E2.5 Signals \& Linear Systems

Tutorial Sheet 2 - System Responses

1. A Linear Time Invariant (LTI) system is specified by system equation

$$
\left(D^{2}+4 D+4\right) y(t)=D f(t)
$$

a) Find the characteristic polynomial, characteristic equation, characteristic roots and characteristic modes of this system.
b) Find $y_{0}(t)$, the zero-input component of the response $y(t)$ for $t \geq 0$, if the initial conditions are $y_{0}(0)=3$, and $\dot{y}_{0}(0)=-4$.
2. Repeat question one with

$$
D(D+1) y(t)=(D+2) f(t)
$$

And initial conditions of $y_{0}(0)=1$, and $\dot{y}_{0}(0)=1$.
3. Repeat question one with

$$
\left(D^{2}+9\right) y(t)=(3 D+2) f(t)
$$

And initial conditions of $y_{0}(0)=0$, and $\dot{y}_{0}(0)=6$.
4. Evaluate the following integrals:
a) $\quad \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau$
b) $\int_{-\infty}^{\infty} \delta(\tau) f(t-\tau) d \tau$
c) $\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t$
d) $\int_{-\infty}^{\infty} \delta(t-2) \sin \pi t d t$
5. Find the unit impulse response of the LTI system specified by the equation

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+3 y(t)=\frac{d x}{d t}+5 x(t)
$$

6. Find the unit impulse response of the LTI system specified by the equation

$$
(D+1)\left(D^{2}+5 D+6\right) y(t)=(5 D+9) f(t)
$$

