Imperial College London

Signals and Systems

Lecture 5

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Properties of convolution

No	$x_{1}(t)$	$x_{2}(t)$	$x_{1}(t) * x_{2}(t)$
1	$x(t)$	$\delta(t-T)$	$x(t-T)$
2	$e^{\lambda t} u(t)$	$u(t)$	$\frac{1-e^{\lambda t}}{-\lambda} u(t)$
3	$u(t)$	$u(t)$	$t u(t)$
4	$e^{\lambda_{1} t} u(t)$	$e^{\lambda_{2} t} u(t)$	$\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} u(t), \lambda_{1} \neq \lambda_{2}$
5	$e^{\lambda t} u(t)$	$e^{\lambda t} u(t)$	$t e^{\lambda t} u(t)$
6	$t e^{\lambda t} u(t)$	$e^{\lambda t} u(t)$	$\frac{1}{2} t^{2} e^{\lambda t} u(t)$

Imperial College

Find the output of a system using convolution

- Find the loop current $y(t)$ of the RLC circuit shown below for input $x(t)=10 e^{-3 t} u(t)$ when all the initial conditions are zero.
- We have seen that the system's equation is

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}
$$

- The above can be written as

$$
\left(D^{2}+3 D+2\right) y(t)=D x(t) .
$$

- We solved the equation of the above system in the previous lecture and we found that the impulse response of the system is

$$
h(t)=\left(-e^{-t}+2 e^{-2 t}\right) u(t)
$$

- Therefore, $y(t)=x(t) * h(t)$. We can solve this convolution using Property 4 of Slide 2 shown below.
$4 \quad e^{\lambda_{1} t^{\prime}} u(t) \quad e^{\lambda_{2} t^{\prime}}(t) \quad \frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} u_{(t)} \lambda_{1} \neq \lambda_{2}$

Find the output of a system using convolution cont.

- $y(t)=x(t) * h(t)$
- $x(t)=10 e^{-3 t} u(t)$ and $h(t)=\left(-e^{-t}+2 e^{-2 t}\right) u(t)$.
- $y(t)=10 e^{-3 t} u(t) *\left(-e^{-t}+2 e^{-2 t}\right) u(t)=$

$$
10 e^{-3 t} u(t) *\left(-e^{-t}\right) u(t)+10 e^{-3 t} u(t) * 2 e^{-2 t} u(t)
$$

- For the first term we have:

$$
\begin{aligned}
& 10 e^{-3 t} u(t) *\left(-e^{-t}\right) u(t)=-10 e^{-3 t} u(t) * e^{-t} u(t) \\
& =-10 \frac{e^{-3 t}-e^{-t}}{(-3)-(-1)} u(t)=5\left(e^{-3 t}-e^{-t}\right) u(t)
\end{aligned}
$$

- For the second term we have:

$$
\begin{aligned}
& 10 e^{-3 t} u(t) * 2 e^{-2 t} u(t)=20 \frac{e^{-3 t}-e^{-2 t}}{(-3)-(-2)} u(t)=-20\left(e^{-3 t}-e^{-2 t}\right) u(t) \\
& \text { - } y(t)=x(t) * h(t)=\left(-15 e^{-3 t}+20 e^{-2 t}-5 e^{-t}\right) u(t)
\end{aligned}
$$

Imperial College

London

The output of a LTI system when the input is complex

- What happens if the input $x(t)$ of a system is complex instead of real? $x(t)=x_{r}(t)+j x_{i}(t)$ with $x_{r}(t), x_{i}(t)$ the real and imaginary parts of the input, respectively.
- The output of the system is:
$y(t)=h(t) *\left[x_{r}(t)+j x_{i}(t)\right]=h(t) * x_{r}(t)+j h(t) * x_{i}(t)$
- That is, we can consider the convolution on the real and imaginary components separately.

Intuitive/graphical explanation of convolution

- Assume that the impulse response decays linearly from the value of 1 at $t=0$ to the value of 0 at $t=1$. See figure below left.
- The system's response at t is the convolution between $x(t)$ and $h(t)$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

- Since $h(t) \neq 0$ if $0 \leq t \leq 1$ we see that

$$
h(t-\tau) \neq 0 \text { if } 0 \leq t-\tau \leq 1 \Rightarrow-1 \leq \tau-t \leq 0 \Rightarrow t-1 \leq \tau \leq t .
$$

For $h(t-\tau)$ see figure below right. Therefore,

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{t-1}^{t} x(\tau) h(t-\tau) d \tau
$$

Imperial College

Intuitive/graphical explanation of convolution cont.

- The system's output is $y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{t-1}^{t} x(\tau) h(t-\tau) d \tau$.
- We approximate, as previously, the input $x(\tau)$ as a collection of rectangular pulses.
- The system's response $y(t)$ at t is determined by $x(\tau)$ weighted by $h(t-$ $\tau)$ (i.e., $x(\tau) h(t-\tau)$) shown in the shaded pulse, PLUS the contribution from all the previous pulses of $x(\tau)$ within the range $[t-1, t]$ where $h(t)$ is non-zero. The system's response is shown graphically below.
- The summation of all these weighted inputs is also shown functionally in the convolution integral $y(t)=x(t) * h(t)$ above.

Example for graphical demonstration of convolution

- Demonstrate graphically the convolution

$$
\begin{aligned}
& y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \text { with } \\
& x(t)=e^{-t} u(t) \text { and } h(t)=e^{-2 t} u(t) .
\end{aligned}
$$

- Remember: the variable of integration is τ and not t.

Graphical demonstration of convolution cont.

- By definition we have:

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau
$$

- We found previously that $y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$.

Interconnected systems

- For the parallel connection of two systems with impulse responses $h_{1}(t)$ and $h_{2}(t)$ the output is $y(t)=h_{1}(t) * x(t)+h_{2}(t) * x(t)$.

- For the connection in series of two systems with impulse responses $h_{1}(t)$ and $h_{2}(t)$ the output is $y(t)=h_{1}(t) * h_{2}(t) * x(t)$. The order of the connection is not important.

Interconnected systems cont. Step response

- Integration: if $x(t) \Rightarrow y(t)$ then $\int_{-\infty}^{t} x(\tau) d \tau \Rightarrow \int_{-\infty}^{t} y(\tau) d \tau$.

- Differentiation: if $x(t) \Rightarrow y(t)$ then $\frac{d x(t)}{d t} \Rightarrow \frac{d y(t)}{d t}$.
- Knowing that $\int_{-\infty}^{t} \delta(\tau) d \tau=u(t)$ and that $\delta(t) \Rightarrow h(t)$ we can say that if the input of the system is the step function, i.e., $x(t)=u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$ then the output of the system, which is called the step response must be:

$$
g(t)=\int_{-\infty}^{t} h(\tau) d \tau
$$

Total response

- We learnt that:

Total response = zero-input response + zero-state response

$$
\sum_{k=1}^{N} c_{k} e^{\lambda_{k} t}+x(t) * h(t)
$$

- We will combine everything using the same RLC circuit as an example.
- Let us assume $x(t)=10 e^{-3 t} u(t), y(0)=0, \dot{y}(0)=-5$.
- The total current (which is considered to be the output of the system) is:

Total current $=$ zero-input current + zero-state current

$$
\begin{aligned}
y(t) & =\left(5 e^{-2 t}-5 e^{-t}\right) u(t)+\left(-15 e^{-3 t}+20 e^{-2 t}-5 e^{-t}\right) u(t) \\
& =\left(5 e^{-2 t}-5 e^{-t}\right)+\left(-15 e^{-3 t}+20 e^{-2 t}-5 e^{-t}\right), \quad t \geq 0
\end{aligned}
$$

Natural versus forced responses

- Note that characteristic modes also appears in zero-state response (because it has an impact on $h(t)$).
- We can collect the e^{-t} and $e^{-2 t}$ terms together, and call these the natural response.
- The remaining $e^{-3 t}$ which is not a
 characteristic mode is called the forced response.
$y(t)=\left(25 e^{-2 t}-10 e^{-t}\right) u(t)+\left(-15 e^{-3 t}\right) u(t)$

Imperial College

Appendix: More properties of convolution

$$
\begin{array}{lll}
7 & e^{\lambda_{t}} u(t) & \frac{N!e^{\lambda t}}{t^{N+1}} u(t) \\
8 & t^{M} u(t) & \sum_{k=0}^{N} \frac{N!t^{N-k}}{\lambda^{k+1}(N-k)!} u(t) \\
9 & t e^{\lambda_{1} t} u(t) & \frac{M!N!}{(M+N+1)!} t^{M+N+1} u(t) \\
10 & e^{\lambda_{2} t} u(t) & \frac{e^{\lambda_{2} t}-e^{\lambda_{1} t}+\left(\lambda_{1}-\lambda_{2}\right) t e^{\lambda_{1} t}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} u(t) \\
11 & t^{M} e^{\lambda^{\lambda}} u(t) & \frac{M!N!}{(N+M+1)!} t^{M+N+1} e^{\lambda t} u(t) \\
t^{M} e^{\lambda_{1} t} u(t) & \sum_{k=0}^{M} \frac{(-1)^{k} M!(N+k)!t^{M-k} e^{\lambda_{1} t}}{k!(M-k)!\left(\lambda_{1}-\lambda_{2}\right)^{N+k+1}} u(t) \\
\lambda_{1} \neq \lambda_{2} t & & \\
& & \sum_{k=0}^{N} \frac{(-1)^{k} N!(M+k)!t^{N-k} e^{\lambda_{2} t}}{k!(N-k)!\left(\lambda_{2}-\lambda_{1}\right)^{M+k+1}} u(t)
\end{array}
$$

Appendix: More properties of convolution

12

$$
e^{-\alpha t} \cos (\beta t+\theta) u(t) \quad e^{\lambda t} u(t)
$$

$$
\begin{aligned}
& \frac{\cos (\theta-\phi) e^{\lambda t}-e^{-\alpha t} \cos (\beta t+\theta-\phi)}{\sqrt{(\alpha+\lambda)^{2}+\beta^{2}}} u(t) \\
& \phi=\tan ^{-1}[-\beta /(\alpha+\lambda)]
\end{aligned}
$$

$$
e^{\lambda_{1} t} u(t)
$$

$$
e^{\lambda_{2} t} u(-t) \quad \frac{e^{\lambda_{1} t} u(t)+e^{\lambda_{2} t} u(-t)}{\lambda_{2}-\lambda_{1}} \quad \operatorname{Re} \lambda_{2}>\operatorname{Re} \lambda_{1}
$$

14

$$
e^{\lambda_{1} t} u(-t)
$$

$$
e^{\lambda_{2} t} u(-t) \quad \frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{2}-\lambda_{1}} u(-t)
$$

