use reactive power.

Scalar signals vs. vector valued (multi-channel) signals.
Blood pressure signal / 128 channel EEG.

Deterministic vs. random signal:
Recorded audio / noise.

One-dimensional vs. two dimensional vs. multidimensional
signals.
Speech / still image / video.
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Systems

« For our purposes, a DSP system 1s one that can mathematically
manipulate (e.g., change, record, transmit, transform) digital
signals.

« Furthermore, we are not interested in processing analog signals
either, even though most signals in nature are analog signals.

~ Processed

Signal to be R
signal

processed




Various Types of Processing

Modulation and demodulation.
Signal security.

Encryption and decryption.
Multiplexing and de-multiplexing.
Data compression.

Signal de-noising.

Filtering for noise reduction.
Speaker/system identification.
Signal enhancement —equalization.
Audio processing.

Image processing —image de-noising, enhancement,
watermarking.

Reconstruction.

Data analysis and feature extraction.
Frequency/spectral analysis.



Filtering

* By far the most commonly used DSP operation

Filtering refers to deliberately changing the frequency content of the signal,
typically, by removing certain frequencies from the signals.

For de-noising applications, the (frequency) filter removes those frequencies
in the signal that correspond to noise.

In various applications, filtering is used to focus to that part of the spectrum
that is of interest, that is, the part that carries the information.

* Typically we have the following types of filters

Low-pass (LPF) —-removes high frequencies, and retains (passes) low
frequencies.

High-pass (HPF) —removes low frequencies, and retains high frequencies.

Band-pass (BPF) —retains an interval of frequencies within a band, removes
others.

Band-stop (BSF) —removes an interval of frequencies within a band, retains
others.

Notch filter —removes a specific frequency.



A Common Application: Filtering

80 Hz Lowpass filter cutput Highpass filter cutput 150 Hz
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Components of a DSP System

Analog
signal

Digital
signal

Digital Quantized Analog
signal signal signal Processed
j ] analog signal




Components of a DSP System

(a) ContinuousTime Signal
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Components of a DSP System

(e) Filtered Signal
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Analog-to-Digital-to-Analog...?

Why not just process the signals in continuous time domain? Isn’t it just a waste of time,
money and resources to convert to digital and back to analog?

Why DSP? We digitally process the signals in discrete domain, because it is

More flexible, more accurate, easier to mass produce.

Easier to design.

» System characteristics can easily be changed by programming.

* Any level of accuracy can be obtained by use of appropriate number
of bits.

More deterministic and reproducible-less sensitive to component values,

etc.

Many things that cannot be done using analog processors can be done

digitally.

e Allows multiplexing, time sharing, multi-channel processing, adaptive filtering.

» Easy to cascade, no loading effects, signals can be stored indefinitely w/o loss.

* Allows processing of very low frequency signals, which requires unpractical
component values in analog world.



Analog-to-Digital-to-Analog...?

 On the other hand, it can be
— Slower, sampling issues.

— More expensive, increased system complexity,
consumes more power.

* Yet, the advantages far outweigh the
disadvantages. Today, most continuous time
signals are in fact processed in discrete time
using digital signal processors.



Analog-Digital

Examples of analog technology

* photocopiers

* telephones

 audio tapes

* televisions (intensity and color info per scan line)
 VCRs (same as TV)

Examples of digital technology

* Digital computers!



In the next few slides you can see some
real-life signals
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Stock Market Data
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Satellite image
Volcano Kamchatka Peninsula, Russia
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Satellite image
Volcano in Alaska
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Medical Images:
MRI of normal brain
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Medical Images:
X-ray knee




Medical Images: Ultrasound

Five-month Foetus (lungs, liver and bowel)

i
J‘i .'I'
il




Astronomical 1images

Spiral Galaxy NGC 1232 - VLT UT 1 + FORS1

-+l
ESO PR Photo 37d/98 (23 September 1998) @FEuropean Southern Observatory



Discrete-Time Signals:
Time-Domain Representation

Signals represented as sequences of
numbers, called samples

Sample value of a typical signal or sequence
denoted as x[n] with n being an integer 1n
the range —0 <n < o0

x[n] defined only for integer values of # and
undefined for noninteger values of n

Discrete-time signal represented by {x[#]}



Discrete-Time Signals:
Time-Domain Representation

* Here, n-th sample i1s given by

x[n]= xa(t)\t:nT =x,(nT),n=...,—2,—-10,,...

» The spacing T 1s called the sampling interval or
sampling period

* Inverse of sampling interval 7, denoted as Fr, 1s
called the sampling frequency: F, =(T)"

..li'ﬂf—j Ti \.

ir
4

5T 3T -T 0T
/
x,(3T)




Discrete-Time Signals:
Time-Dorain Representation

* Two types of discrete-time signals:

- Sampled-data signals in which samples
are continuous-valued

- Digital signals 1n which samples are
discrete-valued

* Signals 1n a practical digital signal
processing system are digital signals
obtained by quantizing the sample values
either by rounding or truncation



2 Dimensions
From Continuous to Discrete: Sampling

256x256 64x64




Discrete (Sampled) and Digital (Quantized) Image




Discrete (Sampled) and Digital (Quantized) Image




Discrete (Sampled) and Digital (Quantized) Image

256x256 256 levels 256x256 32 levels




Discrete (Sampled) and Digital (Quantized) Image

256x256 256 levels 256x256 2 levels




Discrete-Time Signals:
Time-Dorain Representation

* A discrete-time signal may be a finite-
length or an infinite-length sequence

 Finite-length (also called finite-duration or
finite-extent) sequence 1s defined only for a
finite time interval: Ny <n< N,

where —oo< Ny and N, <o with Ny <N,

* Length or duration of the above finite-
length sequence 1s N = N, — N +1



Discrete-Time Signals:
Time-Dorain Representation

* A right-sided sequence x[7n] has zero-
valued samples for n < N

it . 1]
R

A right-sided sequence

» If Ny =0,a right-sided sequence 1s called a
causal sequence



Discrete-Time Signals:
Time-Dorain Representation

* A left-sided sequence x[n] has zero-valued
samples for n > N,

A,

A left-sided sequence

» [f Ny £0,a left-sided sequence 1s called a
anti-causal sequence



Operations on Sequences

* A single-input, single-output discrete-time
system operates on a sequence, called the
input sequence, according some prescribed
rules and develops another sequence, called
the output sequence, with more desirable

properties

Discrete-time
system

x|n] —

— yln]

Input sequence

Output sequence



Example of an Operation on a Sequence:
Noise Removal

* For example, the input may be a signal
corrupted with additive noise

» A discrete-time system may be designed to
generate an output by removing the noise
component from the mput

* In most cases, the operation defining a
particular discrete-time system 1s composed
of some basic operations



Basic Operations

* Product (modulation) operation:

x|n] 4@—’ yln
— Modulator = x[n] - wln]

w|n]

* An application is the generation of a finite-length
sequence from an infinite-length sequence by
multiplying the latter with a finite-length sequence
called an window sequence

* Process called windowing



Basic Operations

» Addition operation:

x[n] a@ﬂ y[n]
— Adder yln]=x[n]+wln]

wln]

* Multiplication operation

A

- Multiplier ~ x[n]—{ >—»in]  y[n]=4-x[n]



Basic Operations

* Time-shifting operation:

where N 1s an integer

yin]=x[n-N|

 [f N> 0, 1t 1s a delay operation

— Unit delay

x[n] — z

1y yln]=x[n—1]

* [f N<O, 1t 1s an advance operation

— Unit advance

xX[n] —

Z

—— y[n] yln]=x[n+1]




Basic Operations

* Time-reversal (folding) operation:

yln]=x[-n]

* Branching operation: Used to provide
multiple copies of a sequence

x[n] — I > x[n]

x[n]



Combinations of Basic

Operations
« Example -
x(n] 7} Hn -1l ! xln - 2] = x[n - 3]
%;1 N i <7a 4
' a4
yln]

yin]l=ax[n]+oarx|n—1]+ozx|n — 2]+ ayx|n —3]



Sampling Rate Alteration

Employed to generate a new sequence y|[#]
with a sampling rate FT' higher or lower
than that of the sampling rate Fr of a given
sequence x[n] .

: F
Sampling rate alteration ratio is R="1

Fr

If R > 1, the process called interpolation
If R <1, the process called decimation



Sampling Rate Alteration

* In up-sampling by an integer factor L > 1,

L —1 equidistant zero-valued samples are
inserted by the up-sampler between each
two consecutive samples of the mnput
sequence x[n]:

‘x[n/L], n=0,£L,£2L,--

Xy [n]=+< .
. 0, otherwise

x[n]—it L — x,[n]




Amplitude

Sampling Rate Alteration

* An example of the up-sampling operation

Input Sequence Output sequence up-sampled by 3

Al T% NHL i i ; jHJTi

_l L OO L L OQ _1 1 1 1 L O
0 10 20 30 40 50 0 10 20 30 40 50
Time index n Time index n

1

il

Amplitude




Sampling Rate Alteration

* In down-sampling by an integer factor

M > 1, every M-th samples of the input
sequence are kept and M —1 in-between
samples are removed:

yln]=x[nM |

x[n]—

| M

— y|n]




Sampling Rate Alteration

operation

* An example of the down-sampling

1
0.5}
: TT
é 0
<




Classification of Sequences
Based on Symmetry

 Conjugate-symmetric sequence:

x[n]=x*[—-n]

If x[n] 1s real, then 1t 1s an even sequence

o

ol

Q

Q

Q

I

o

e}

o

An even sequence

5o
9]

1

0

1

Q

Gél




Classification of Sequences
Based on Symmetry

 Conjugate-antisymmetric sequence:
x[n]=—-x*[-n]

If x[n] 1s real, then 1t 1s an odd sequence

An odd sequence



Classification of Sequences
Based on Symmetry

[t follows from the definition that for a
conjugate-symmetric sequence {x[z]}, x[0]
must be a real number

* Likewise, 1t follows from the definition that

for a conjugate anti-symmetric sequence
{y[n]}, y[0] must be an imaginary number

 From the above, it also follows that for an
odd sequence {w[n]}, w[0] =0



Classification of Sequences
Based on Symmetry

* Any complex sequence can be expressed as a
sum of 1ts conjugate-symmetric part and 1ts
conjugate-antisymmetric part:

x[n] = xg5[n]+ x4 0]
where



Classification of Sequences
Based on Symmetry

* Any real sequence can be expressed as a
sum of its even part and 1ts odd part:

x[n] — ev[ ]-I—de[ ]
where



Classification of Sequences
Based on Periodicity

* A sequence X[n]satistying X[n|=X[n+kN]

1s called a periodic sequence with a period N where N 1s
a positive integer and k 1s any integer

» Smallest value of N satisfying X[n]=X[n+kN]
1s called the fundamental period

Al e e,

6 -5 4 -3-2-1 01 2 3 4 56 78 9 101112 13 14 15

* A sequence not satisfying the periodicity condition 1s
called an aperiodic sequence



Classification of Sequences:
Energy and Power Signals

» Total energy of a sequence x[n] 1s defined by
Q0
2
Ex = Z‘x[n]‘
N1=—00
* An infinite length sequence with finite sample

values may or may not have finite energy

A finite length sequence with finite sample
values has finite energy



Classification of Sequences:
Energy and Power Signals

* The average power of an aperiodic

sequence 1s defined by
K

B;_}{lg}oy(l Z\x ‘

* We define the energy of a sequence x[n]
over a finite interval - K <n <K as

— ﬁKx[n]z



Classification of Sequences:
Energy and Power Signals

* The average power of a periodic sequence
x|n] with a period N is given by

* The average power of an infinite-length
sequence may be finite or infinite



Classification of Sequences:
Energy and Power Signals

« Example - Consider the causal sequence
defined by

31", n>0
0, n<0

* Note: x[#] has infinite energy

x[n]=-

\

* [ts average power 1s given by

K
P = lim | (9 zlj= lim 2E D 4

Yo ksw2K+1\ Zo) Koo 2K +1



Classification of Sequences:
Energy and Power Signals

* An infinite energy signal with finite average
power 1s called a power signal

Example - A periodic sequence which has a
finite average power but infinite energy

* A finite energy signal with zero average
power 1s called an energy signal



Classification of Sequences:
Deterministic-Stochastic

;m T‘ch @WI‘? 3
1yl 1 mﬁ )
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Other Types of Classifications

] 1s said to be bounded 1f
x[n] < B, <o

e A sequence x|[n

» Example - The sequence x[n]=cos0.3nn 1s a
bounded sequence as

x[n] =cos0.3nn <1



Other Types of Classifications

* A sequence x[n] 1s said to be absolutely

summable 1f
_Z\x[n]\ < 00

» Example - The sequence

_J0.3", n>0
mnl {o, <0

1s an absolutely summable sequence as

> 0.3" =1.42857 < oo
n=0

1
1-0.3



Other Types of Classifications

* A sequence x[n] 1s said to be square-

summable if
> x[n]” <o

Nn=—00

» Example - The sequence

sin 0.4n
hln|==—"1,

1s square-summable but not absolutely
summable



Basic Sequences

1, n=0
0, n#0

 Unit sample sequence - o[n]=-




Basic Sequences

* Real sinusoidal sequence -
x[n]= Acos(w,n+ )
where A4 1s the amplitude, ®, 1s the angular
frequency, and ¢ is the phase of x[#n]

Example -

26

Ampl tude

1
0
1t
-2



Basic Sequences

 Complex exponential sequence -

x[n]=Aa", —o<n<w
where 4 and « are real or complex numbers
+ If we write o= e(%o™/%) 4=|4e’?,

then we can express

x[n] = \A\ejd)e(%”%)n =x, .[n]+ jx;,[n],

where

Xpel 7.
]=4e”" sin(w,n + d)

xim- |

1=4e°" cos(w,n + 0),



Amplitude

1

o
o
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o
N

1
—

Basic Sequences

 x.|n]and x,, [n]of a complex exponential
sequence are real sinusoidal sequences with
constant (= 0), growing (o, > 0), and
decaying (o, < 0) amplitudes for n > 0
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Time index n

Real part Imaginary part
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Amplitude
\®]

Basic Sequences

* Real exponential sequence -
x[n]=A4Aa", —o<n<ow
where 4 and o are real or complex numbers

a= 1.2 a= 09
T T T 200 T T T
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Basic Sequences

 Sinusoidal sequence Acos(w, #z+ ¢) and
complex exponential sequence Bexp(jw,n)

are periodic sequences of period N if o, N =2xr
where N and r are positive integers
e Smallest value of N satisfying ®,N = 27r
1s the fundamental period of the sequence
* To verity the above fact, consider
xi[n]=cos(®,n+ )
Xs[n]=cos(w,(n+ N)+ 0)



Basic Sequences

* Now Xxy[n]=cos(®,(n+N)+0)
=cos(w, 1+ ¢)cosw, N —sin(®w n + ¢)sinow, N
which will be equal to cos(w n + ¢) = x{[n]
only 1f
sinw,N =0 and cos®,N =1
» These two conditions are met if and only 1f
2n _ N

o,N=2nr or ===
®

0 r



Basic Sequences

* If 2n/®, 1s a noninteger rational number, then
the period will be a multiple of 2n/m,

* Otherwise, the sequence 1s aperiodic

 Example - x[n]=sin(~/3n+¢) is an aperiodic
sequence




Basic Sequences

2 ‘ ‘ ‘
10/0/0.0.00/00,0000.000.00.0000.0.000.00000000006.0000
151
Q
E
=
(=¥
=
<
0.5
0
0 10 20 30 40

Time index n

* Here o, =0

* Hence period Nzﬂzl forr=20

0



Basic Sequences

ZWT? W ,?TWT? W ﬁﬂ
KR

* Here o, =0.1m

o HenceNz—r=20 forr=1
0.17



Basic Sequences

* Property 1 - Consider x[n] =exp(jo;n) and
yln]=exp(jm,n) with 0<®; <7 and

21tk < ®, < 2m(k +1) where k 1s any positive
integer

o If w, =+ 27k, then x[n] = y[n]

* Thus, x[n] and y[n] are indistinguishable



Basic Sequences

* Property 2 - The frequency of oscillation of

Acos(mw,n) increases as ®, increases from 0

to m, and then decreases as ®, increases from
T to2x

* Thus, frequencies 1n the neighborhood of

o =0 are called low frequencies, whereas,
frequencies 1n the neighborhood of w =7 are
called high frequencies



Basic Sequences

* Because of Property 1, a frequency @, 1n
the neighborhood of ® = 2m k 1s
indistinguishable from a frequency ®, — 2wk
in the neighborhood of ® =0

and a frequency ®, in the neighborhood of
o =m(2k+1) 1s indistinguishable from a
frequency w, —m(2k+1) 1n the
neighborhood of ® =



Basic Sequences

Frequencies 1n the neighborhood of ® = 27w k
are usually called low frequencies

Frequencies in the neighborhood of

o = 1 (2k+1) are usually called high
frequencies

vi[n]=cos(0.1ntn) =cos(1.9tn) is a low-
frequency signal

Vy[n]=cos(0.8tn) =cos(1.2mtn) is a high-
frequency signal



Basic Sequences

* An arbitrary sequence can be represented 1n
the time-domain as a weighted sum of some
basic sequence and 1ts delayed (advanced)

versions
o 1.5

1
0.75
s | ]
0 2__, OO 11
4 6

“—1—*2—1:]11"3 5 7
1

x[n]=0.50[n+2]+1.56[n—1]-0[n—-2]
+0[n—4]+0.756[n— 6]



The Sampling Process

* Often, a discrete-time sequence x[n] 1s
developed by uniformly sampling a
continuous-time signal x_(¢) as indicated

below
Xl — ST,I\

mm Al

5T 3T -T 0T

rST,a

* The relation between the two signals 1s

x[n]= xa(t)\t:nT =x,(nT),n=...,—2,—-1,0,1,2,...



The Sampling Process

e Time variable ¢ of x,(¢)1s related to the time
variable n of x[#n] only at discrete-time
instants ¢, given by

_ 7 N _271n
t, =nl = E-Q
with F. =1/T denoting the sampling
frequency and
Qr =271 Fr denoting the sampling angular
frequency



Hertz
The Sampling Process
* Consider the contingdus-time signal
x(t) = Acos(21@ +¢) = Acos(Q2,t + 0)
* The corresponding discrete-time signal 1s

x[n]= ACOS(QOWS(ZTCQO n+d)
Q7

= A COS((DOn + (I)) seconds

where ©, = 2T QO/ QT radians per second

1s the normalized digital angular frequency
of x[n]




The Sampling Process

If the unit of sampling period 7T 1s 1n
seconds

The unit of normalized digital angular
frequency w, 1s radians/sample

The unit of normalized analog angular
frequency Q 1s radians/second

The unit of analog frequency f, is hertz
(Hz)



The Sampling Process

* The three continuous-time signals
g1(¢) =cos(6m?)
g,(t)=cos(l4ri)
g5(t) =cos(26m7)

of frequencies 3 Hz, 7 Hz, and 13 Hz, are
sampled at a sampling rate of 10 Hz, 1.¢.
with 7'= 0.1 sec. generating the three
sequences

g[n]=cos(0.6nn)  g[n]=cos(l.4rn)

g3|n]=cos(2.6mtn)



The Sampling Process

 Plots of these sequences (shown with circles)
and their parent time functions are shown

1 T T T N T V)
N \ SR
“ | / \ |
0.5F jﬁ‘ L \‘J &w | qfﬁ -
| / > ) “w |
Q f I | \
—5 ‘\‘ ‘\‘ ‘\‘ ‘\‘
é 0Or ““ _
< < “‘ “‘ “‘ <
05+ “‘\ “\“ “\“ “\“ /““ —
\ / | ‘i f‘ f /
\ \ f /o
-1 \\J ! \ ! \ /j ! j \ ,_//
0 0.2 0.4 0.6 0.8 1
time

* Note that each sequence has exactly the same
sample value for any given n



The Sampling Process

» This fact can also be verified by observing that
g,[n]=cos(l.4nn) = cos((2n—0.6m)n) = cos(0.67 n)

g:[n] = cos(2.6nn) = cos((2n +0.67)n) = cos(0.67 n)

* As aresult, all three sequences are 1dentical
and 1t 1s difficult to associate a unique

continuous-time function with each of these
sequences



The Sampling Process

* The above phenomenon of a continuous-
time signal of higher frequency acquiring
the 1dentity of a sinusoidal sequence of
lower frequency after sampling 1s called
aliasing



The Sampling Process

» Since there are an infinite number of
continuous-time signals that can lead to the
same sequence when sampled periodically,
additional conditions need to imposed so
that the sequence {x[n]}={x, (nT)} can
uniquely represent the parent continuous-
time signal x,(¥)

* In this case, x,(¢) can be fully recovered
from {x[n]}



The Sampling Process

» Example - Determine the discrete-time
signal v[n] obtained by uniformly sampling
at a sampling rate of 200 Hz the continuous-
time signal
v, (1) =6cos(60m?)+3s1n(3007?) + 2 cos(340m¢)

+4cos(500mt) +10sin(66077)

» Note: v,(¢) 1s composed of 5 sinusoidal
signals of frequencies 30 Hz, 150 Hz, 170
Hz, 250 Hz and 330 Hz



The Sampling Process

1

* The sampling period 1s T = 200 = 0.005 sec
* The generated discrete-time signal v[n] 1s
thus given by

v[n] = 6cos(0.3ntn) + 3sin(1.5nn) + 2 cos(1.7nn)
+ 4 cos(2.5mn) +10sin(3.3ntn)

= 6.¢05(0.37n) + 3sin((27 — 0.57)n ) + 2 cos((27 — 0.37)n)
+ 4 cos((2m + 0.5m)n) + 10sin((4n — 0.77) n)



The Sampling Process

= 6c0s(0.3tn) — 3sin(0.5tn) + 2 cos(0.3wn) + 4 cos(0.5mn)
—10s1n(0.7tn)

= 8¢0s(0.3ntn) + 5cos(0.5tn+ 0.6435) —10sin(0.77tn)

* Note: v[n] 1s composed of 3 discrete-time
sinusoidal signals of normalized angular
frequencies: 0.3w, 0.5w, and 0.77



The Sampling Process

* Note: An 1dentical discrete-time signal 1s
also generated by uniformly sampling at a

200-Hz sampling rate the following
continuous-time signals:

w, (1) = 8cos(607z) + Scos(100ms + 0.6435) —10smn(14077)

g, () =2cos(607t) + 4cos(100mz) +10sin(26077)
+ 6 cos(460m¢) + 3sin(7007¢)



The Sampling Process

e Recall o, =

e Thus if Q7 >2Q , then the corresponding
normalized digital angular frequency ®, of
the discrete-time signal obtained by
sampling the parent continuous-time
sinusoidal signal will be 1n the range — Tt <0<

. ‘ No aliasing



The Sampling Process

* On the other hand, 1f Q7 <2€Q)_, the
normalized digital angular frequency will
foldover 1nto a lower digital frequency
®, =21, /Qr),. intherange —t<w<
because of aliasing

* Hence, to prevent aliasing, the sampling
frequency €, should be greater than 2
times the frequency €2, of the sinusoidal
signal being sampled



The Sampling Process

* Generalization: Consider an arbitrary
continuous-time signal x,(#) composed of a
welghted sum of a number of sinusoidal
signals

* x,(¢) can be represented uniquely by its
sampled version {x[n]} if the sampling
frequency € 1s chosen to be greater than 2
times the highest frequency contained 1n

X, (1)



The Sampling Process

* The condition to be satistied by the
sampling frequency to prevent aliasing 1s
called the sampling theorem

» A formal proof of this theorem will be
presented later



Discrete-Time Systems

* A discrete-time system processes a given
input sequence x[#] to generates an output
sequence y[n] with more desirable

properties

* In most applications, the discrete-time
system 1s a single-input, single-output

system:

x[n] ——

Discrete — time
System

— y[n]

Input sequence

Output sequence



Discrete-Time Systems:

Examples

* 2-mput, 1-output discrete-time systems -
Modulator, adder

* |-mput, 1-output discrete-time systems -
Multiplier, unit delay, unit advance

x[n]

x[n - 1]

<

x[n - 2]

x[n - 3]

70‘1 W3 <7°‘4
v




Discrete-Time Systems: Examples

e Accumulator -

)= Sx(0] = a1+ xfn)= s{n=1]+x{n)

* The output y[#] at time 1nstant 7 1s the sum
of the input sample x[#] at time 1nstant »
and the previous output y|n—1] at time
instant #»—1, which 1s the sum of all
previous input sample values from —oo to n—1

* The system cumulatively adds, 1.e., 1t
accumulates all input sample values



Discrete-Time Systems:Examples

* Accumulator - Input-output relation can
also be written 1n the form

nl= Safe]+ Sl
= y[-1]+ ix[f], n=0

* The second form 1s used for a causal input
sequence, in which case y[—1] 1s called
the initial condition



Discrete-Time Systems:Examples

* M-point moving-average system -
()= S x{n k]
nl=-, 2. x[n-
Y M

* Used 1in smoothing random variations in
data

* An application: Consider
x[n] = s[n] + d|n],

where s[n] 1s the signal corrupted by a noise
d[n]



Discrete-Time Systems:Examples
s[n]=2[n(0.9)"], d[n] - random signal

8
N — d[n]
o AN sl
; \\\‘\Q\ — x[n]
g 4 IS
2 N
22 I

2 10 20 30 40 50
Time index n
7 -
— s[n]
6r / // N — yln] |
5 r / / \_
24 /) AR
5?37 /] \
/ <
2r | N
1 ,‘,«""/ \/\\\b
% 10 20 30 20 50




Discrete-Time Systems:Examples

* Linear interpolation - Employed to estimate
sample values between pairs of adjacent
sample values of a discrete-time sequence

» Factor-of-4 interpolation

x[n] ? xu[n]

LD LD

n —0—0 n
0 2 3 o 1 2 3 5 6 7 88 9 10 11 12




Discrete-Time Systems:
Examples

» Factor-of-2 interpolator -

n] = x,[n]+ 5 (x,[n =11+ x,[n +1])

» Factor-of-3 interpolator -

yin)=x,[n]+ 5 (x,[n =11+ x,[n +2])

—|—§(xu[n—2]+xu[n+1])



Discrete-Time Systems:
Classification

Linear System
Shift-Invariant System
Causal System
Stable System

Passive and Lossless Systems



Linear Discrete-Time Systems

* Definition - If y,[n]is the output due to an
input x,[#] and y,[#] 1s the output due to an
input x,[n] then for an input

x[n]=ax|n]+ px,[n]
the output 1s given by
yinl=a yn]+ f y,[n]

* Above property must hold for any arbitrary
constants « and £, and for all possible
inputs x;[#] and x,[#]




Accumulator:
Linear Discrete-Time System?

+ Accumulator -y [n]= 5[4, yilnl= Yx,[0]
» For an input E__OO o

x[n]=ax[n]+ fx,[n]
the output 1s

n

y[n]= Z(ax1[€]+,b'x2[€])

f=—00

=a Yx[0]+f Sxll]=aynl+ fyln

* Hence, the above system 1s linear



Causal Accumulator:
Linear Discrete-Time System?

* The outputs yj[#]and y,[n] for inputs x;[#]
and x,[n]are given by .

i le

mln]=y[-1]+ sz[f

* The output y[n] for an 1nput a xi[n]+ B x,[n]
1s given by

n

y[n]= y[-11+ > (ax[{]1+ Bx,[/])

=0



Causal Accumulator cont.:
Linear Discrete-Time System?

» Now a yi[n]+ B y,[n
=a(y[-1]+ le[fi) + A [=11+ 2 x[f])
/=0

— (@ [-1]+ B yal- >+<azx1 0+ B3 500
/=0

* Thus y[n]=ay[n]+ B y,[n] it
yi-l=ay[-11+ S y,[-1]



Causal Accumulator cont.:
Linear Discrete-Time System?

* For the causal accumulator to be linear the
condition y[-1]=a y,[-1]+ B y,[-1]
must hold for all initial conditions y[—1],
y[-1], ¥2[—1], and all constants & and 3

e This condition cannot be satisfied unless the
accumulator 1s mitially at rest with zero
initial condition

* For nonzero 1nitial condition, the system 1s
nonlinear



A Nonlinear Discrete-Time System

* Consider
yln]= x° In]—x|n—1]x|n+1

* Outputs yj[n]and y;[7] for inputs x;[#]
and x,[n]are given by

nlnl=xt[n]—x[n—1lx[n+1]

yaln]=x3[n]—x;[n—1]x,[n +1]



A Nonlinear Discrete-Time System cont.

e Output y[n] due to an input a xj[n]+ £ x,[#]
1s given by

y[nl={axi[n]+ Bxy[n]}”
—{ax[n—1]+ fx;[n—1]Hax[n+1]+ fx;[n+1]}
= {x{ [n]—x[n—1]x [n+1]}

+ B3 [n] = xy[n—1]xy[n+1]}

+af2xi[n]x;y[n]—x[n—1]x;[n+1]-x[n+1]x;[n—-1]}




A Nonlinear Discrete-Time System cont.

 On the other hand
ay[n]+ B y,[n]
= o {x{ [n]—x[n— 1] [n +1]}
+ Bix3[n]-xy[n =1y [n+1]}
# y|n]

* Hence, the system 1s nonlinear



Shift (Time)-Invariant System

 For a shift-invariant system, if yy[#] is the
response to an input x;[#n], then the response to
an mput x[n]|=x[n—n,]
18 simply y[n] = y[n—n,]
where n, 1S any positive or negative integer

* The above relation must hold for any arbitrary
input and 1ts corresponding output

 If »n 1s discrete time, the above property 1s called
time-invariance property




Up-Sampler:
Shift-Invariant System?

» Example - Consider the up-sampler with an
input-output relation given by
¥ [n]= x[n/L], n=0,xL,x2L,.....
utd 0, otherwise

» For an input xy[n] = x[n —n, ] the output x ,[7]
1s given by
v [n]= {xl[n/L], n=0,xL*2L,.....
= 0, otherwise
_Jx[(n—=Ln,)/ L], n=0,=L,£2L,.....
B { 0, otherwise



Up-Sampler:
Shift-Invariant System?

 However from the definition of the up-sampler

X [n o no]
_Jxl(n=n,)/ L], n=n,,n,=Ln,+2L,.....
- 0, otherwise
7 Xu [n]

* Hence, the up-sampler 1s a time-varying system



Linear Time-Invariant System

* Linear Time-Invariant (LTI) System -
A system satisfying both the linearity and
the time-invariance property

» LTI systems are mathematically easy to
analyze and characterize, and consequently,
easy to design

» Highly useful signal processing algorithms
have been developed utilizing this class of
systems over the last several decades



Causal System

* In a causal system, the n,-th output sample
y|n,]depends only on input samples x[#]
for n <n, and does not depend on input
samples for n > n,

* Let yy[n] and y,[n] be the responses of a
causal discrete-time system to the inputs x| 7]
and x,[n], respectively



Causal System

 Then
xi[n]=x;|n] forn <N
implies also that
nilnl=y|nlforn <N

* For a causal system, changes 1n output
samples do not precede changes in the input
samples



Causal

System

» Examples of causal systems:

yln.
yln.

20!1)6':

= box

n.

+ oy x| N —

1]+ azx[n—2]+ ayx[n—3]

n]+bx[n =1

yln]=yln-1]+xn|

+byx[n—2]
+ay[n—=1]+ayy[n-2]

» Examples of noncausal systems:

yin]

= x,[n]+ ) (x,[n =1+ x,[n+1])



Causal System

* A noncausal system can be implemented as
a causal system by delaying the output by
an appropriate number of samples

* For example a causal implementation of the
factor-of-2 interpolator 1s given by

yn]=x,[n =11+ (x,[n 2]+ x,[n])



Stable Systemn

* There are various definitions of stability

* We consider here the bounded-input,
bounded-output (BIBO) stability

* If y[n] 1s the response to an mnput x[n] and 1f
x[n] < B, for all values of n
then
y[n]<B, forall values of



Stable System

 Example - The M-point moving average
filter 1s BIBO stable:

i M -1
yinl= Y xln—k]
k=0

» For a bounded input x[n] < B, we have

) M —1 i M —1
\ y[n]\ =1 kZ::Ox[n —k] < o kZ::()X[n — k]\

1
< (MB,)<B,



Passive and Lossless Systems

* A discrete-time system 1s defined to be
passive 1f, for every finite-energy mput x[n],
the output y[n] has, at most, the same energy,
1.€.

- 2 < 2
> v[n]” < D] <o
N=—00 11=—00

* For a lossless system, the above inequality is
satisfied with an equal sign for every input



Passive and Lossless Systems

« Example - Consider the discrete-time
system defined by y|n]|=a x|[n— N] with N
a positive integer

o [ts output energy 1s given by
Yylnl” <le” Yaln)’
N=—00 1=—00

» Hence, it is a passive system if || <1 and is
a lossless system if &/ =1



Impulse and Step Responses

» The response of a discrete-time system to a
unit sample sequence {Jn]} is called the
unit sample response or simply, the
impulse response, and is denoted by {4[n]}

* The response of a discrete-time system to a
unit step sequence {yn]} 1s called the unit
step response or simply, the step response,
and 1s denoted by {s[n]}



Impulse Response

« Example - The impulse response of the
system

yln]=ax|n]+ ayx[n -1+ azx|[n — 2]+ ayx[n — 3]
1s obtained by setting x[n] = o[n] resulting
in

h[n]=o0[n]+a,oln—1]+az0[n—2]+ a,0[n—3]

» The impulse response 1s thus a finite-length
sequence of length 4 given by

{h[n]}:{%l» Ay, 3, Qyf



Impulse Response

« Example - The impulse response of the
discrete-time accumulator

nl= al]
{=—0o0

1s obtained by setting x[n] = o[n] resulting
n

Hinl= 36101= uln]

f=—00



Impulse Response

« Example - The impulse response {%[n]} of
the factor-of-2 interpolator

vl =x,[n]+ ) (x,[n=1]+x,[n+1])

1s obtained by setting x,[n]=o[r] and 1s
given by |
h[n]=o[n]+ 2(5[11 —1]+o[n+1])

» The impulse response 1s thus a finite-length
sequence of length 3:

fh[n]} = 10.5, % 0.5



Time-Domain Characterization

of LTI Discrete-Time System

* Input-Output Relationship -
It can be shown that a consequence of the
linear, time-1nvariance property 1s that an
LTI discrete-time system is completely
characterized by its impulse response

° ‘ Knowing the impulse response one
can compute the output of the system for
any arbitrary mput



Time-Dormain Characterization
of LTI Discrete-Time System

* Let i[n] denote the impulse response of a
LTI discrete-time system

 We compute 1ts output y[n] for the mput:
xX[n]=0.58[n+2]+1.58[n —1]—8[n—2]+0.758[n — 5]

* As the system 1s linear, we can compute its
outputs for each member of the mput
separately and add the individual outputs to
determine y[n]



Time-Dormain Characterization
of LTI Discrete-Time System

* Since the system 1s time-invariant

input output

oln+2]— hln+2]
oln—1]— hln—1]
o|ln—2]— h[n—-2]

o|ln—35]— h[n—73]



Time-Dormain Characterization
of LTI Discrete-Time System

* Likewise, as the system 1s linear
input output

0.50[n+2]—0.5hAn+2]
1.50[n—1]—>1.5h]n—1]
—oln—2]1—> —h[n-2]
0.750[n—5]— 0.75h]n — 3]

* Hence because of the linearity property we

B = 0.5hn+ 2]+ 1.5h[n—1]

—h[n—2]+0.75h[n - 3]




Time-Dormain Characterization
of LTI Discrete-Time System

* Now, any arbitrary mput sequence x[n] can
be expressed as a linear combination of
delayed and advanced unit sample
sequences 1n the form

x[n]= ¥ x[k18[n—k]
k=—00

* The response of the LTI system to an iput
x[k]o[n—k] will be x[k]h[n—k]



Time-Dormain Characterization
of LTI Discrete-Time System

* Hence, the response y[n] to an input

Anl= S a[k18[n—k]

k=—00

will be 00
yin]= 2 xlk]h[n—k]

k=—o0

which can be alternately written as

yinl= 2 x[n—k]h[k]

k=—00



Convolution Sum

The summation

yin]= 2 xlk]hln—k]= 2 x[n—k]h[n]

k=—0o0 k=—0o0
1s called the convolution sum of the
sequences x[n] and A[n] and represented
compactly as

yln] =x[n]® h[n]



Convolution Sum

* Properties -

* Commutative property:

x[n]® hln] = hln]® x|[n]
* Associative property :

(x[n]@hln])@yln] = x[n]@(h[n]@yln])
 Distributive property :

x[n]@(h[n] + y[n]) = x[n]@ Aln] + x[n]@y[n]



Simple Interconnection
Schemes

* Two simple interconnection schemes are:
» Cascade Connection

e Parallel Connection



Cascade Connection

— Iy[n]

* Impulse response #[n] of the cascade of two

" hpln]

>

— >

hyn]

—

mn]® hy|n]

mad

—

LTI discrete-time systems with impulse
responses /1y n] and /5[ n] 1s given by

Hn]= [n)®hyln]




Cascade Connection

* Note: The ordering of the systems in the
cascade has no effect on the overall impulse
response because of the commutative
property of convolution

» A cascade connection of two stable systems
1s stable

* A cascade connection of two passive
(lossless) systems 1s passive (lossless)



Cascade Connection

* An application 1s in the development of an
inverse system

e If the cascade connection satisfies the
relation

h[n]@®h,[n] = o[n]

then the LTI system 4| n] 1s said to be the
inverse of A,[n] and vice-versa




Cascade Connection

* An application of the inverse system
concept 1s in the recovery of a signal x[#n]
from 1its distorted version x[n] appearing at
the output of a transmission channel

* [f the impulse response of the channel 1s
known, then x[#n] can be recovered by
designing an mverse system of the channel

channel , Inverse system

x[n] —

xX|[n]

h[n] " hyln]

— Xx[n]

h[n]@®h,[n] =o[n




Cascade Connection

» Example - Consider the discrete-time
accumulator with an impulse response p|n]

* [ts inverse system satisfy the condition
pn]@hy[n] = d[n]

» It follows from the above that 4,[n]= 0 for
n<0 and

ho[1]=1
n
> hy[]1=0 for n>2
(=0



Cascade Connection

* Thus the impulse response of the inverse
system of the discrete-time accumulator 1s
given by

hy[n]=0[n]—o[n—1]

which 1s called a backward difference
system



Parallel Connection

g 1

7 jﬁ—' = —hn]+ hyln]—
" hyln]

Impulse response A[n] of the parallel
connection of two LTI discrete-time
systems with impulse responses 4| n] and
hy[n] is given by

hln]= hy[n]+ hy[n]



Simple Interconnection Schemes

* Consider the discrete-time system where
hyn]=09[n]+0.50[n—1],

hy|n]=0.50[n]—-0.250[n —1],

hs|n]= 20| n], T mn] —P—
haln] = —2(0.5)"u[n] | hoin]
t— hy[n] —P

hyln]




Simple Interconnection Schemes

* Simplifying the block-diagram we obtain

j—’ hy[n] P

hz[n] T + y[n] ?

o B[]+ hy[n]- Ny [n]G (hs[n]+hy[n])




Simple Interconnection Schemes

* Overall impulse response 4[n] 1s given by
h[n] = hln + ]’lzn @(h3[n]+h4[n])
= M[n]+ho[n|@hs[n]+hyn|Bhy n]

e Now,

Iy [n]@hs[n] = (] 8[n] -, 8[n —1])@28[n]
= o[ n] —éB[n —1]




Simple Interconnection Schemes

o [m)®hy[n] = (L 8[n]~ L 8[n~ 1)@~ 2()"uln])
= ()" ufn]+ Ly 1]
=—(3)"pn]+ ()" uln—1]

= —(1)"8[n] = ~d[n]

 Therefore
h[n]=3[n]+ 56[;1 —11+8[n] - ;S[n —11-8[n] = §[n]



BIBO Stability Condition of an
LTI Discrete-Time System

« BIBO Stability Condition - A discrete-
time 1s BIBO stable 1f the output sequence

{y[n]} remains bounded for all bounded
input sequence {x[n]}

* An LTI discrete-time system 1s BIBO stable
if and only 1f 1ts 1mpulse response sequence
{h[n]} 1s absolutely summable, 1.e.

S = Z‘h[n]‘ < 00

N=—00



BIBO Stability Condition of an
LTI Discrete-Time System

* Proof: Assume A[n] 1s a real sequence

 Since the mput sequence x[#n] 1s bounded we

have
\x[n]\ <B, <

 Theretfore

y[n]=| D hlklx[n—k] Z\h 1 x[n—k]

f=—00 k——oo

<B, i\h[k]\ =B_S
k=—o0



BIBO Stability Condition of an
LTI Discrete-Time System

e Thus, § <®© 1mplies \y[n]\ <B, <
indicating that y[n] 1s also bounded

* To prove the converse, assume y[n] 1s
bounded, i.e., [y[n] < B,

* Consider the input given by

_|sgn(h[—n]), 1if h[—n]=0
xnl= { K, if A[-n]=0




BIBO Stability Condition of an
LTI Discrete-Time System

where sgn(c) =+1 if ¢ > 0 and sgn(c) = —1
if c<0 and K <1

- Note: Since|x[n] <1, {x[n]} is obviously
bounded

* For this mput, y[n] at n =10 1s

V0] = isgn(h[k])h[k] =5 < By < 00

k=—o0

» Therefore, |y[n] < B, implies §' < oo




Stability Condition of an LTI
Discrete-Time System

Example - Consider a causal LTI discrete-time

system with an impulse response

hln]= ()" pln]

For this system

S = <1

2\04

Therefore S < o if || <1 for which the system is
BIBO stable

If ‘0{‘ =1, the system is not BIBO stable



Causality Condition of an LTI
Discrete-Time System

* Let x{[n] and x,[n]be two input sequences
with
xi[n]=x[n] for n<n,

* The corresponding output samples at n=n,
of an LTI system with an impulse response
{h|n]} are then given by



Causality Condition of an LTI
Discrete-Time System

Zh 1x([n, —k Zh [k]xi[n, — k]

fk=—0o0

+ Zh % [n, — k]
k=—0o0

oln, 1= D hlklxy[n, - Zh x>[n, — k]
k=—00
+ Zh %5[n, — k]
k=—0o0



Causality Condition of an LTI

Discrete-Time System

 If the LTI system 1s also causal, then
yl[no] — y2[n0]
o AS xl[ n)=x,|n| for n<n

Zh Ix([n, —k Zh [k]xy[n, — k]
* This 1mp11es

—1
> hlk]x[n, - Zh 1x5[n, — k]
fk=—o0 k=—o0



Causality Condition of an LTI
Discrete-Time System

* As xy[n]# x,[n] for n>n, the only way
the condition

Zh Ix([n, —k Zh [k]xy[n, — k]
k=—0o0 k=—0o0

will hold 1f both sums are equal to zero,
which 1s satisfied 1f

hk]1=0 for k<0



Causality Condition of an LTI
Discrete-Time System

. ‘ An LTI discrete-time system 1s causal
if and only 1f its impulse response {A[n]} 1s a
causal sequence

» Example - The discrete-time system defined
by
yln]=ox|[n]+orx[n—1]+ozx[n— 2]+ oygx[n —3]

1s a causal system as 1t has a causal impulse
response {h[n]}={0; o, a3 Oy}
T



Causality Condition of an LTI
Discrete-Time System

Example - The discrete-time accumulator
defined by

yinl= 38[¢]=pln]
{=—0o0

1s a causal system as 1t has a causal impulse
response given by

Wn)= Y801 =uln)
{=—o0




Causality Condition of an LTI

Discrete-Time System

» Example - The factor-of-2 interpolator
defined by

yin]=x,[n]+ ! (x,[n =11+ x,[n+1])
1s noncausal as it has a noncausal impulse
response given by

(hn]}={0.5 1 0.5
?




Causality Condition of an LTI
Discrete-Time System

* Note: A noncausal LTI discrete-time system
with a finmite-length impulse response can
often be realized as a causal system by
inserting an appropriate amount of delay

* For example, a causal version of the factor-
of-2 interpolator 1s obtained by delaying the
input by one sample period:

y[n] :xu[n_1]+é(xu[n_z]'l'xu[n])



Finite-Dimensional LTI
Discrete-Time Systems

* An mmportant subclass of LTI discrete-time
systems 1s characterized by a linear constant
coefficient difference equation of the form

N M
Y diyln—k]= ) pix[n—k]
k=0 k=0

* x[n] and y[n] are, respectively, the mmput and
the output of the system

* {d,} and {p;} are constants characterizing
the system



Finite-Dimensional LTI

Discrete-Time Systems

* The order of the system 1s given by
max(/N,M), which 1s the order of the difference
equation

* It 1s possible to implement an LTI system
characterized by a constant coefficient
difference equation as here the computation
involves two finite sums of products



Finite-Dimensional LTI
Discrete-Time Systems

If we assume the system to be causal, then
the output y[n] can be recursively computed
using

Ndk Mpk
yln]= —Zd—y["—k]+ Zd—x[n—k]
k=190 k=190

provided dy # 0

* y|n] can be computed foralln>n, ,
knowing x[n] and the initial conditions

y[no _l]ay[no _2]9"-9y[n0 _N]



Classification of LTI Discrete-
Time Systems

Based on Impulse Response Length -

o [f the impulse response 4[n] 1s of finite
length, 1.e.,
hn]=0 forn<N;and n > N,, Ny <N,

then 1t 1s known as a finite impulse
response (FIR) discrete-time system

* The convolution sum description here 1s

Ny
yinl= D h[k]x{n—k]
k=N,



Classification of LTI Discrete-
Time Systems

* The output y[n] of an FIR LTI discrete-time
system can be computed directly from the
convolution sum as 1t 1s a finite sum of
products

« Examples of FIR LTI discrete-time systems
are the moving-average system and the
linear interpolators



Classification of LTI Discrete-
Time Systems

 If the impulse response 1s of infinite length,
then 1t 1s known as an infinite impulse
response (IIR) discrete-time system

» The class of IIR systems we are concerned
with in this course are characterized by
linear constant coefficient difference
equations



Classification of LTI Discrete-
Time Systems

» Example - The discrete-time accumulator
defined by

yin]=yln—1]+x|n]
1s seen to be an IIR system




Classification of LTI Discrete-
Time Systems

» Example - The familiar numerical
integration formulas that are used to
numerically solve integrals of the form

t
¥(1) = [ x(t)dr
0

can be shown to be characterized by linear
constant coefficient difference equations,
and hence, are examples of IR systems



Classification of LTI Discrete-
Time Systems

 If we divide the interval of integration into »
equal parts of length T, then the previous

integral can be rewritten as
nl

y(nT)=y(n—-DT)+ [x(t)dv
(n—1)T
where we have set r = nT and used the
notation

nl’
y(nT) = jx(r)dt
0



Classification of LTI Discrete-
Time Systems

» Using the trapezoidal method we can write

nl

[x(1)dt = g{x((n ~DT) +x(nT)}
(n—-1)T
* Hence, a numerical representation of the
definite integral 1s given by

y(nT) = y((n=1T)+- {x((n=DT) +x(nT)}



Classification of LTI Discrete-
Time Systems

* Let y[n]=ynT) and x[n] = x(nT)
* Then
y(nT) = y((n=DT)+ T {x((n=1)T) + x(nT)}
reduces to
yinl=yln =11+ 7 {x[n]+x[n 1]}
which 1s recognized as the difference

equation representation of a first-order IIR
discrete-time system



Classification of LTI Discrete-
Time Systems

Based on the Output Calculation Process

* Nonrecursive System - Here the output can
be calculated sequentially, knowing only
the present and past input samples

* Recursive System - Here the output
computation mvolves past output samples 1n
addition to the present and past input
samples



Classification of LTI Discrete-
Time Systems

Based on the Coefficients -

* Real Discrete-Time System - The impulse
response samples are real valued

* Complex Discrete-Time System - The

impulse response samples are complex
valued



Correlation of Signals

Definitions

* A measure of similarity between a pair of
energy signals, x[n] and y[#], 1s given by the
cross-correlation sequence r,,,[/] defined by

rxy[€]= ix[n]y[n—f], (=0,r1,%£2,...

N=—00
» The parameter ¢ called lag, indicates the
time-shift between the pair of signals



Correlation of Signals

 If y[n] 1s made the reference signal and we
wish to shift x[n] with respect to y[n], then
the corresponding cross-correlation
sequence 1S given by

ryx[g] = Zfz_oo yinlx[n—/]

= Ym+L1x[m] =y, [-1]

* Thus, r,,[£] 1s obtained by time-reversing

el



Correlation of Signals

* The autocorrelation sequence of x[n] 1s
given by

recl€1=2"__ x[nlx[n—/]

obtained by setting y[n] = x[#] 1n the
definition of the cross-correlation sequence
e []

» Note: 7. [0]=Y" x*[n]=E ., the energy

N=—00

of the signal x[n]



Correlation of Signals

* From the relation 7y, [¢]=r,,[-/] 1t follows
that v [¢]=r.[—¢] implying thatr,,[¢] 1S
an even function for real x[#n]

e An examination of

roll1= 2, X[n]yln—1]
reveals that the expression for the cross-

correlation looks quite similar to that of the
linear convolution



Correlation of Signals

e This similarity 1s much clearer if we rewrite
the expression for the cross-correlation as

r[01= 2, X[y [=(0 = )] = x[(]® y[-/]

« mmm) The cross-correlation of y[n] with the
reference signal x[z] can be computed by
processing x[n] with an LTI discrete-time
system of impulse response y[—n]

x[n] —— y=n]—— 7, [n]




Correlation of Signals

» Likewise, the autocorrelation of x[#n] can be
computed by processing x[n] with an LTI
discrete-time system of impulse response

x|—n]

x[n] —

x|—n]

T rxx[n]




Properties of Autocorrelation and
Cross-correlation Sequences

* Consider two finite-energy sequences x[#]
and y[n]

* The energy of the combined sequence
ax|n]+ y|n—/] is also finite and
nonnegative, 1.€.,

> (ax[n]+yn—0]) =a’Yr x*[n]
+2aY7  _ xnlyln—01+37 v [n—01>0



Properties of Autocorrelation and
Cross-correlation Sequences

* Thus
a1 [0]+ 2a 7, [£]+7,,[0]= 0
where 7, [0]=E , >0 and r,,[0]=E , >0
* We can rewrite the equation on the previous

slide as i
r
a 1| ™ [Q}ZO
a1 i |

for any finite value of a




Properties of Autocorrelation and
Cross-correlation Sequences

* Or, 1n other words, the matrix

7 [0] 73, (€]

rglt] 1y l0]
1s positive semidefinite

o m=b 7, [0]r,,[0]- 7 [£]2 0

g L0 < 101,y [0] = | ELE




Properties of Autocorrelation and
Cross-correlation Sequences

* The last inequality on the previous slide
provides an upper bound for the cross-
correlation samples

» If we set y[n] = x[n], then the inequality
reduces to



Properties of Autocorrelation and
Cross-correlation Sequences

* Thus, at zero lag (¢ =0), the sample value
of the autocorrelation sequence has 1ts
maximum value

 Now consider the case
yln]|=xbx[n—N]

where N 1s an integer and 5 > 0 1s an
arbitrary number

e In this case E = b°E

X



Properties of Autocorrelation and
Cross-correlation Sequences

* Therefore
JELE, =b’E? =bE,
» Using the above result in
[0 < 1[0, [0]= ELE,
we get
—br, [0]<r




Correlation Computation
Using MATLAB

e The cross-correlation and autocorrelation

sequences can easily be computed using
MATLAB

« Example - Consider the two finite-length
sequences

x[n]=l1 3 =212 -1 4 4 2|
y[n]l=[2 -1 4 1 -2 3]




Correlation Computation
Using MATLAB

* The cross-correlation sequence r,,,[7]
computed using Program 2 7 of text 1s
plotted below

30—

}JT 2t

4 2 0 2 4 6 8
Lag index

Amplitude




Correlation Computation
Using MATLAB

* The autocorrelation sequence r,, [/]
computed using Program 2 7 1s shown below

* Note: At zero lag, r,,[0] 1s the maximum

®

0>?T@UT?T T?TU@T?>

-5 0 5
Lag index




Correlation Computation
Using MATLAB

» The plot below shows the cross-correlation
of x[n] and y|n]=x[n— N] for N=4

* Note: The peak of the cross-correlation 1s
precisely the value of the delay N

©

199 [¢f]%0] offo.._

-10 -5 0 5
Lag index

<




Correlation Computation
Using MATLAB

* The plot below shows the autocorrelation of

x[n] corrupted with an additive random
noise generated using the function randn

 Note: The autocorrelation still exhibits a
peak at zero lag

80

ﬂjjﬁ

TTLTTT

N\

0

Lag index



Correlation Computation
Using MATLAB

 The autocorrelation and the cross-

correlation can also be computed using the
function xcorr

 However, the correlation sequences
generated using this function are the time-
reversed version of those generated using
Programs 2 7 and 2 8



Normalized Forms of
Correlation

« Normalized forms of autocorrelation and
cross-correlation are given by
A Pyl 4]

xxL®. _ Xy

o0l T 1005, [0

* They are often used for convenience in
comparing and displaying

* Note: | o [£]|<1 and | p,, [£] <1
independent of the range of values of x[#]
and y[n]

PrxlL]=




Correlation Computation for
Power Signals

* The cross-correlation sequence for a pair of
power signals, x[n] and y[ ], 1s defined as

r..[/1= lim x| n
ol t1= K—>002K+1 Z_:

* The autocorrelation sequence of a power
signal x[n] 1s given by

A
FXX[] Kl—I>n002K+1 ZX




Correlation Computation for
Periodic Signals

* The cross-correlation sequence for a pair of
periodic signals of period N, x[n]and y|n],
1s defined as

rll]= § X3 nliln 1]

* The autocorrelation sequence of a periodic

signal x[#n] of period N is given by

Pzl € NZ x[n—{]



Correlation Computation for
Periodic Signals

* Note: Both ri[¢] and rgx[ 4] are also
periodic signals with a period N

* The periodicity property of the
autocorrelation sequence can be exploited to
determine the period of a periodic signal

that may have been corrupted by an additive
random disturbance



Correlation Computation for

Periodic Signals

* Let X[n] be a periodic signal corrupted by
the random noise d[n] resulting in the signal

win|=X[n]+d[n]

which 1s observed for 0 <n < M —1 where
M >N



Correlation Computation for
Periodic Signals

* The autocorrelation of w[n] 1s given by
R 1= S0 i wln — (]
= 2oy (RLn]+ d[n])(R{n—(]+d[n—0])

= o3 _615’6[" X[n—1]+ A}Zﬁﬁgld[n]d[n—g]

iﬂﬁ o dnld[n— 01+ -1 3 Ld[n]%[n— (]
= Vgl €]+ 74 [ L]+ 1 [ L]+ el 4]



Correlation Computation for
Periodic Signals

* In the last equation on the previous slide, 7| /]
1s a periodic sequence with a period N and
hence will have peaks at / =0, N,2N,...

with the same amplitudes as ¢ approaches M

* As X[n]and d[n] are not correlated, samples
of cross-correlation sequencesryy[¢]and 7, [ /]
are likely to be very small relative to the
amplitudes of 7| /]



Correlation Computation for
Periodic Signals

» The autocorrelation ry,[¢] of d[rn] will show
a peak at £ = 0 with other samples having
rapidly decreasing amplitudes with
increasing values of | /|

» Hence, peaks of7,,, [¢] for £ >0 are
essentially due to the peaks of 735[/]and can
be used to determine whether X[#n] 1s a
periodic sequence and also its period N 1f
the peaks occur at periodic intervals



Correlation Computation of a
Periodic Signal Using MATLAB

« Example - We determine the period of the
sinusoidal sequence x[n] = cos(0.25n),
0 <n <95 corrupted by an additive
uniformly distributed random noise of
amplitude 1n the range [-0.5,0.5]

* Using Program 2 8 of text we arrive at the
plot of 7, [ /] shown on the next slide



Correlation Computation of a
Penodlc Slgnal Usmg MATLAB

It i T@ﬁ]ﬁ ﬂjﬁ I JTT
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* As can be seen from the plot given above,
there 1s a strong peak at zero lag
 However, there are distinct peaks at lags that

are multiples of 8 indicating the period of the
sinusoidal sequence to be 8 as expected



Correlation Computation of a
Periodic Signal Using MATLAB

 Figure below shows the plot of 7;;[ /]

8

0)

Amplitude
T S ) )
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* As can be seenry,[¢] shows a very strong
peak at only zero lag



