LTI Discrete-Time Systems in Transform Domain Simple Filters
 Comb Filters (Optional reading) Allpass Transfer Functions

Minimum/Maximum Phase Transfer Functions
Complementary Filters (Optional reading)
Digital Two-Pairs (Optional reading)

Tania Stathaki
811b
t.stathaki@imperial.ac.uk

Simple Digital Filters

- Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications
- We now describe several low-order FIR and IIR digital filters with reasonable selective frequency responses that often are satisfactory in a number of applications

Simple FIR Digital Filters

- FIR digital filters considered here have integer-valued impulse response coefficients
- These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations

Simple FIR Digital Filters

Lowpass FIR Digital Filters

- The simplest lowpass FIR digital filter is the 2point moving-average filter given by

$$
H_{0}(z)=\frac{1}{2}\left(1+z^{-1}\right)=\frac{z+1}{2 z}
$$

- The above transfer function has a zero at $z=-1$ and a pole at $z=0$
- Note that here the pole vector has a unity magnitude for all values of ω

Simple FIR Digital Filters

- On the other hand, as ω increases from 0 to π, the magnitude of the zero vector decreases from a value of 2 , the diameter of the unit circle, to 0
- Hence, the magnitude response $\left|H_{0}\left(e^{j \omega}\right)\right|$ is a monotonically decreasing function of ω from $\omega=0$ to $\omega=\pi$

Simple FIR Digital Filters

- The maximum value of the magnitude function is 1 at $\omega=0$, and the minimum value is 0 at $\omega=\pi$, i.e.,

$$
\left|H_{0}\left(e^{j 0}\right)\right|=1, \quad\left|H_{0}\left(e^{j \pi}\right)\right|=0
$$

- The frequency response of the above filter is given by

$$
H_{0}\left(e^{j \omega}\right)=e^{-j \omega / 2} \cos (\omega / 2)
$$

Simple FIR Digital Filters

- The magnitude response $\left|H_{0}\left(e^{j \omega}\right)\right|=\cos (\omega / 2)$ is a monotonically decreasing function of ω

Simple FIR Digital Filters

- The frequency $\omega=\omega_{c}$ at which

$$
\left|H_{0}\left(e^{j \omega_{c}}\right)\right|=\frac{1}{\sqrt{2}}\left|H_{0}\left(e^{j 0}\right)\right|
$$

is of practical interest since here the gain in dB is

$$
\begin{aligned}
\mathrm{G}\left(\omega_{c}\right) & =20 \log _{10}\left|H\left(e^{j \omega_{c}}\right)\right| \\
& =20 \log _{10}\left|H\left(e^{j 0}\right)\right|-20 \log _{10} \sqrt{2} \cong-3 \mathrm{~dB}
\end{aligned}
$$

since the DC gain is

$$
20 \log _{10}\left|H\left(e^{j 0}\right)\right|=0
$$

Simple FIR Digital Filters

- Thus, the gain $\mathrm{G}(\omega)$ at $\omega=\omega_{c}$ is approximately 3 dB less than the gain at $\omega=0$
- As a result, ω_{c} is called the $3-\mathrm{dB}$ cutoff frequency
- To determine the value of ω_{c} we set

$$
\left|H_{0}\left(e^{j \omega_{c}}\right)\right|^{2}=\cos ^{2}\left(\omega_{c} / 2\right)=\frac{1}{2}
$$

which yields $\omega_{c}=\pi / 2$

Simple FIR Digital Filters

- The 3 -dB cutoff frequency ω_{c} can be considered as the passband edge frequency
- As a result, for the filter $H_{0}(z)$ the passband width is approximately $\pi / 2$
- The stopband is from $\pi / 2$ to π
- Note: $H_{0}(z)$ has a zero at $z=-1$ or $\omega=\pi$, which is in the stopband of the filter

Simple FIR Digital Filters

- A cascade of the simple FIR filter

$$
H_{0}(z)=\frac{1}{2}\left(1+z^{-1}\right)
$$

results in an improved lowpass frequency response as illustrated below for a cascade of 3 sections

First-order FIR lowpass filter cascade

Simple FIR Digital Filters

- The 3-dB cutoff frequency of a cascade of M sections is given by

$$
\omega_{c}=2 \cos ^{-1}\left(2^{-1 / 2 M}\right)
$$

- For $M=3$, the above yields $\omega_{c}=0.302 \pi$
- Thus, the cascade of first-order sections yields a sharper magnitude response but at the expense of a decrease in the width of the passband

Simple FIR Digital Filters

- A better approximation to the ideal lowpass filter is given by a higher-order Moving Average (MA) filter
- Signals with rapid fluctuations in sample values are generally associated with highfrequency components
- These high-frequency components are essentially removed by an MA filter resulting in a smoother output waveform

Simple FIR Digital Filters

Highpass FIR Digital Filters

- The simplest highpass FIR filter is obtained from the simplest lowpass FIR filter by replacing z with $-z$
- This results in

$$
H_{1}(z)=\frac{1}{2}\left(1-z^{-1}\right)
$$

Simple FIR Digital Filters

- Corresponding frequency response is given by

$$
H_{1}\left(e^{j \omega}\right)=j e^{-j \omega / 2} \sin (\omega / 2)
$$

whose magnitude response is plotted below
First-order FIR highpass filter

Simple FIR Digital Filters

- The monotonically increasing behavior of the magnitude function can again be demonstrated by examining the pole-zero pattern of the transfer function $H_{1}(z)$
- The highpass transfer function $H_{1}(z)$ has a zero at $z=1$ or $\omega=0$ which is in the stopband of the filter

Simple FIR Digital Filters

- Improved highpass magnitude response can again be obtained by cascading several sections of the first-order highpass filter
- Alternately, a higher-order highpass filter of the form

$$
H_{1}(z)=\frac{1}{M} \sum_{n=0}^{M-1}(-1)^{n} z^{-n}
$$

is obtained by replacing z with $-z$ in the transfer function of an MA filter

Simple IIR Digital Filters

Lowpass IIR Digital Filters

- A first-order causal lowpass IIR digital filter has a transfer function given by

$$
H_{L P}(z)=\frac{1-\alpha}{2}\left(\frac{1+z^{-1}}{1-\alpha z^{-1}}\right)
$$

where $|\alpha|<1$ for stability

- The above transfer function has a zero at $z=-1$ i.e., at $\omega=\pi$ which is in the stopband

Simple IIR Digital Filters

- $H_{L P}(z)$ has a real pole at $z=\alpha$
- As ω increases from 0 to π, the magnitude of the zero vector decreases from a value of 2 to 0 , whereas, for a positive value of α, the magnitude of the pole vector increases from a value of $1-\alpha$ to $1+\alpha$
- The maximum value of the magnitude function is 1 at $\omega=0$, and the minimum value is 0 at $\omega=\pi$

Simple IIR Digital Filters

- i.e., $\left|H_{L P}\left(e^{j 0}\right)\right|=1, \quad\left|H_{L P}\left(e^{j \pi}\right)\right|=0$
- Therefore, $\left|H_{L P}\left(e^{j \omega}\right)\right|$ is a monotonically decreasing function of ω from $\omega=0$ to $\omega=\pi$ as indicated below

Simple IIR Digital Filters

- The squared magnitude function is given by

$$
\left|H_{L P}\left(e^{j \omega}\right)\right|^{2}=\frac{(1-\alpha)^{2}(1+\cos \omega)}{2\left(1+\alpha^{2}-2 \alpha \cos \omega\right)}
$$

- The derivative of $\left|H_{L P}\left(e^{j \omega}\right)\right|^{2}$ with respect to ω is given by

$$
\frac{d\left|H_{L P}\left(e^{j \omega}\right)\right|^{2}}{d \omega}=\frac{-(1-\alpha)^{2}\left(1+2 \alpha+\alpha^{2}\right) \sin \omega}{2\left(1-2 \alpha \cos \omega+\alpha^{2}\right)^{2}}
$$

Simple IIR Digital Filters

$d\left|H_{L P}\left(e^{j \omega}\right)\right|^{2} / d \omega \leq 0$ in the range $0 \leq \omega \leq \pi$ verifying again the monotonically decreasing behavior of the magnitude function

- To determine the $3-\mathrm{dB}$ cutoff frequency we set

$$
\left|H_{L P}\left(e^{j \omega_{c}}\right)\right|^{2}=\frac{1}{2}
$$

in the expression for the squared magnitude function resulting in

Simple IIR Digital Filters

$$
\frac{(1-\alpha)^{2}\left(1+\cos \omega_{c}\right)}{2\left(1+\alpha^{2}-2 \alpha \cos \omega_{c}\right)}=\frac{1}{2}
$$

or

$$
(1-\alpha)^{2}\left(1+\cos \omega_{c}\right)=1+\alpha^{2}-2 \alpha \cos \omega_{c}
$$

which when solved yields

$$
\cos \omega_{c}=\frac{2 \alpha}{1+\alpha^{2}}
$$

- The above quadratic equation can be solved for α yielding two solutions

Simple IIR Digital Filters

- The solution resulting in a stable transfer function $H_{L P}(z)$ is given by

$$
\alpha=\frac{1-\sin \omega_{c}}{\cos \omega_{c}}
$$

- It follows from

$$
\left|H_{L P}\left(e^{j \omega}\right)\right|^{2}=\frac{(1-\alpha)^{2}(1+\cos \omega)}{2\left(1+\alpha^{2}-2 \alpha \cos \omega\right)}
$$

that $H_{L P}(z)$ is a BR function for $|\alpha|<1$

Simple IIR Digital Filters

Highpass IIR Digital Filters

- A first-order causal highpass IIR digital filter has a transfer function given by

$$
H_{H P}(z)=\frac{1+\alpha}{2}\left(\frac{1-z^{-1}}{1-\alpha z^{-1}}\right)
$$

where $|\alpha|<1$ for stability

- The above transfer function has a zero at $z=1$ i.e., at $\omega=0$ which is in the stopband
- It is a BR function for $|\alpha|<1$

Simple IIR Digital Filters

- Its $3-\mathrm{dB}$ cutoff frequency ω_{c} is given by

$$
\alpha=\left(1-\sin \omega_{c}\right) / \cos \omega_{c}
$$

which is the same as that of $H_{L P}(z)$

- Magnitude and gain responses of $H_{H P}(z)$ are shown below

Example 1-First Order HP Filter

- Design a first-order highpass filter with a 3dB cutoff frequency of 0.8π
- Now, $\sin \left(\omega_{c}\right)=\sin (0.8 \pi)=0.587785$ and $\cos (0.8 \pi)=-0.80902$
- Therefore

$$
\alpha=\left(1-\sin \omega_{c}\right) / \cos \omega_{c}=-0.5095245
$$

Example 1-First Order HP Filter

- Therefore,

$$
\begin{aligned}
H_{H P}(z) & =\frac{1+\alpha}{2}\left(\frac{1-z^{-1}}{1-\alpha z^{-1}}\right) \\
& =0.245238\left(\frac{1-z^{-1}}{1+0.5095245 z^{-1}}\right)
\end{aligned}
$$

Simple IIR Digital Filters

Bandpass IIR Digital Filters

- A 2nd-order bandpass digital transfer function is given by

$$
H_{B P}(z)=\frac{1-\alpha}{2}\left(\frac{1-z^{-2}}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}\right)
$$

- Its squared magnitude function is

$$
\begin{aligned}
& \left|H_{B P}\left(e^{j \omega}\right)\right|^{2} \\
= & \frac{(1-\alpha)^{2}(1-\cos 2 \omega)}{2\left[1+\beta^{2}(1+\alpha)^{2}+\alpha^{2}-2 \beta(1+\alpha)^{2} \cos \omega+2 \alpha \cos 2 \omega\right]}
\end{aligned}
$$

Simple IIR Digital Filters

- $\left|H_{B P}\left(e^{j \omega}\right)\right|^{2}$ goes to zero at $\omega=0$ and $\omega=\pi$
- It assumes a maximum value of 1 at $\omega=\omega_{o}$, called the center frequency of the bandpass filter, where

$$
\omega_{o}=\cos ^{-1}(\beta)
$$

- The frequencies $\omega_{c 1}$ and $\omega_{c 2}$ where $\left|H_{B P}\left(e^{j \omega}\right)\right|^{2}$ becomes $1 / 2$ are called the $3-\mathrm{dB}$ cutoff frequencies

Simple IIR Digital Filters

- The difference between the two cutoff frequencies, assuming $\omega_{c 2}>\omega_{c 1}$ is called the $3-\mathrm{dB}$ bandwidth and is given by

$$
B_{w}=\omega_{c 2}-\omega_{c 1}=\cos ^{-1}\left(\frac{2 \alpha}{1+\alpha^{2}}\right)
$$

- The transfer function $H_{B P}(z)$ is a BR function if $|\alpha|<1$ and $|\beta|<1$

Simple IIR Digital Filters

- Plots of $\left|H_{B P}\left(e^{j \omega}\right)\right|$ are shown below

Example 2-Second Order BP Filter

- Design a $2 n d$ order bandpass digital filter with center frequency at 0.4π and a $3-\mathrm{dB}$ bandwidth of 0.1π
- Here $\beta=\cos \left(\omega_{o}\right)=\cos (0.4 \pi)=0.309017$ and

$$
\frac{2 \alpha}{1+\alpha^{2}}=\cos \left(B_{w}\right)=\cos (0.1 \pi)=0.9510565
$$

- The solution of the above equation yields: $\alpha=1.376382$ and $\alpha=0.72654253$

Example 2-Second Order BP Filter

- The corresponding transfer functions are

$$
\begin{aligned}
& H_{B P}^{\prime}(z)=-0.18819 \frac{1-z^{-2}}{1-0.7343424 z^{-1}+1.37638 z^{-2}} \\
& \quad \text { and } \\
& H_{B P}^{\prime \prime}(z)=0.13673 \frac{1-z^{-2}}{1-0.533531 z^{-1}+0.72654253 z^{-2}}
\end{aligned}
$$

- The poles of $H_{B P}^{\prime}(z)$ are at $z=0.3671712 \pm$ $j 1.11425636$ and have a magnitude >1

Example 2-Second Order BP Filter

- Thus, the poles of $H_{B P}^{\prime}(z)$ are outside the unit circle making the transfer function unstable
- On the other hand, the poles of $H_{B P}^{\prime \prime}(z)$ are at $z=0.2667655 \pm j 0.8095546$ and have a magnitude of 0.8523746
- Hence, $H_{B P}^{\prime \prime}(z)$ is BIBO stable

Example 2-Second Order BP Filter

- Figures below show the plots of the magnitude function and the group delay of

$$
H_{B P}^{\prime \prime}(z)
$$

Simple IIR Digital Filters

Bandstop IIR Digital Filters

- A 2nd-order bandstop digital filter has a transfer function given by

$$
H_{B S}(z)=\frac{1+\alpha}{2}\left(\frac{1-2 \beta z^{-1}+z^{-2}}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}\right)
$$

- The transfer function $H_{B S}(z)$ is a BR function if $|\alpha|<1$ and $|\beta|<1$

Simple IIR Digital Filters

- Its magnitude response is plotted below

Simple IIR Digital Filters

- Here, the magnitude function takes the maximum value of 1 at $\omega=0$ and $\omega=\pi$
- It goes to 0 at $\omega=\omega_{o}$, where ω_{o}, called the notch frequency, is given by

$$
\omega_{o}=\cos ^{-1}(\beta)
$$

- The digital transfer function $H_{B S}(z)$ is more commonly called a notch filter

Simple IIR Digital Filters

- The frequencies $\omega_{c 1}$ and $\omega_{c 2}$ where $\left|H_{B S}\left(e^{j \omega}\right)\right|^{2}$ becomes $1 / 2$ are called the $3-\mathrm{dB}$ cutoff frequencies
- The difference between the two cutoff frequencies, assuming $\omega_{c 2}>\omega_{c 1}$ is called the 3-dB notch bandwidth and is given by

$$
B_{w}=\omega_{c 2}-\omega_{c 1}=\cos ^{-1}\left(\frac{2 \alpha}{1+\alpha^{2}}\right)
$$

Simple IIR Digital Filters

Higher-Order IIR Digital Filters

- By cascading the simple digital filters discussed so far, we can implement digital filters with sharper magnitude responses
- Consider a cascade of K first-order lowpass sections characterized by the transfer function

$$
H_{L P}(z)=\frac{1-\alpha}{2}\left(\frac{1+z^{-1}}{1-\alpha z^{-1}}\right)
$$

Simple IIR Digital Filters

- The overall structure has a transfer function given by

$$
G_{L P}(z)=\left(\frac{1-\alpha}{2} \frac{1+z^{-1}}{1-\alpha z^{-1}}\right)^{K}
$$

- The corresponding squared-magnitude function is given by

$$
\left|G_{L P}\left(e^{j \omega}\right)\right|^{2}=\left[\frac{(1-\alpha)^{2}(1+\cos \omega)}{2\left(1+\alpha^{2}-2 \alpha \cos \omega\right)}\right]^{K}
$$

Simple IIR Digital Filters

- To determine the relation between its $3-\mathrm{dB}$ cutoff frequency ω_{c} and the parameter α, we set

$$
\left[\frac{(1-\alpha)^{2}\left(1+\cos \omega_{c}\right)}{2\left(1+\alpha^{2}-2 \alpha \cos \omega_{c}\right)}\right]^{K}=\frac{1}{2}
$$

which when solved for α, yields for a stable $G_{L P}(z)$:

$$
\alpha=\frac{1+(1-C) \cos \omega_{c}-\sin \omega_{c} \sqrt{2 C-C^{2}}}{1-C+\cos \omega_{c}}
$$

Simple IIR Digital Filters

where

$$
C=2^{(K-1) / K}
$$

- It should be noted that the expression given above reduces to

$$
\alpha=\frac{1-\sin \omega_{c}}{\cos \omega_{c}}
$$

for $K=1$

Example 3-Design of an LP Filter

- Design a lowpass filter with a 3-dB cutoff frequency at $\omega_{c}=0.4 \pi$ using a single first-order section and a cascade of 4 first-order sections, and compare their gain responses
- For the single first-order lowpass filter we have

$$
\alpha=\frac{1+\sin \omega_{c}}{\cos \omega_{c}}=\frac{1+\sin (0.4 \pi)}{\cos (0.4 \pi)}=0.1584
$$

Example 3-Design of an LP Filter

- For the cascade of 4 first-order sections, we substitute $K=4$ and get

$$
C=2^{(K-1) / K}=2^{(4-1) / 4}=1.6818
$$

- Next we compute

$$
\begin{aligned}
& \alpha=\frac{1+(1-C) \cos \omega_{c}-\sin \omega_{c} \sqrt{2 C-C^{2}}}{1-C+\cos \omega_{c}} \\
&=\frac{1+(1-1.6818) \cos (0.4 \pi)-\sin (0.4 \pi) \sqrt{2(1.6818)-(1.6818)^{2}}}{1-1.6818+\cos (0.4 \pi)} \\
&=-0.251
\end{aligned}
$$

Example 3-Design of an LP Filter

- The gain responses of the two filters are shown below
- As can be seen, cascading has resulted in a sharper roll-off in the gain response

Comb Filters

- The simple filters discussed so far are characterized either by a single passband and/or a single stopband
- There are applications where filters with multiple passbands and stopbands are required
- The comb filter is an example of such filters

Comb Filters

- In its most general form, a comb filter has a frequency response that is a periodic function of ω with a period $2 \pi / L$, where L is a positive integer
- If $H(z)$ is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by $G(z)=H\left(z^{L}\right)$

Comb Filters

- If $\left|H\left(e^{j \omega}\right)\right|$ exhibits a peak at ω_{p}, then $\left|G\left(e^{j \omega}\right)\right|$ will exhibit L peaks at $\omega_{p} k / L, 0 \leq k \leq L-1$ in the frequency range $0 \leq \omega<2 \pi$
- Likewise, if $\left|H\left(e^{j \omega}\right)\right|$ has a notch at ω_{o}, then $\left|G\left(e^{j \omega}\right)\right|$ will have L notches at $\omega_{o} k / L$, $0 \leq k \leq L-1$ in the frequency range $0 \leq \omega<2 \pi$
- A comb filter can be generated from either an FIR or an IIR prototype filter

Comb Filters

- For example, the comb filter generated from the prototype lowpass FIR filter $H_{0}(z)=\frac{1}{2}\left(1+z^{-1}\right)$ has a transfer function

$$
G_{0}(z)=H_{0}\left(z^{L}\right)=\frac{1}{2}\left(1+z^{-L}\right)
$$

- $\left|G_{0}\left(e^{j \omega}\right)\right|$ has L notches at $\omega=(2 k+1) \pi / L$ and L peaks at $\omega=2 \pi k / L$, $0 \leq k \leq L-1$, in the frequency range $0 \leq \omega<2 \pi$

Comb Filters

- Furthermore, the comb filter generated from the prototype highpass FIR filter $H_{1}(z)=\frac{1}{2}\left(1-z^{-1}\right)$ has a transfer function
$G_{1}(z)=H_{1}\left(z^{L}\right)=\frac{1}{2}\left(1-z^{-L}\right)$
- $\left|G_{1}\left(e^{j \omega}\right)\right|$ has L peaks at $\omega=(2 k+1) \pi / L$ and L notches at $\omega=2 \pi k / L$, $0 \leq k \leq L-1$, in the frequency range

$$
0 \leq \omega<2 \pi
$$

Comb Filters

- Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter
- For example, the M-point moving average filter

$$
H(z)=\frac{1-z^{-M}}{M\left(1-z^{-1}\right)}
$$

has been used as a prototype

Comb Filters

- This filter has a peak magnitude at $\omega=0$, and $M-1$ notches at $\omega=2 \pi \ell / M, 1 \leq \ell \leq M-1$
- The corresponding comb filter has a transfer function

$$
G(z)=\frac{1-z^{-L M}}{M\left(1-z^{-L}\right)}
$$

whose magnitude has L peaks at $\omega=2 \pi k / L$,
$0 \leq k \leq L-1$ and $L(M-1)$ notches at
$\omega=2 \pi k / L M, 1 \leq k \leq L(M-1)$

Allpass Transfer Functions

Definition

- An IIR transfer function $A(z)$ with unity magnitude response for all frequencies, i.e.,

$$
\left|A\left(e^{j \omega}\right)\right|^{2}=1, \quad \text { for all } \omega
$$

is called an allpass transfer function

- An M-th order causal real-coefficient allpass transfer function is of the form

$$
A_{M}(z)= \pm \frac{d_{M}+d_{M-1} z^{-1}+\ldots+d_{1} z^{-M+1}+z^{-M}}{1+d_{1} z^{-1}+\ldots+d_{M-1} z^{-M+1}+d_{M} z^{-M}}
$$

Allpass Transfer Functions

- If we denote the denominator polynomials of
$A_{M}(z)$ as $D_{M}(z)$:
$D_{M}(z)=1+d_{1} z^{-1}+\ldots+d_{M-1} z^{-M+1}+d_{M} z^{-M}$
then it follows that $A_{M}(z)$ can be written as:

$$
A_{M}(z)= \pm \frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)}
$$

- Note from the above that if $z=r e^{j \phi}$ is a pole of a real coefficient allpass transfer function, then it has a zero at $z=\frac{1}{r} e^{-j \phi}$

Allpass Transfer Functions

- The numerator of a real-coefficient allpass transfer function is said to be the mirrorimage polynomial of the denominator, and vice versa
- We shall use the notation $\widetilde{D}_{M}(z)$ to denote the mirror-image polynomial of a degree- M polynomial $D_{M}(z)$, i.e.,

$$
\tilde{D}_{M}(z)=z^{-M} D_{M}(z)
$$

Allpass Transfer Functions

- The expression

$$
A_{M}(z)= \pm \frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)}
$$

implies that the poles and zeros of a realcoefficient allpass function exhibit mirrorimage symmetry in the z-plane

Allpass Transfer Functions

- To show that $\left|A_{M}\left(e^{j \omega}\right)\right|=1$ we observe that

$$
A_{M}\left(z^{-1}\right)= \pm \frac{z^{M} D_{M}(z)}{D_{M}\left(z^{-1}\right)}
$$

- Therefore

$$
A_{M}(z) A_{M}\left(z^{-1}\right)=\frac{z^{-M} D_{M}\left(z^{-1}\right)}{D_{M}(z)} \frac{z^{M} D_{M}(z)}{D_{M}\left(z^{-1}\right)}
$$

- Hence, $\left|A_{M}\left(e^{j \omega}\right)\right|^{2}=\left.A_{M}(z) A_{M}\left(z^{-1}\right)\right|_{z=e^{j \omega}}=1$

Allpass Transfer Functions

- Now, the poles of a causal stable transfer function must lie inside the unit circle in the z-plane
- Hence, all zeros of a causal stable allpass transfer function must lie outside the unit circle in a mirror-image symmetry with its poles situated inside the unit circle
- A causal stable real-coefficient allpass transfer function is a lossless bounded real (LBR) function or, equivalently, a causal stable allpass filter is a lossless structure

Allpass Transfer Functions

- The magnitude function of a stable allpass function $A(z)$ satisfies:

$$
\left\lvert\, A(z) \begin{cases}<1, & \text { for }|z|>1 \\ =1, & \text { for }|z|=1 \\ >1, & \text { for }|z|<1\end{cases}\right.
$$

- Let $\tau(\omega)$ denote the group delay function of an allpass filter $A(z)$, i.e.,

$$
\tau(\omega)=-\frac{d}{d \omega}\left[\theta_{c}(\omega)\right]
$$

Allpass Transfer Functions

- The unwrapped phase function $\theta_{c}(\omega)$ of a stable allpass function is a monotonically decreasing function of ω so that $\tau(\omega)$ is everywhere positive in the range $0<\omega<\pi$
- The group delay of an M-th order stable real-coefficient allpass transfer function satisfies:

$$
\int_{0}^{\pi} \tau(\omega) d \omega=M \pi
$$

Allpass Transfer Function

A Simple Application

- A simple but often used application of an allpass filter is as a delay equalizer
- Let $G(z)$ be the transfer function of a digital filter designed to meet a prescribed magnitude response
- The nonlinear phase response of $G(z)$ can be corrected by cascading it with an allpass filter $A(z)$ so that the overall cascade has a constant group delay in the band of interest

Allpass Transfer Function

- Since $\left|A\left(e^{j \omega}\right)\right|=1$, we have

$$
\left|G\left(e^{j \omega}\right) A\left(e^{j \omega}\right)\right|=\left|G\left(e^{j \omega}\right)\right|
$$

- Overall group delay is the given by the sum of the group delays of $G(z)$ and $A(z)$

Minimum-Phase and MaximumPhase Transfer Functions

- Consider the two 1st-order transfer functions:

$$
H_{1}(z)=\frac{z+b}{z+a}, \quad H_{2}(z)=\frac{b z+1}{z+a},|a<1,|b|<1
$$

- Both transfer functions have a pole inside the unit circle at the same location $z=-a$ and are stable
- But the zero of $H_{1}(z)$ is inside the unit circle at $z=-b$, whereas, the zero of $H_{2}(z)$ is at $z=-\frac{1}{b}$ situated in a mirror-image symmetry

Minimum-Phase and MaximumPhase Transfer Functions

- Figure below shows the pole-zero plots of the two transfer functions

$H_{1}(z)$

$H_{2}(z)$

Minimum-Phase and MaximumPhase Transfer Functions

- However, both transfer functions have an identical magnitude as

$$
H_{1}(z) H_{1}\left(z^{-1}\right)=H_{2}(z) H_{2}\left(z^{-1}\right)
$$

- The corresponding phase functions are

$$
\begin{aligned}
& \arg \left[H_{1}\left(e^{j \omega}\right)\right]=\tan ^{-1} \frac{\sin \omega}{b+\cos \omega}-\tan ^{-1} \frac{\sin \omega}{a+\cos \omega} \\
& \arg \left[H_{2}\left(e^{j \omega}\right)\right]=\tan ^{-1} \frac{b \sin \omega}{1+b \cos \omega}-\tan ^{-1} \frac{\sin \omega}{a+\cos \omega}
\end{aligned}
$$

Minimum-Phase and MaximumPhase Transfer Functions

- Figure below shows the unwrapped phase responses of the two transfer functions for $\mathrm{a}=0.8$ and $\mathrm{b}=-0.5$

Minimum-Phase and MaximumPhase Transfer Functions

- From this figure it follows that $H_{2}(z)$ has an excess phase lag with respect to $H_{1}(z)$
- Generalizing the above result, we can show that a causal stable transfer function with all zeros outside the unit circle has an excess phase compared to a causal transfer function with identical magnitude but having all zeros inside the unit circle

Minimum-Phase and MaximumPhase Transfer Functions

- A causal stable transfer function with all zeros inside the unit circle is called a minimum-phase transfer function
- A causal stable transfer function with all zeros outside the unit circle is called a maximumphase transfer function
- Any nonminimum-phase transfer function can be expressed as the product of a minimum-phase transfer function and a stable allpass transfer function

Complementary Transfer Functions

- A set of digital transfer functions with complementary characteristics often finds useful applications in practice
- Four useful complementary relations are described next along with some applications

Complementary Transfer Functions

Delay-Complementary Transfer Functions

- A set of L transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq L-1$, is defined to be delaycomplementary of each other if the sum of their transfer functions is equal to some integer multiple of unit delays, i.e.,

$$
\sum_{i=0}^{L-1} H_{i}(z)=\beta z^{-n_{o}}, \quad \beta \neq 0
$$

where n_{o} is a nonnegative integer

Complementary Transfer Functions

- A delay-complementary pair $\left\{H_{0}(z), H_{1}(z)\right\}$ can be readily designed if one of the pairs is a known Type 1 FIR transfer function of odd length
- Let $H_{0}(z)$ be a Type 1 FIR transfer function of length $M=2 K+1$
- Then its delay-complementary transfer function is given by

$$
H_{1}(z)=z^{-K}-H_{0}(z)
$$

Complementary Transfer Functions

- Let the magnitude response of $H_{0}(z)$ be equal to $1 \pm \delta_{p}$ in the passband and less than or equal to δ_{s} in the stopband where δ_{p} and δ_{s} are very small numbers
- Now the frequency response of $H_{0}(z)$ can be expressed as

$$
H_{0}\left(e^{j \omega}\right)=e^{-j K \omega} \tilde{H}_{0}(\omega)
$$

where $\tilde{H}_{0}(\omega)$ is the amplitude response

Complementary Transfer Functions

- Its delay-complementary transfer function $H_{1}(z)$ has a frequency response given by

$$
H_{1}\left(e^{j \omega}\right)=e^{-j K \omega} \tilde{H}_{1}(\omega)=e^{-j K \omega}\left[1-\tilde{H}_{0}(\omega)\right]
$$

- Now, in the passband, $1-\delta_{p} \leq \tilde{H}_{0}(\omega) \leq 1+\delta_{p}$, and in the stopband, $-\delta_{s} \leq \tilde{H}_{0}(\omega) \leq \delta_{s}$
- It follows from the above equation that in the passband, $-\delta_{p} \leq \tilde{H}_{1}(\omega) \leq \delta_{p}$ and in the stopband, $1-\delta_{s} \leq \tilde{H}_{1}(\omega) \leq 1+\delta_{s}$

Complementary Transfer Functions

- As a result, $H_{1}(z)$ has a complementary magnitude response characteristic, with a stopband exactly identical to the passband of $H_{0}(z)$, and a passband that is exactly identical to the stopband of $H_{0}(z)$
- Thus, if $H_{0}(z)$ is a lowpass filter, $H_{1}(z)$ will be a highpass filter, and vice versa

Complementary Transfer Functions

- At frequency ω_{o} at which

$$
\tilde{H}_{0}\left(\omega_{o}\right)=\tilde{H}_{1}\left(\omega_{o}\right)=0.5
$$

the gain responses of both filters are 6 dB below their maximum values

- The frequency ω_{o} is thus called the $\mathbf{6 - d B}$ crossover frequency

Example 4

- Consider the Type 1 bandstop transfer function

$$
H_{B S}(z)=\frac{1}{64}\left(1+z^{-2}\right)^{4}\left(1-4 z^{-2}+5 z^{-4}+5 z^{-8}-4 z^{-10}+z^{-12}\right)
$$

- Its delay-complementary Type 1 bandpass transfer function is given by

$$
\begin{aligned}
H_{B P}(z) & =z^{-10}-H_{B S}(z) \\
& =-\frac{1}{64}\left(1-z^{-2}\right)^{4}\left(1+4 z^{-2}+5 z^{-4}+5 z^{-8}+4 z^{-10}+z^{-12}\right)
\end{aligned}
$$

Example 4

- Plots of the magnitude responses of $H_{B S}(z)$ and $H_{B P}(z)$ are shown below

Complementary Transfer Functions

Allpass Complementary Filters

- A set of M digital transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq M-1$, is defined to be allpasscomplementary of each other, if the sum of their transfer functions is equal to an allpass function, i.e.,

$$
\sum_{i=0}^{M-1} H_{i}(z)=A(z)
$$

Complementary Transfer Functions

Power-Complementary Transfer Functions

- A set of M digital transfer functions, $\left\{H_{i}(z)\right\}$, $0 \leq i \leq M-1$, is defined to be powercomplementary of each other, if the sum of their square-magnitude responses is equal to a constant K for all values of ω, i.e.,

$$
\sum_{i=0}^{M-1}\left|H_{i}\left(e^{j \omega}\right)\right|^{2}=K, \quad \text { for all } \omega
$$

Complementary Transfer Functions

- By analytic continuation, the above property is equal to

$$
\sum_{i=0}^{M-1} H_{i}(z) H_{i}\left(z^{-1}\right)=K, \quad \text { for all } \omega
$$

for real coefficient $H_{i}(z)$

- Usually, by scaling the transfer functions, the power-complementary property is defined for $K=1$

Complementary Transfer Functions

- For a pair of power-complementary transfer functions, $H_{0}(z)$ and $H_{1}(z)$, the frequency ω_{o} where $\left|H_{0}\left(e^{j \omega_{o}}\right)\right|^{2}=\left|H_{1}\left(e^{j \omega_{o}}\right)\right|^{2}=0.5$, is called the cross-over frequency
- At this frequency the gain responses of both filters are $3-\mathrm{dB}$ below their maximum values
- As a result, ω_{o} is called the $3-\mathrm{dB}$ crossover frequency

Complementary Transfer Functions

- Consider the two transfer functions $H_{0}(z)$ and $H_{1}(z)$ given by

$$
\begin{aligned}
& H_{0}(z)=\frac{1}{2}\left[A_{0}(z)+A_{1}(z)\right] \\
& H_{1}(z)=\frac{1}{2}\left[A_{0}(z)-A_{1}(z)\right]
\end{aligned}
$$

where $A_{0}(z)$ and $A_{1}(z)$ are stable allpass transfer functions

- Note that $H_{0}(z)+H_{1}(z)=A_{0}(z)$
- Hence, $H_{0}(z)$ and $H_{1}(z)$ are allpass complementary

Complementary Transfer Functions

- It can be shown that $H_{0}(z)$ and $H_{1}(z)$ are also power-complementary
- Moreover, $H_{0}(z)$ and $H_{1}(z)$ are boundedreal transfer functions

Complementary Transfer Functions

Doubly-Complementary Transfer Functions

- A set of M transfer functions satisfying both the allpass complementary and the powercomplementary properties is known as a doubly-complementary set

Complementary Transfer Functions

- A pair of doubly-complementary IIR transfer functions, $H_{0}(z)$ and $H_{1}(z)$, with a sum of allpass decomposition can be simply realized as indicated below

Example 5

- The first-order lowpass transfer function

$$
\underset{\text { pressed as }}{H_{L P}(z)=\frac{1-\alpha}{2}\left(\frac{1+z^{-1}}{1-\alpha z^{-1}}\right)}
$$

$$
H_{L P}(z)=\frac{1}{2}\left(1+\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}\right)=\frac{1}{2}\left[A_{0}(z)+A_{1}(z)\right]
$$

where

$$
A_{0}(z)=1, \quad A_{1}(z)=\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}
$$

Example 5

- Its power-complementary highpass transfer function is thus given by

$$
\begin{aligned}
H_{H P}(z) & =\frac{1}{2}\left[A_{0}(z)-A_{1}(z)\right]=\frac{1}{2}\left(1-\frac{-\alpha+z^{-1}}{1-\alpha z^{-1}}\right) \\
& =\frac{1+\alpha}{2}\left(\frac{1-z^{-1}}{1-\alpha z^{-1}}\right)
\end{aligned}
$$

- The above expression is precisely the firstorder highpass transfer function described earlier

Complementary Transfer Functions

- Figure below demonstrates the allpass complementary property and the power complementary property of $H_{L P}(z)$ and $H_{H P}(z)$

Complementary Transfer Functions

Power-Symmetric Filters

- A real-coefficient causal digital filter with a transfer function $H(z)$ is said to be a powersymmetric filter if it satisfies the condition

$$
H(z) H\left(z^{-1}\right)+H(-z) H\left(-z^{-1}\right)=K
$$

where $K>0$ is a constant

Complementary Transfer Functions

- It can be shown that the gain function $\mathrm{G}(\omega)$ of a power-symmetric transfer function at ω $=\pi$ is given by
$10 \log _{10} K-3 d B$
- If we define $G(z)=H(-z)$, then it follows from the definition of the power-symmetric filter that $H(z)$ and $G(z)$ are powercomplementary as

$$
H(z) H\left(z^{-1}\right)+G(z) G\left(z^{-1}\right)=\text { a constant }
$$

Complementary Transfer Functions

Conjugate Quadratic Filter

- If a power-symmetric filter has an FIR transfer function $H(z)$ of order N, then the FIR digital filter with a transfer function

$$
G(z)=z^{-1} H\left(z^{-1}\right)
$$

is called a conjugate quadratic filter of $H(z)$ and vice-versa

Complementary Transfer Functions

- It follows from the definition that $G(z)$ is also a power-symmetric causal filter
- It also can be seen that a pair of conjugate quadratic filters $H(z)$ and $G(z)$ are also power-complementary

Example 6

- Let $H(z)=1-2 z^{-1}+6 z^{-2}+3 z^{-3}$
- We form

$$
\begin{aligned}
& H(z) H\left(z^{-1}\right)+H(-z) H\left(-z^{-1}\right) \\
& =\left(1-2 z^{-1}+6 z^{-2}+3 z^{-3}\right)\left(1-2 z+6 z^{2}+3 z^{3}\right) \\
& \quad+\left(1+2 z^{-1}+6 z^{-2}-3 z^{-3}\right)\left(1+2 z+6 z^{2}-3 z^{3}\right) \\
& =\left(3 z^{3}+4 z+50+4 z^{-1}+3 z^{-3}\right) \\
& \quad+\left(-3 z^{3}-4 z+50-4 z^{-1}-3 z^{-3}\right)=100
\end{aligned}
$$

- $\square H(z)$ is a power-symmetric transfer function

Digital Two-Pairs

- The LTI discrete-time systems considered so far are single-input, single-output structures characterized by a transfer function
- Often, such a system can be efficiently realized by interconnecting two-input, twooutput structures, more commonly called two-pairs

Digital Two-Pairs

- Figures below show two commonly used block diagram representations of a two-pair

- Here Y_{1} and Y_{2} denote the two outputs, and X_{1} and X_{2} denote the two inputs, where the dependencies on the variable z have been omitted for simplicity

Digital Two-Pairs

- The input-output relation of a digital twopair is given by

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

- In the above relation the matrix τ given by

$$
\tau=\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]
$$

is called the transfer matrix of the two-pair

Digital Two-Pairs

- It follows from the input-output relation that the transfer parameters can be found as follows:

$$
\begin{array}{ll}
t_{11}=\left.\frac{Y_{1}}{X_{1}}\right|_{X_{2}=0}, & t_{12}=\left.\frac{Y_{1}}{X_{2}}\right|_{X_{1}=0} \\
t_{21}=\left.\frac{Y_{2}}{X_{1}}\right|_{X_{2}=0}, & t_{22}=\left.\frac{Y_{2}}{X_{2}}\right|_{X_{1}=0}
\end{array}
$$

Digital Two-Pairs

- An alternative characterization of the twopair is in terms of its chain parameters as

$$
\left[\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
Y_{2} \\
X_{2}
\end{array}\right]
$$

where the matrix Γ given by

$$
\Gamma=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

is called the chain matrix of the two-pair

Digital Two-Pairs

- The relation between the transfer parameters and the chain parameters are given by

$$
\begin{aligned}
& t_{11}=\frac{C}{A}, t_{12}=\frac{A D-B C}{A}, t_{21}=\frac{1}{A}, t_{22}=-\frac{B}{A} \\
& A=\frac{1}{t_{21}}, \quad B=-\frac{t_{22}}{t_{21}}, C=\frac{t_{11}}{t_{21}}, D=\frac{t_{12} t_{21}-t_{11} t_{22}}{t_{21}}
\end{aligned}
$$

Two-Pair Interconnection Schemes

Cascade Connection - Γ-cascade

- Here

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{1}^{\prime} \\
Y_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{l}
Y_{2}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{c}
X_{1}^{\prime \prime} \\
Y_{1}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
Y_{2}^{\prime \prime} \\
X_{2}^{\prime \prime}
\end{array}\right]}
\end{aligned}
$$

Two-Pair Interconnection Schemes

- But from figure, $X_{1}^{\prime \prime}=Y_{2}^{\prime}$ and $Y_{1}^{\prime \prime}=X_{2}^{\prime}$
- Substituting the above relations in the first equation on the previous slide and combining the two equations we get

$$
\left[\begin{array}{c}
X_{1}^{\prime} \\
Y_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]\left[\begin{array}{c}
Y_{2}^{\prime \prime} \\
X_{2}^{\prime \prime}
\end{array}\right]
$$

- Hence,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]\left[\begin{array}{ll}
A^{\prime \prime} & B^{\prime \prime} \\
C^{\prime \prime} & D^{\prime \prime}
\end{array}\right]
$$

Two-Pair Interconnection Schemes

Cascade Connection - τ-cascade

- Here $\left[\begin{array}{l}Y_{1}^{\prime \prime} \\ Y_{2}^{\prime \prime}\end{array}\right]=\left[\begin{array}{ll}t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\ t_{21}^{\prime \prime} & t_{22}^{\prime \prime}\end{array}\right]\left[\begin{array}{l}X_{1}^{\prime \prime} \\ X_{2}^{\prime \prime}\end{array}\right]$

Two-Pair Interconnection Schemes

- But from figure, $X_{1}^{\prime \prime}=Y_{1}^{\prime}$ and $X_{2}^{\prime \prime}=Y_{2}^{\prime}$
- Substituting the above relations in the first equation on the previous slide and combining the two equations we get

$$
\left[\begin{array}{l}
Y_{1}^{\prime \prime} \\
Y_{2}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\
t_{21}^{\prime \prime} & t_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{ll}
t_{11}^{\prime} & t_{12}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime}
\end{array}\right]\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right]
$$

- Hence,

$$
\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]=\left[\begin{array}{ll}
t_{11}^{\prime \prime} & t_{12}^{\prime \prime} \\
t_{21}^{\prime \prime} & t_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{ll}
t_{11}^{\prime} & t_{12}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime}
\end{array}\right]
$$

Two-Pair Interconnection Schemes

Constrained Two-Pair

- It can be shown that

$$
\begin{aligned}
H(z) & =\frac{Y_{1}}{X_{1}}=\frac{C+D \cdot G(z)}{A+B \cdot G(z)} \\
& =t_{11}+\frac{t_{12} t_{21} G(z)}{1-t_{22} G(z)}
\end{aligned}
$$

