E2.5 Signals \& Linear Systems

Tutorial Sheet 4 - Laplace Transform

(Support Lecture 6)

1.* By direct integration, find the one-sided Laplace transforms of the following functions (please note that if not otherwise stated, we will always consider the unilateral Laplace transform):
a) $\quad u(t)-u(t-1)$
b) $t e^{-t} u(t)$
c) $\quad t \cos \omega_{0} t u(t)$
d) $\quad e^{-2 t} \cos (5 t+\theta) u(t)$
2.* By direct integration, find the Laplace transforms of the following signals:

(a)

(b)

(c)
3.* Find the inverse (one-sided) Laplace transforms of the following functions (from now on, if not stated otherwise, we always look for a causal solution):
a) $\frac{2 s+5}{s^{2}+5 s+6}$
b) $\frac{3 s+5}{s^{2}+4 s+13}$
c) $\frac{(s+1)^{2}}{s^{2}-s-6}$
d) $\frac{2 s+1}{(s+1)\left(s^{2}+2 s+2\right)}$
e) $\frac{s+3}{(s+2)(s+1)^{2}}$
4.** Find the Laplace transforms of the following function using the Laplace Transform Table and the time-shifting property where appropriate.
a) $u(t)-u(t-1)$
b) $\quad e^{-(t-\tau)} u(t)$
c) $\quad e^{-t} u(t-\tau)$
d) $\quad \sin \left[\omega_{0}(t-\tau)\right] u(t-\tau)$
e) $\quad \sin \left[\omega_{0}(t-\tau)\right] u(t)$
5.** Find the inverse Laplace transform of the function:

$$
\frac{2 s+5}{s^{2}+5 s+6} e^{-2 s} .
$$

6.*** The Laplace transform of a causal periodic signal can be found from the knowledge of the Laplace transform of its first cycle alone.
a) If the Laplace transform of $f(t)$ shown in Fig. 6 a) is $F(s)$, show that $\mathrm{G}(\mathrm{s})$, the Laplace transform of $g(t)$ shown in Fig. 6 b) is given by:

$$
G(s)=\frac{F(s)}{1-e^{-s T_{0}}} \quad \operatorname{Re} s>0
$$

Fig 6 a)

Fig 6 b)
b) Using the results in a), find the Laplace transform of the signal p(t) shown in Fig. 6 c).

:Fig 6 c)
(Hint: Remember that $1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$ for $|x|<1$.)

