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Types of Transfer FunctionsTypes of Transfer Functions

• The time-domain classification of an LTI 

digital transfer function sequence is based 

on the length of its impulse response:

- Finite impulse response (FIR) transfer 

functions

- Infinite impulse response (IIR) transfer 

functions



Types of Transfer FunctionsTypes of Transfer Functions

• Several other classifications are also used

• In the case of digital transfer functions with 

frequency-selective frequency responses 

(filters), one classification is based on the 

shape of the magnitude function               or 

the form of the phase function θ(ω)

• Based on the above, four types of ideal 

filters are usually defined
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Ideal FiltersIdeal Filters

• Frequency response equal to one at 

frequencies we wish to keep

• Frequency response equal to zero at all 

other frequencies



Ideal FiltersIdeal Filters

• The range of frequencies where the 

frequency response takes the value of one is 

called the passband

• The range of frequencies where the 

frequency response takes the value of zero

is called the stopband



Ideal FiltersIdeal Filters

• Frequency responses of the four popular types of 
ideal digital filters with real impulse response 
coefficients are shown below:

Lowpass Highpass

Bandpass Bandstop



Ideal FiltersIdeal Filters

• The inverse DTFT of the frequency response of 

the ideal lowpass filter is (see previous chapter)

• The above impulse response is non-causal and 

is of doubly infinite length. Moreover, is not 

absolutely summable.
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Ideal FiltersIdeal Filters

• The remaining three ideal filters are also 

characterized by doubly infinite, non-causal 

impulse responses and are not absolutely 

summable

• Thus, the ideal filters with the ideal “brick

wall” frequency responses cannot be 

realized with finite dimensional LTI filters



Ideal FiltersIdeal Filters

• To develop stable and realizable transfer 

functions, the ideal frequency response 

specifications are relaxed by including a 

transition band between the passband and

the stopband

• This permits the magnitude response to 

decay slowly from its maximum value in 

the passband to the zero value in the 

stopband



Ideal FiltersIdeal Filters

• Moreover, the magnitude response is 

allowed to vary by a small amount both in 

the passband and the stopband

• Typical magnitude response specifications 

of a lowpass filter are shown below



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• A second classification of a transfer 

function is with respect to its phase 

characteristics

• In many applications, it is necessary that the 

digital filter designed does not distort the 

phase of the input signal components with 

frequencies in the passband



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• One way to avoid any phase distortion is to 

make the frequency response of the filter 

real and nonnegative, i.e., to design the 

filter with a zero-phase characteristic

• A zero phase cannot be causal



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• For non-real-time processing of real-valued 

input signals of finite length, zero-phase 

filtering can be very simply implemented by 

relaxing the causality requirement

• One zero phase filtering scheme is sketched 

below

x[n] v[n] u[n] w[n]H(z) H(z)

][][],[][ nwnynvnu −=−=



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• It is easy to verify the above scheme in the 

frequency domain

• Let             ,              ,             ,             , and

denote the DTFTs of x[n], v[n],

u[n], w[n], and y[n], respectively

• From the figure shown earlier and making 

use of the symmetry relations we arrive at 

the relations between various DTFTs as 

given on the next slide
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ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• Combining the above equations we get

x[n] v[n] u[n] w[n]H(z) H(z)

][][],[][ nwnynvnu −=−=
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ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• The function fftfilt implements the 

above zero-phase filtering scheme

• In the case of a causal transfer function with 

a non-zero phase response, the phase 

distortion can be avoided by ensuring that 

the transfer function has a unity magnitude 

and a linear-phase characteristic in the 

frequency band of interest



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• The most general type of a filter with a 

linear phase has a frequency response given 

by

which has a linear phase from ω = 0 to ω = 

2π
• Note also
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ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• The output y[n] of this filter to an input

is then given by

• If          and          represent the continuous-

time signals whose sampled versions, 

sampled at t = nT, are x[n] and y[n] given 

above, then the delay between          and              

is precisely the group delay of amount D
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ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• If D is an integer, then y[n] is identical to 

x[n], but delayed by D samples

• If D is not an integer, y[n], being delayed by 

a fractional part, is not identical to x[n]

• In the latter case, the waveform of the 

underlying continuous-time output is 

identical to the waveform of the underlying 

continuous-time input and delayed D units 

of time



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 

Transfer FunctionsTransfer Functions

• If it is desired to pass input signal 

components in a certain frequency range 

undistorted in both magnitude and phase, 

then the transfer function should exhibit a 

unity magnitude response and a linear-phase 

response in the band of interest



ZeroZero--Phase and LinearPhase and Linear--Phase Phase 
Transfer FunctionsTransfer Functions

• Figure below shows the frequency response of a 

lowpass filter with a linear-phase characteristic in 

the passband

• Since the signal components

in the stopband are blocked,

the phase response in the

stopband can be of any shape



Example 1: Ideal Lowpass Filter

• Determine the impulse response of an ideal 

lowpass filter with a linear phase response:
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Example 1: Ideal Lowpass Filter

• Applying the frequency-shifting property of 

the DTFT to the impulse response of an 

ideal zero-phase lowpass filter we arrive at

• As before, the above filter is non-causal and 

of doubly infinite length, and hence, 

unrealizable
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Example 1: Ideal Lowpass Filter

• By truncating the impulse response to a 

finite number of terms, a realizable FIR 

approximation to the ideal lowpass filter 

can be developed

• The truncated approximation may or may 

not exhibit linear phase, depending on the 

value of      chosenon



Example 1: Ideal Lowpass Filter

• If we choose = N/2 with N a positive 

integer, the truncated and shifted 

approximation

will be a length N+1 causal linear-phase 

FIR filter (symmetric filter: see analysis 

later)
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Example 1: Ideal Lowpass Filter

• Figure below shows the filter coefficients 
obtained using the function sinc for two 

different values of N
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ZeroZero--Phase and LinearPhase and Linear--Phase Phase 
Transfer FunctionsTransfer Functions

• Because of the symmetry of the impulse 

response coefficients as indicated in the two 

figures, the frequency response of the 

truncated approximation can be expressed as:

where              , called the zero-phase 

response or amplitude response, is a real 

function of ω
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LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• It is impossible to design a linear-phase IIR 

transfer function

• It is always possible to design an FIR transfer 

function with an exact linear-phase response

• Consider a causal FIR transfer function H(z) of 

length N+1, i.e., of order N:
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LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• The above transfer function has a linear 

phase if its impulse response h[n] is either 

symmetric, i.e.,

or is antisymmetric, i.e.,
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• Since the length of the impulse response can 

be either even or odd, we can define four 

types of linear-phase FIR transfer functions

• For an antisymmetric FIR filter of odd 

length, i.e., N even

h[N/2] = 0

• We examine next each of the 4 cases
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Type 1: N = 8 Type 2: N = 7

Type 3: N = 8 Type 4: N = 7



LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

Type 1: Symmetric Impulse Response with

Odd Length

• In this case, the degree N is even

• Assume N = 8 for simplicity

• The transfer function H(z) is given by
321 3210 −−− +++= zhzhzhhzH ][][][][)(
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LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• Because of symmetry, we have h[0] = h[8],

h[1] = h[7], h[2] = h[6], and h[3] = h[5]

• Thus, we can write

)]([)]([)( 718 110 −−− +++= zzhzhzH
45362 432 −−−−− +++++ zhzzhzzh ][)]([)]([

)]([)]([{ 33444 10 −−− +++= zzhzzhz

]}[)]([)]([ 432 122 hzzhzzh +++++ −−



LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• The corresponding frequency response is then 
given by

• The quantity inside the brackets is a real function 
of ω, and can assume positive or negative values 
in the range π≤ω≤0

)3cos(]1[2)4cos(]0[2{)( 4 ω+ω= ω−ω hheeH jj
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LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• The phase function here is given by

where β is either 0 or π, and hence, it is a 

linear function of ω in the generalized sense

• The group delay is given by

indicating a constant group delay of 4 samples
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LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

• In the general case for Type 1 FIR filters, 

the frequency response is of the form

where the amplitude response , also

called the zero-phase response, is of the 

form
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Example 2: A Type 1 Linear Phase Filter

• Consider 

which is seen to be a slightly modified version 

of a length-7 moving-average FIR filter

• The above transfer function has a symmetric 

impulse response and therefore a linear phase 

response
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• A plot of the magnitude response of            along 

with that of the 7-point moving-average filter is 

shown below
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Example 2: A Type 1 Linear Phase Filter



• Note that the improved magnitude response obtained 
by simply changing the first and the last impulse 
response coefficients of a moving-average (MA) 
filter

• It can be shown that we can express

which a cascade of a 2-point MA filter with a 6-
point MA filter

• Thus,           has a double zero at           , i.e., ω = π
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Example 2: A Type 1 Linear Phase Filter
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Type 2: Symmetric Impulse Response with

Even Length

• In this case, the degree N is odd

• Assume N = 7 for simplicity

• The transfer function is of the form
321 3210 −−− +++= zhzhzhhzH ][][][][)(

7654 7654 −−−− ++++ zhzhzhzh ][][][][
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• Making use of the symmetry of the impulse 

response coefficients, the transfer function 

can be written as

)]([)]([)( 617 110 −−− +++= zzhzhzH

)]([)]([ 4352 32 −−−− ++++ zzhzzh

)]([)]([{ ///// 2525272727 10 −−− +++= zzhzzhz

)}]([)]([ //// 21212323 32 −− ++++ zzhzzh
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• The corresponding frequency response is given 
by

• As before, the quantity inside the brackets is a 
real function of ω, and can assume positive or 
negative values in the range
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• Here the phase function is given by

where again β is either 0 or π
• As a result, the phase is also a linear 

function of ω in the generalized sense

• The corresponding group delay is

indicating a group delay of     samples

β+ω−=ωθ
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• The expression for the frequency response 

in the general case for Type 2 FIR filters is 

of the form

where the amplitude response is given by

)(ωH
~

∑ −ω−=
+

=

+
2/)1(

1
2
1

2
1 ))(cos(][2

N

n

N nnh

)()( 2/ ω= ω−ω HeeH jNj ~



LinearLinear--Phase FIR Transfer FunctionsPhase FIR Transfer Functions

Type 3: Antiymmetric Impulse Response

with Odd Length

• In this case, the degree N is even

• Assume N = 8 for simplicity

• Applying the symmetry condition we get
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• The corresponding frequency response is 

given by

• It also exhibits a generalized phase response 

given by

where β is either 0 or π
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• The group delay here is

indicating a constant group delay of 4 samples

• In the general case

where the amplitude response is of the form
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Type 4: Antiymmetric Impulse Response

with Even Length

• In this case, the degree N is even

• Assume N = 7 for simplicity

• Applying the symmetry condition we get

)]([)]([{)( ///// 2525272727 10 −−− −+−= zzhzzhzzH
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• The corresponding frequency response is 

given by

• It again exhibits a generalized phase 

response given by

where β is either 0 or π
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• The group delay is constant and is given by

• In the general case we have

where now the amplitude response is of the 

form
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Zero Locations of LinearZero Locations of Linear--Phase FIR Phase FIR 
Transfer FunctionsTransfer Functions

• Consider first an FIR filter with a symmetric 

impulse response:

• Its transfer function can be written as

• By making a change of variable                 , 

we can write
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Zero Locations of LinearZero Locations of Linear--PhasePhase

FIR Transfer FunctionsFIR Transfer Functions

• But,

• Hence for an FIR filter with a symmetric 

impulse response of length N+1 we have

• A real-coefficient polynomial H(z) 

satisfying the above condition is called a

mirror-image polynomial (MIP)
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Zero Locations of LinearZero Locations of Linear--Phase Phase 
FIR Transfer FunctionsFIR Transfer Functions

• Now consider first an FIR filter with an 
antisymmetric impulse response:

• Its transfer function can be written as

• By making a change of variable                 , 
we get
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FIR Transfer FunctionsFIR Transfer Functions

• Hence, the transfer function H(z) of an FIR 

filter with an antisymmetric impulse 

response satisfies the condition

• A real-coefficient polynomial H(z) 

satisfying the above condition is called a

antimirror-image polynomial (AIP)
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Zero Locations of LinearZero Locations of Linear--Phase Phase 

FIR Transfer FunctionsFIR Transfer Functions

• It follows from the relation                         

that if            is a zero of H(z), so is

• Moreover, for an FIR filter with a real 

impulse response, the zeros of H(z) occur in 

complex conjugate pairs

• Hence, a zero at            is associated with a 

zero at
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Zero Locations of LinearZero Locations of Linear--PhasePhase

FIR Transfer FunctionsFIR Transfer Functions

• Thus, a complex zero that is not on the unit 

circle is associated with a set of 4 zeros given 

by

• A zero on the unit circle appears as a pair

as its reciprocal is also its complex conjugate
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Zero Locations of LinearZero Locations of Linear--PhasePhase

FIR Transfer FunctionsFIR Transfer Functions

• Since a zero at            is its own reciprocal, 

it can appear only singly

• Now a Type 2 FIR filter satisfies

with degree N odd 

• Hence

implying                  , i.e., H(z) must have a 

zero at 

1±=z
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Zero Locations of LinearZero Locations of Linear--PhasePhase

FIR Transfer FunctionsFIR Transfer Functions

• Likewise, a Type 3 or 4 FIR filter satisfies

• Thus

implying that H(z) must have a zero at z = 1

• On the other hand, only the Type 3 FIR 

filter is restricted to have a zero at            

since here the degree N is even and hence,
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Zero Locations of LinearZero Locations of Linear--Phase Phase 
FIR Transfer FunctionsFIR Transfer Functions

• Typical zero locations shown below
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Zero Locations of LinearZero Locations of Linear--Phase Phase 

FIR Transfer FunctionsFIR Transfer Functions

• Summarizing

(1) Type 1 FIR filter: Either an even number 

or no zeros at z = 1 and

(2) Type 2 FIR filter: Either an even number 

or no zeros at z = 1, and an odd number of 

zeros at

(3) Type 3 FIR filter: An odd number of 

zeros at z = 1 and
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Zero Locations of LinearZero Locations of Linear--Phase Phase 

FIR Transfer FunctionsFIR Transfer Functions

(4) Type 4 FIR filter: An odd number of 

zeros at z = 1, and either an even number or 

no zeros at

• The presence of zeros at            leads to the 

following limitations on the use of these 

linear-phase transfer functions for designing 

frequency-selective filters
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Zero Locations of LinearZero Locations of Linear--Phase Phase 

FIR Transfer FunctionsFIR Transfer Functions

• A Type 2 FIR filter cannot be used to 

design a highpass filter since it always has a 

zero

• A Type 3 FIR filter has zeros at both z = 1

and           , and hence cannot be used to 

design either a lowpass or a highpass or a 

bandstop filter
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Zero Locations of LinearZero Locations of Linear--Phase Phase 

FIR Transfer FunctionsFIR Transfer Functions

• A Type 4 FIR filter is not appropriate to 

design a lowpass filter due to the presence 

of a zero at z = 1

• Type 1 FIR filter has no such restrictions 

and can be used to design almost any type 

of filter



Bounded Real Transfer Bounded Real Transfer 

FunctionsFunctions

• A causal stable real-coefficient transfer 

function H(z) is defined as a bounded real

(BR) transfer function if

• Let x[n] and y[n] denote, respectively, the 

input and output of a digital filter 

characterized by a BR transfer function H(z)

with              and              denoting their 

DTFTs
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Bounded Real Transfer Bounded Real Transfer 

FunctionsFunctions

• Then the condition                    implies that

• Integrating the above from         to π, and 

applying Parseval’s relation we get
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Bounded Real Transfer Bounded Real Transfer 

FunctionsFunctions

• Thus, for all finite-energy inputs, the output 

energy is less than or equal to the input 

energy implying that a digital filter 

characterized by a BR transfer function can 

be viewed as a passive structure

• If                    , then the output energy is 

equal to the input energy, and such a digital 

filter is therefore a lossless system

1|)(| =ωjeH



Bounded Real Transfer Bounded Real Transfer 

FunctionsFunctions

• A causal stable real-coefficient transfer 

function H(z) with                     is thus 

called a lossless bounded real (LBR)

transfer function

• The BR and LBR transfer functions are the 

keys to the realization of digital filters with 

low coefficient sensitivity
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