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Types of Transfer Functions

* The time-domain classification of an LTI
digital transfer function sequence is based
on the length of 1ts impulse response:

- Finite impulse response (FIR) transfer
functions

- Infinite impulse response (IIR) transfer
functions



Types of Transfer Functions

Several other classifications are also used

In the case of digital transfer functions with
frequency-selective frequency responses
(filters), one classification 1s based on the
shape of the magnitude function |H (e/®)| or
the form of the phase function 0(w)

Based on the above, four types of 1deal
filters are usually defined



ldeal Filters

* Frequency response equal to one at
frequencies we wish to keep

* Frequency response equal to zero at all
other frequencies



ldeal Filters

* The range of frequencies where the
frequency response takes the value of one 1s
called the passband

* The range of frequencies where the
frequency response takes the value of zero
1s called the stopband



ldeal Filters

* Frequency responses of the four popular types of
ideal digital filters with real impulse response
coefficients are shown below:
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ldeal Filters

* The inverse DTFT of the frequency response of
the 1deal lowpass filter 1s (see previous chapter)
_sino.n

hLP[n]— , —0<n<oo
n

* The above impulse response 1s non-causal and
is of doubly infinite length. Moreover, 1s not
absolutely summable.



ldeal Filters

* The remaining three 1deal filters are also
characterized by doubly infinite, non-causal
impulse responses and are not absolutely
summable

* Thus, the 1deal filters with the 1deal “brick
wall” frequency responses cannot be
realized with finite dimensional LTT filters



ldeal Filters

* To develop stable and realizable transfer
functions, the 1deal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

&

* This permits the magnitude response to
decay slowly from 1ts maximum value in
the passband to the zero value in the
stopband




ldeal Filters

* Moreover, the magnitude response is
allowed to vary by a small amount both in
the passband and the stopband

e Typical magnitude response specifications
of a lowpass filter are shown below
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Zero-Phase and Linear-Phase
Transfer Functions

A second classification of a transfer
function 1s with respect to its phase
characteristics

* In many applications, it 1s necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies 1n the passband



Zero-Phase and Linear-Phase
Transfer Functions

* One way to avoid any phase distortion is to
make the frequency response of the filter
real and nonnegative, 1.e., to design the
filter with a zero-phase characteristic

* A zero phase cannot be causal



Zero-Phase and Linear-Phase
Transfer Functions

* For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

* One zero phase filtering scheme 1s sketched

below
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Zero-Phase and Linear-Phase
Transfer Functions

e It 1s easy to verify the above scheme 1n the
frequency domain

o Let X(ej“’), V(e/®) ,U(e/®),W(e/®), and
Y(e’®) denote the DTFTs of x[n], v[n],
u[n], wln], and y|n], respectively

* From the figure shown earlier and making
use of the symmetry relations we arrive at
the relations between various DTFTs as
given on the next slide



Zero-Phase and Linear-Phase

Transfer Functions

xX[n] ——

H(z)

— v[n]

uln|

V(e/®)=H(e/*)X (e/),

— V[_n]9

U(el®) =P*(ef),

uln] — H(2)

— w|n]

yln]=wl-n]

W (el®) = H(e/*)U(e/®)
Y(e/®)=W*(e/?)
* Combining the above equations we get
Y(e/®)=W*(e/®) =H*(e/®)U *(e/?)
= H*(e/*)V (e/®) = H*(e/”) H(e/®) X(e/®)
— H(el®)” X (e®)



Zero-Phase and Linear-Phase
Transfer Functions

e The function ££t£ilt implements the
above zero-phase filtering scheme

 In the case of a causal transfer function with
a non-zero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and a linear-phase characteristic in the
frequency band of interest



Zero-Phase and Linear-Phase
Transfer Functions

* The most general type of a filter with a
linear phase has a frequency response given
by

H(e/®)=e /oD
which has a linear phase from @ =0 to o =
2T

* Note also ‘H (ej(”)‘ =1
T(w)=D



Zero-Phase and Linear-Phase
Transfer Functions

* The output y[n] of this filter to an mput
x[n]= Ae/®" is then given by
y[n] — o= JOD jon _ Aejoo(n—D)

 If x,(¢) and y,(¢) represent the continuous-
time signals whose sampled versions,
sampled at ¢t = nT, are x[n] and y[n] given
above, then the delay between x, () and y ()
1s precisely the group delay of amount D



Zero-Phase and Linear-Phase
Transfer Functions

* If D is an integer, then y[n] 1s identical to
x[n], but delayed by D samples

* If D 1s not an integer, y[n], being delayed by
a fractional part, 1s not 1dentical to x[#]

* In the latter case, the wavetorm of the
underlying continuous-time output 1s
identical to the waveform of the underlying
continuous-time mput and delayed D units
of time



Zero-Phase and Linear-Phase
Transfer Functions

 [If 1t 1s desired to pass mput signal
components 1n a certain frequency range
undistorted 1n both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response 1n the band of interest



Zero-Phase and Linear-Phase
Transfer Functions

* Figure below shows the frequency response of a
lowpass filter with a linear-phase characteristic in
the passband

* Since the signal components Fupcer®)
in the stopband are blocked, |
the phase response in the L I
stopband can be of any shape g Hpp(e)
AN m




Example 1: Ideal Lowpass Filter

* Determine the impulse response of an 1deal
lowpass filter with a linear phase response:

0 )< <o,

joy_ 1€
Hip(e™) { 0, o, <o<r



Example 1: Ideal Lowpass Filter

* Applying the frequency-shifting property of
the DTFT to the impulse response of an
1deal zero-phase lowpass filter we arrive at

sIn®.(n—n
hLP[n]: C( 0), —oo < n<aoo
w(n—n,)

* As before, the above filter 1s non-causal and
of doubly infinite length, and hence,
unrealizable



Example 1: Ideal Lowpass Filter

* By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed

* The truncated approximation may or may
not exhibit linear phase, depending on the
value of n, chosen



Example 1: Ideal Lowpass Filter

* If we choose n,= N/2 with N a positive
integer, the truncated and shifted

approximation
2’LP[H]: s1n(x)c(n—N/2), 0<n<N
n(n—N/2)

will be a length N+1 causal linear-phase
FIR filter (symmetric filter: see analysis
later)



Example 1: Ideal Lowpass Filter
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Zero-Phase and Linear-Phase
Transfer Functions

* Because of the symmetry of the impulse
response coefficients as indicated in the two
figures, the frequency response of the
truncated approximation can be expressed as:

A . N A . . ~
Hyp(e/®)= 3 hyp[n]e /" =e /N2 H  p(w)
n=0
where H; p(®), called the zero-phase
response or amplitude response, 1s a real

function of ®



Linear-Phase FIR Transfer Functions

* [t 1s impossible to design a linear-phase I1IR
transfer function

* It 1s always possible to design an FIR transfer
function with an exact linear-phase response

» Consider a causal FIR transfer function H(z) of
length N+1, 1.e., of order V:

H(z)=Y"" hn]z"™"



Linear-Phase FIR Transfer Functions

 The above transfer function has a linear
phase 1f its impulse response %[n] 1s either
symmetric, 1.¢€.,

hln]=h[N—n], 0<n<N
or 1s antisymmetric, 1.¢.,
hin]=—hN—-n], 0<n<N



Linear-Phase FIR Transfer Functions

* Since the length of the impulse response can
be either even or odd, we can define four
types of linear-phase FIR transfer functions

* For an antisymmetric FIR filter of odd
length, 1.e., N even

h|N/2]1=0
e We examine next each of the 4 cases



Linear-Phase FIR Transfer Functions
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Linear-Phase FIR Transfer Functions

Type 1: Symmetric Impulse Response with
Odd Length
* In this case, the degree N is even
* Assume N = 8 for simplicity
» The transfer function H(z) 1s given by
H(z)=h[0]+h[1)z"" + h[2]z "% + h[3]z>
+ W41z + h[5)27° + h[6]z ° + A[T])z" + [8]z "



Linear-Phase FIR Transfer Functions

* Because of symmetry, we have /#[0] = A[8],
h[1]=h[T], h|2] = h[6], and A[3] = A[5]

e Thus, we can write
H(z)=h0]0+z )+ A1)z +27)
+h[2)(z 2+ 27+ BB31(z7° + 27°) + h[4]z 4
=z Y01zt + 2 H + 127 +270)
+h[2](z° + 2 )+ B3z + z 1) + A[4]}




Linear-Phase FIR Transfer Functions

* The corresponding frequency response 1s then
given by
H(e’®)=e 7**2h[0]cos(4w) + 2A[1]cos(3w)
+2h[2]cos(2m) + 2A[3]cos(m) + A[4]}
» The quantity inside the brackets 1s a real function

of w, and can assume positive or negative values
in the range 0 <@ <=



Linear-Phase FIR Transfer Functions

* The phase function here is given by
O(w)=—40+f

where [ 1s either O or w, and hence, 1t 1s a
linear function of ® 1n the generalized sense

* The group delay is given by
d6(o) _
dow

indicating a constant group delay of 4 samples

T(0) =— 4



Linear-Phase FIR Transfer Functions

* In the general case for Type 1 FIR filters,
the frequency response is of the form

H(ejco) _ e—jN(o/2[_7((D)
where the amplitude response H (o), also
called the zero-phase response, 1s of the
form

H (w) = h[g] + ZNZ/f h[g —n]cos(w n)



Example 2: A Type 1 Linear Phase Filter

 Consider

Hy(z)= é[; e e N ! 52_6]
which 1s seen to be a slightly modified version

of a length-7 moving-average FIR filter

* The above transfer function has a symmetric
impulse response and therefore a linear phase
response



Example 2: A Type 1 Linear Phase Filter

* A plot of the magnitude response of H(z) along
with that of the 7-point moving-average filter 1s
shown below
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Example 2: A Type 1 Linear Phase Filter

* Note that the improved magnitude response obtained
by simply changing the first and the last impulse
response coefficients of a moving-average (MA)
filter

* It can be shown that we can express
Hy(z)= é(l + Z_l)°é(1 R e 2_5)

which a cascade of a 2-point MA filter with a 6-
point MA filter

e Thus, Hy(z)has a double zeroat z=-1,1.e., ®=m

4



Linear-Phase FIR Transfer Functions

Type 2: Symmetric Impulse Response with
Even Length
* In this case, the degree N 1s odd
* Assume N =7 for simplicity
* The transfer function 1s of the form
H(z)=h{0]+h[1]z" +A[2])z"* + A[3]z "
+ W41z + h[5]z7> + h[6]zC + h[7]z""




Linear-Phase FIR Transfer Functions

« Making use of the symmetry of the impulse
response coefficients, the transfer function
can be written as

H(z)=nh
+ h

0

2]

A+z" )+ )z +27°
(2_2 +Z_5)-|-h[ ](2_3 +z7°

_ —7/2{h[0]( 7/2 _7/2)+h[ ]( 5/2_|_Z—5/2)
[2](23/2 _3/2)—|-h[ ]( 1/2+Z_1/2)}



Linear-Phase FIR Transfer Functions

* The corresponding frequency response 1s given

by

H(ejO)) — e—]70)/2{2h:

+2h

0]cos(’)+2h

2]

cos(°P) + 2/

1]cos(>$)

3]cos(3);

* As before, the quantity inside the brackets 1s a
real function of ®, and can assume positive or
negative values in the range 0 < | <7



Linear-Phase FIR Transfer Functions

* Here the phase function 1s given by
O(w) = —; o+[3
where again 3 1s either 0 or 7t

* As aresult, the phase 1s also a linear
function of ® 1n the generalized sense

* The corresponding group delay 1s
(0) =]
indicating a group delay of ; samples



Linear-Phase FIR Transfer Functions

* The expression for the frequency response
in the general case for Type 2 FIR filters 1s
of the form

H(ej(D) — e—jN(D/zHN((D)
where the amplitude response 1s given by

(N+1)/2
Ho®) =2 Y h[ n]COS((D(n—é))

n=1



Linear-Phase FIR Transfer Functions

Type 3: Antiymmetric Impulse Response
with Odd Length
* In this case, the degree N 1s even
* Assume N = 8 for simplicity
* Applying the symmetry condition we get
H(z)=z " {h[0](z* =z )+ h[l](z° —27)
+h2)(z% =z 2+ A[31(z—z 1)}



Linear-Phase FIR Transfer Functions

» The corresponding frequency response 1is
given by
H(e/®) = e /4 /™2 12 h0]sin(4w) + 2A[1]sin(3w)
+ 2h[2]s1mn(2m) + 2A[3]sin(m)}
* It also exhibits a generalized phase response

given by
O(0)=—40+7+f

where [ 1s either 0 or 7



Linear-Phase FIR Transfer Functions

* The group delay here 1s
T(w)=4
indicating a constant group delay of 4 samples

 In the general case
H(e](D) — je—]N(D/zﬁ((D)

where the amplitude response 1s of the form
~ N/2
H(w) =23 h[%) —n]sin(on)

n=1



Linear-Phase FIR Transfer Functions

Type 4: Antiymmetric Impulse Response
with Even Length
* In this case, the degree N 1s even
* Assume N =7 for simplicity
* Applying the symmetry condition we get
H(zy=z""2h[01z72 =272y + i11(z>2 = 27572
122 =232 e 3122 = 2



Linear-Phase FIR Transfer Functions

» The corresponding frequency response is
given by
H(e’®)=e /7272021 0]sin(7®) + 2A[1]sin(3?)
+2h[2]sin(3$) + 2A[3]sin(%) }
* [t again exhibits a generalized phase

response given by
O(0)=—Jo+7+

where 3 1s either 0 or 7



Linear-Phase FIR Transfer Functions

* The group delay 1s constant and 1s given by
() =
 In the general case we have
H(ej(o) _ je—ij/Zﬁ((D)
where now the amplitude response 1s of the

form
(N+1)/2

H(®) =2 Z h[ —n]sin(w(n — 5))

n=1



Zero Locations of Linear-Phase FIR
Transfer Functions

* Consider first an FIR filter with a symmetric
impulse response: A[n]=h[N —n]
o [ts transfer function can be written as

N N
H(z)= )Y hnlz" = > h[N—-n]z""
n=0 n=0

* By making a change of variable m =N —n,
we can write

N N N
SNAN-nlz" = S himlz "™ =27V Y h[m]z"™
n=0 m=0 m=0



Zero Locations of Linear-Phase
FIR Transfer Functions

 But,
SN h[mlz™ = H(z"")

* Hence for an FIR filter with a symmetric
impulse response of length N+1 we have

H(z)=zVH(:z

A real-coefficient polynomial H(z)
satisfying the above condition is called a
mirror-image polynomial (MIP)



Zero Locations of Linear-Phase
FIR Transfer Functions

* Now consider first an FIR filter with an
antisymmetric impulse response:

h[n]=—-h|N —n]
Its transfer function can be written as

N N
H(z)= Y hlnlz"==> i[N—-n]z""
n=0 n=0

* By making a change of variablem =N —n
we get

- %h[N—n]Z_n == ]Zv:h[m]Z_Nm =—z"VH(z™)
n=0 m=0



Zero Locations of Linear-Phase
FIR Transfer Functions

* Hence, the transfer function H(z) of an FIR
filter with an antisymmetric impulse
response satisfies the condition

H(z)=-zYH(EZ™
A real-coefficient polynomial H(z)

satisfying the above condition 1s called a
antimirror-image polynomial (AIP)



Zero Locations of Linear-Phase
FIR Transfer Functions

* It follows from the relation H(z) = +: NV H (2_1)
that if z=¢£, 15 a zero of H(z), so1s z=1/¢,

 Moreover, for an FIR filter with a real
impulse response, the zeros of H(z) occur 1n
complex conjugate pairs

* Hence, a zero at z = ¢ 1s associated with a
zero at z=¢&



Zero Locations of Linear-Phase
FIR Transfer Functions

* Thus, a complex zero that 1s not on the unit
circle 1s associated with a set of 4 zeros given

by

L L
z=re/? zz},e‘m

>

* A zero on the unit circle appears as a pair
L
z=et/?

as 1ts reciprocal 1s also 1ts complex conjugate



Zero Locations of Linear-Phase
FIR Transfer Functions

* Since a zero at z =1 1s 1ts own reciprocal,
it can appear only singly

 Now a Type 2 FIR filter satisfies
H(z)= Z_NH(Z_I)
with degree N odd
e Hence H(-1)=(-1)"Y H(-1)=-H(-1)
implying H(—1)=0, 1.e., H(z) must have a
zero at z =—1



Zero Locations of Linear-Phase
FIR Transfer Functions

* Likewise, a Type 3 or 4 FIR filter satisfies
H(z)=-zYH(EZ™
« Thus HQ)=—-1)""YH1)=-H(1)
implying that H(z) must have a zero at z = 1

* On the other hand, only the Type 3 FIR
filter 1s restricted to have a zero at z =—1
since here the degree N 1s even and hence,

H(-)=~(-1)""H(-1)=-H(-1)



Zero Locations of Linear-Phase
FIR Transfer Functions

* Typical zero locations shown below
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Zero Locations of Linear-Phase
FIR Transfer Functions

* Summarizing

(1) Type 1 FIR filter: Either an even number
or no zeros atz=1 and z =-1

(2) Type 2 FIR filter: Either an even number
or no zeros at z =1, and an odd number of
zeros at z=-—1

(3) Type 3 FIR filter: An odd number of
zeros atz=1 and z =-1



Zero Locations of Linear-Phase
FIR Transfer Functions

(4) Type 4 FIR filter: An odd number of

zeros at z = 1, and either an even number or
no zeros at z =—1

» The presence of zeros at z ==*1 leads to the
following limitations on the use of these
linear-phase transfer functions for designing
frequency-selective filters



Zero Locations of Linear-Phase
FIR Transfer Functions

* A Type 2 FIR filter cannot be used to

design a highpass filter since 1t always has a
zero z =—1

* A Type 3 FIR filter has zeros at both z =1
and z = —1, and hence cannot be used to
design either a lowpass or a highpass or a
bandstop filter



Zero Locations of Linear-Phase
FIR Transfer Functions

* A Type 4 FIR filter 1s not appropriate to
design a lowpass filter due to the presence
ofazeroatz=1

* Type 1 FIR filter has no such restrictions

and can be used to design almost any type
of filter



Bounded Real Transfer
Functions

* A causal stable real-coefficient transfer
function H(z) 1s defined as a bounded real
(BR) transfer function if

H(e’®)|<1 for all values of ®

* Let x[n] and y[n] denote, respectively, the
input and output of a digital filter
characterized by a BR transfer function H(z)
with X (e/®) and Y(e’®) denoting their
DTFTs




Bounded Real Transfer
Functions

» Then the condition |H (e/®)|<1implies that
.2 .12
V(™) < X(e/)

 Integrating the above from —n to m, and
applying Parseval’s relation we get

Syln)* < Y xin]?

Nn—=——=~o0 Nn—=——~o0



Bounded Real Transfer
Functions

* Thus, for all finite-energy inputs, the output
energy 1s less than or equal to the mput
energy implying that a digital filter
characterized by a BR transfer function can
be viewed as a passive structure

o If|H (ej “)|=1, then the output energy is
equal to the input energy, and such a digital
filter 1s therefore a lossless system



Bounded Real Transfer
Functions

* A causal stable real-coefticient transter
function H(z) with |H (e’®)|=1 is thus
called a lossless bounded real (LBR)
transfer function

 The BR and LBR transfer functions are the
keys to the realization of digital filters with
low coefficient sensitivity



