Imperial College London

Signals and Systems

Lecture 4 Zero-state response

DR TANIA STATHAKI
READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

The importance of impulse response

- Zero-state response assumes that the system is in "rest" state, i.e. all internal system variables are zero.
- Deriving and understanding the zero-state response relies on knowing the so called unit impulse response $h(t)$.
- Definition: The unit impulse response $h(t)$ is the system's response when the input is the Dirac function, i.e., $x(t)=\delta(t)$, with all the initial conditions being zero at $t=0^{-}$.
- Any input $x(t)$ can be broken into a sequence of narrow rectangular pulses. Each pulse produces a system response.
- If a system is linear and time invariant, the system's response to $x(t)$ is the sum of its responses to all narrow pulse components.
- $h(t)$ is the system's response to the rectangular pulse at $t=0$ as the pulse width approaches zero.

Δt

How to determine the unit impulse response $\boldsymbol{h}(\boldsymbol{t})$?

- Given that a system is specified by the following differential equation, determine its unit impulse response $h(t)$.

$$
\begin{gathered}
\left(D^{N}+a_{1} D^{N-1}+\cdots+a_{N-1} D+a_{N}\right) y(t) \\
=\left(b_{N-M} D^{M}+b_{N-M+1} D^{M-1}+\cdots+b_{N-1} D+b_{N}\right) x(t), M \leq N
\end{gathered}
$$

- Remember the general equation of a system:

$$
Q(D) y(t)=P(D) x(t)
$$

- It can be shown (proof is out of the scope of this course) that the impulse response $h(t)$ is given by

$$
h(t)=\left[P(D) y_{n}(t)\right] u(t)
$$

where $u(t)$ is the unit step function. But what is $y_{n}(t)$?

How to determine the unit impulse response $\boldsymbol{h}(\boldsymbol{t})$?

- $y_{n}(t)$ is the solution to the homogeneous differential equation (what we called $y_{0}(t)$ in the previous lecture)

$$
Q(D) y_{n}(t)=0
$$

with the following initial conditions:

$$
y_{n}(0)=\dot{y}_{n}(0)=\ddot{y}_{n}(0)=\cdots=y_{n}^{(N-2)}(0)=0, y_{n}^{(N-1)}(0)=1
$$

- We use $y_{n}(t)$ instead of $y_{0}(t)$ to associate $y_{n}(t)$ with the specific set of initial conditions mentioned above.
- Remember that $y_{n}(t)$ is a linear combination of the characteristic modes of the system.

$$
y_{n}(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}+\cdots+c_{N} e^{\lambda_{N} t}
$$

- The constants c_{i} are determined from the initial conditions.
- Note that $y_{n}^{(k)}(0)$ is the $k^{\text {th }}$ derivative of $y_{n}(t)$ at $t=0$.

Example

- Determine the impulse response for the system:

$$
\left(D^{2}+3 D+2\right) y(t)=D x(t)
$$

- This is a second-order system (i.e., $N=2, M=1$) and the characteristic polynomial is:

$$
\left(\lambda^{2}+3 \lambda+2\right)=(\lambda+1)(\lambda+2)
$$

- The characteristic roots are $\lambda_{1}=-1$ and $\lambda_{2}=-2$.
- Therefore, $y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$.
- Differentiating the above equation yields $\dot{y}_{n}(t)=-c_{1} e^{-t}-2 c_{2} e^{-2 t}$.
- The initial conditions are $\dot{y}_{n}(0)=1$ and $y_{n}(0)=0$.

Example cont.

- Setting $t=0$ and substituting the initial conditions yields:

$$
\begin{gathered}
0=c_{1}+c_{2} \\
1=-c_{1}-2 c_{2}
\end{gathered}
$$

- The solution of the above set of equations is:

$$
\begin{gathered}
c_{1}=1 \\
c_{2}=-1
\end{gathered}
$$

- Therefore, we obtain:

$$
y_{n}(t)=e^{-t}-e^{-2 t}
$$

- Remember that $h(t)$ is given by:

$$
h(t)=\left[P(D) y_{n}(t)\right] u(t)
$$

with $P(D)=D$ in this case.

- Therefore:

$$
h(t)=\left[P(D) y_{n}(t)\right] u(t)=\left(-e^{-t}+2 e^{-2 t}\right) u(t)
$$

[Note that: $\left.P(D) y_{n}(t)=D(t) y_{n}(t)=\dot{y}_{n}(t)=-e^{-t}+2 e^{-2 t}\right]$

Zero-state response

- Consider a linear, time-invariant system with impulse response $h(t)$.
- The output at time t due to a shifted impulse with amplitude a located at time instant τ is the impulse amplitude a multiplied by a shifted impulse response located at τ as well.
- In other words:

$$
\begin{aligned}
\delta(t) & \rightarrow h(t) \\
a \delta(t) & \rightarrow a h(t) \\
a \delta(t-\tau) & \rightarrow a h(t-\tau)
\end{aligned}
$$

- If we generalize the above observation we can say that the output of a linear system to an input $x(t)=\sum_{i=1}^{n} a_{i} \delta\left(t-\tau_{i}\right)$ is

$$
y(t)=\sum_{i=1}^{n} a_{i} h\left(t-\tau_{i}\right)
$$

Zero-state response cont.

- We now consider how to determine the system's response $y(t)$ to any input $x(t)$ when the system is in the zero state (initial conditions are zero).
- Define a pulse $p_{\Delta \tau}(t)$ of height equal to 1 and width $\Delta \tau$ starting at $t=0$ (see top figure on the right).
- Any input $x(t)$ can be approximated by a sum of narrow and shifted rectangular pulses.
- The pulse starting at $t=n \Delta \tau$ has a height $x(n \Delta \tau)$ It can be expressed as $x(n \Delta \tau) p_{\Delta \tau}(t-n \Delta \tau)$.
- Therefore, $x(t)$ is approximated by the sum of all such pulses as follows:

$$
\begin{aligned}
& x(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) p_{\Delta \tau}(t-n \Delta \tau) \text { or } \\
& \quad x(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n}\left[\frac{x(n \Delta \tau)}{\Delta \tau}\right] \Delta \tau(t-n \Delta \tau)
\end{aligned}
$$

Zero-state response cont.

- The term $\frac{x(n \Delta \tau)}{\Delta \tau} p_{\Delta \tau}(t-n \Delta \tau)$ represents a pulse $p(t-n \Delta \tau)$ with height $\frac{x(n \Delta \tau)}{\Delta \tau}$.
- As $\Delta \tau \rightarrow 0$, the height of the pulse $\rightarrow \infty$ and the width of the pulse $\rightarrow 0$ but the area remains $x(n \Delta \tau)$ and
$\frac{x(n \Delta \tau)}{\Delta \tau} p_{\Delta \tau}(t-n \Delta \tau) \rightarrow x(n \Delta \tau) \delta(t-n \Delta \tau)$.
Therefore,

$$
\begin{aligned}
& x(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n}\left[\frac{x(n \Delta \tau)}{\Delta \tau}\right] \Delta \tau p_{\Delta \tau}(t-n \Delta \tau) \\
& x(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) \Delta \tau \delta(t-n \Delta \tau)
\end{aligned}
$$

Zero-state response cont.

- Given the relationship $x(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) \Delta \tau \delta(t-n \Delta \tau)$ and the fact that the system is linear, time-invariant, we have:

$$
\delta(t-n \Delta \tau) \Rightarrow h(t-n \Delta \tau)
$$

Zero-state response cont.

- Based on the previous analysis, the input-output relationship of an LTI system as a function of the impulse response is shown below.

$$
\begin{aligned}
& \lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) \Delta \tau \delta(t-n \Delta \tau) \Rightarrow \lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) \Delta \tau h(t-n \Delta \tau) \\
& \underbrace{\lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) \delta(t-n \Delta \tau) \Delta \tau \Rightarrow \underbrace{\lim _{n} \sum_{n} x(n \Delta \tau) h(t-n \Delta \tau) \Delta \tau}_{\Delta \tau \rightarrow 0}} .
\end{aligned}
$$

Zero-state response cont.

- Therefore,

$$
y(t)=\lim _{\Delta \tau \rightarrow 0} \sum_{n} x(n \Delta \tau) h(t-n \Delta \tau) \Delta \tau=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

- Knowing $h(t)$, we can determine the response $y(t)$ to any input $x(t)$.
- Observe the all-pervasive nature of the system's characteristic modes, which determines the impulse response of the system.
$x(t) \rightleftarrows \begin{gathered}\text { LTI System } \\ h(t)\end{gathered} \Rightarrow y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

The convolution integral

- The previously derived integral equation occurs frequently in physical sciences, engineering and mathematics.
- It is given the name the convolution integral.
- The convolution integral (known simply as convolution) of two functions $x_{1}(t)$ and $x_{2}(t)$ is denoted symbolically as $x_{1}(t) * x_{2}(t)$.
- This is defined as

$$
x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau
$$

Convolution properties

- Commutative property: The order of operands does not matter.

$$
x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau=\int_{-\infty}^{\infty} x_{1}(t-\tau) x_{2}(\tau) d \tau
$$

Let $z=t-\tau$. In that case $\tau=t-z$ and $d \tau=-d z$ and $\tau \rightarrow \pm \infty \Rightarrow z \rightarrow \mp \infty$.
Therefore,

$$
\begin{aligned}
& x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau=\int_{\infty}^{-\infty} x_{1}(t-z) x_{2}(z)(-d z) \\
=- & \int_{\infty}^{-\infty} x_{1}(t-z) x_{2}(z) d z=\int_{-\infty}^{\infty} x_{1}(t-z) x_{2}(z) d z=x_{2}(t) * x_{1}(t)
\end{aligned}
$$

- Associative property

$$
x_{1}(t) *\left[x_{2}(t) * x_{3}(t)\right]=\left[x_{1}(t) * x_{2}(t)\right] * x_{3}(t)
$$

- Distributive property

$$
x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right]=x_{1}(t) * x_{2}(t)+x_{1}(t) * x_{3}(t)
$$

Convolution properties cont.

- Shift property

Consider $x_{1}(t) * x_{2}(t)=c(t)$
Then $x_{1}(t) * x_{2}(t-T)=x_{1}(t-T) * x_{2}(t)=c(t-T)$
Furthermore,

$$
x_{1}\left(t-T_{1}\right) * x_{2}\left(t-T_{2}\right)=c\left(t-T_{1}-T_{2}\right)
$$

- Convolution with an impulse: The convolution of a function with the unit impulse function is the function itself. Therefore, the unit impulse function acts as an identity (neutral) element for convolution.

$$
x(t) * \delta(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau=x(t)
$$

Convolution properties cont.

- Width (duration) property: Consider two functions $x_{1}(t)$ and $x_{2}(t)$ with durations T_{1} and T_{2} respectively.
Then, the duration of the convolution function $x_{1}(t) * x_{2}(t)$ is $T_{1}+T_{2}$.

- Causality property: If both system's impulse response $h(t)$ and input $x(t)$ are causal then:

$$
y(t)=x(t) * h(t)=\left\{\begin{array}{cc}
\int_{0}^{t} x(\tau) h(t-\tau) d \tau & t \geq 0 \\
0 & t<0
\end{array}\right.
$$

Example

- For an LTI system with unit impulse response $h(t)=e^{-2 t} u(t)$ determine the response $y(t)$ for the input $x(t)=e^{-t} u(t)$.
- By definition we have:

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau
$$

- Since $u(\tau) \neq 0$ for $\tau \geq 0$ and $u(t-\tau) \neq 0$ for $(t-\tau) \geq 0 \Rightarrow \tau \leq t$, we see that $y(t) \neq 0$ if $0 \leq \tau \leq t$ which also makes sense only if $t \geq 0$.
- Therefore,

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau=\int_{0}^{t} e^{-\tau} u(\tau) e^{-2(t-\tau)} u(t-\tau) d \tau \\
& =\int_{0}^{t} e^{-\tau} e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{0}^{t} e^{-\tau} e^{2 \tau} d \tau=e^{-2 t} \int_{0}^{t} e^{\tau} d \tau=e^{-2 t}\left(e^{t}-1\right) \\
& =e^{-t}-e^{-2 t}, t \geq 0
\end{aligned}
$$

- Therefore, $y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$.

Example cont.

- $h(t)=e^{-2 t} u(t)$
- $x(t)=e^{-t} u(t)$
- $y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$

Relation to other courses

- Convolution has been introduced last year in the Signals and Communications course. We will emphasize into convolution and its physical implication in the next lecture.
- Zero-state response (as determined through the convolution operation) is very important, and is intimately related to the zero-input response and the characteristic modes of the system.
- All these are relevant to the $2^{\text {nd }}$ year Control course.
- You will also come across convolution again in your $2^{\text {nd }}$ year Communications course and third year DSP course.

