E2.5 Signals \& Linear Systems

Tutorial Sheet 1 SOLUTIONS

1. (i) Periodic with period 1 . Odd because $x(-t)=-x(t)$.
(ii) A-periodic. Neither odd nor even.
(iii) A-periodic. Even because $x(-t)=x(t)$.
(iv) Periodic with period 15, odd.
(v) A-periodic, odd.

Note:
Suppose f, g are both non-constant periodic functions within the domain R, the real numbers. If f has period p, and g has period q, and p and q are incommensurable then $f+g$ will not be periodic. On the other hand, if there exist integers m and n so that $m p=n q$ then $f+g$ will be periodic and $p q$ will be a period of $f+g$.
$f(x)=\sin (x), g(x)=\sin (\operatorname{sqrt}(2) x)$ is an example where $f+g$ is not periodic. f has period 2π, g has period $\operatorname{sqrt}(2) \pi$, and the ratio of the periods is sqrt(2) which is irrational.
2.
(i) Left shift by 3 .
(ii) Linearly expand by factor of 3 .
(iii) $x(t / 3+1)=x[(t+3) / 3]$. Linearly stress (expand) by factor of 3 and shift left by 3 .

(iv) Time reverse and shift right by 2.
(v) $\quad x(-2 t+1)=x[-2(t-1 / 2)]$. Time reverse, linearly compress by factor of 2 and shift right by $1 / 2$.
3. (i) Periodic with period 2. Even because $x[-n]=x[n]$. We all know how it looks like.
(ii) Non-periodic. Neither odd nor even.

(iii) The only possible frequencies of $e^{j \omega_{0} n}$ are $f_{0} \in[0,1)$. To show this fact, assume f0>1 for example $00=1+\delta$ with $0<\delta<1$, then $e^{j \omega_{0} n}=e^{j 2 \pi \pi_{0} n}=e^{j 2 \pi n} e^{j 2 \pi \delta}=e^{j 2 \pi \delta}$, since n in an integer. This is a fundamental difference with the continuous-time case. You may use the matlab routine of exercise 8 , to further convince yourself of this result. We will revisit this fact when talking about sampling and aliasing in lectures 13-14.
4.

(i) $\quad x(t)= \begin{cases}1, & -1 / 2<t<3 / 2 \\ 1 / 2, & t=-1 / 2, \text { and } t=3 / 2 \\ 0, & \text { otherwise }\end{cases}$
(ii) $x(t)=1$
5. (i) It is memoryless since the output at time instant n depends on the input only at time instant n and not past or future time instants.
(ii) It is causal since the output at time instant n depends on the input only at time instant n and not future time instants.
(iii). No. If the output at time instant n depends on the input at time instant n and past time instants the system is causal but not memoryless.
(iv) $y[n]=\frac{x[n]+(-1)^{n} x[n]}{2}$.

From this we see that if the input signal $x_{1}[n]$ produces an output signal $y_{1}[n]$ and the input signal $x_{2}[n]$ produces an output signal $y_{2}[n]$ then the input signal $a_{1} x_{1}[n]+a_{2} x_{2}[n]$ produces the output $\left.y_{3}[n]=\frac{\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right)+(-1)^{n}\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right)}{2}=a_{1} y_{1}[n]+a_{2} y_{2}[n]\right)$.
Therefore, the system is linear.
However, if the input signal $x[n]$ produces an output signal $y[n]$ then the input signal $x\left[n-n_{o}\right]$ produces the output $y_{1}[n]=\frac{x\left[n-n_{o}\right]+(-1)^{n} x\left[n-n_{o}\right]}{2}$.
We see that $y\left[n-n_{o}\right]=\frac{x\left[n-n_{o}\right]+(-1)^{n-n_{o}} \chi\left[n-n_{o}\right]}{2} \neq y_{1}[n]$
Therefore, the system is time varying.
6. (i) Linear, causal, time invariant.
(ii) Non-linear, causal, time invariant.
(iii) Linear, non-causal, time varying.
7. (i) Linear, causal, time varying.
(ii) Non-linear, causal, time varying.
(iii) Linear, causal, time invariant.
(iv) Linear, non-causal, time varying.
(v) Linear, non-causal, time varying.
8. Matlab exercise

M-file:
function [y n] = discretecosine(f_0)
\%The function [y n]=discretecosine(f0) generates a discrete-time \%cosinewave of frequency f0.
$\mathrm{n}=0: 1: 50$;
$y=\cos \left(2^{*}{ }^{\prime} i^{*} f _0 * n\right)$;
end
to plot the function:
plot(n, y)
\% scale axis for suitable max and min values
axis([0 $50-11])$;
\% label axes
xlabel('n');
ylabel('Amplitude');
or use
stem(n,y,'.')
\% scale axis for suitable max and min values
axis([0 $50-11])$;
\% label axes
xlabel('n');
ylabel('Amplitude');

