E2.5 Signals \& Linear Systems

Tutorial Sheet 1 SOLUTIONS

1. (i) Periodic with period 1. Odd because $x(-t)=-x(t)$.
(ii) A-periodic. Neither odd nor even.
(iii) A-periodic. Even because $x(-t)=x(t)$.
(iv) Periodic with period 15 , odd.
(v) A-periodic, odd.

Note:
Suppose f, g are both non-constant periodic functions within the domain R, the real numbers. If f has period p, and g has period q, and p and q are incommensurable then $f+g$ will not be periodic. On the other hand, if there exist integers m and n so that $m p=n q$ then $f+g$ will be periodic and $p q$ will be a period of $f+g$.
$\mathrm{f}(\mathrm{x})=\sin (\mathrm{x}), \mathrm{g}(\mathrm{x})=\sin (\mathrm{sqrt}(2) \mathrm{x})$ is an example where $\mathrm{f}+\mathrm{g}$ is not periodic. f has period 2π, g has period $\operatorname{sqrt}(2) \pi$, and the ratio of the periods is sqrt(2) which is irrational.
2.
(i) Left shift by 3 .
(ii) Linearly expand by factor of 3 .
(iii) $x(t / 3+1)=x[(t+3) / 3]$. Linearly stress (expand) by factor of 3 and shift left by 3 .

(iv) Time reverse and shift right by 2 .
(v) $\quad x(-2 t+1)=x[-2(t-1 / 2)]$. Time reverse, linearly compress by factor of 2 and shift right by $1 / 2$.
3. (i) Periodic with period 2. Even because $x[-n]=x[n]$. We all know how it looks like.
(ii) Non-periodic. Neither odd nor even.

(iii) The only possible frequencies of $e^{j \omega_{0} n}$ are $f_{0} \in[0,1)$. To show this fact, assume f0>1 for example $0=1+\delta$ with $0<\delta<1$, then $e^{j \omega_{0} n}=e^{j 2 \pi f_{0} n}=e^{j 2 \pi n} e^{j 2 \pi \delta}=e^{j 2 \pi \delta}$, since n in an integer. This is a fundamental difference with the continuous-time case. You may use the matlab routine of exercise 8 , to further convince yourself of this result. We will revisit this fact when talking about sampling and aliasing in lectures 13-14.
4.

(i) $\quad x(t)= \begin{cases}1, & -1 / 2<t<3 / 2 \\ 1 / 2, & t=-1 / 2, \text { and } t=3 / 2 \\ 0, & \text { otherwise }\end{cases}$
(ii) $\quad x(t)=1$

