# Imperial College London 

## Signals and Systems

## Lecture 11

## DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

## Effect on poles and zeros on frequency response

- Consider a generic system transfer function

$$
H(s)=\frac{P(s)}{Q(s)}=b_{0} \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{N}\right)}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{N}\right)}
$$

- The value of the transfer function at some complex frequency $s=p$ is:

$$
\begin{aligned}
H(p) & =\frac{P(p)}{Q(p)}=b_{0} \frac{\left(p-z_{1}\right)\left(p-z_{2}\right) \ldots\left(p-z_{N}\right)}{\left(p-\lambda_{1}\right)\left(p-\lambda_{2}\right) \ldots\left(p-\lambda_{N}\right)} \\
H(p) & =\frac{P(p)}{Q(p)}=b_{0} \frac{\left(r_{1} e^{j \phi_{1}}\right)\left(r_{2} e^{j \phi_{2}}\right) \ldots\left(r_{N} e^{j \phi_{N}}\right)}{\left(d_{1} e^{j \theta_{1}}\right)\left(d_{2} e^{j \theta_{2}}\right) \ldots\left(d_{N} e^{j \theta_{N}}\right)}
\end{aligned}
$$

- The factor $p-z$ is a complex number.
- It is represented by a vector drawn from point $z$ to point $p$ in the complex plane.
- Using polar coordinates we can write $p-z_{i}=r_{i} e^{j \phi_{i}}$. with $r_{i}=\left|p-z_{i}\right|$ and $\phi_{i}=\angle\left(p-z_{i}\right)$

- Same comments are valid for the factor $p-\lambda_{i}=d_{i} e^{j \theta_{i}}$.
- Note that $z_{i}$ is a zero and $\lambda_{i}$ is a pole.


## Imperial College

## Effect on poles and zeros on frequency response cont.

- The previous form can be further modified as:
$H(p)=b_{0} \frac{\left(r_{1} e^{j \phi_{1}}\right)\left(r_{2} e^{j \phi_{2}}\right) \ldots\left(r_{N} e^{j \phi_{N}}\right)}{\left(d_{1} e^{j \theta_{1}}\right)\left(d_{2} e^{j \theta_{2}}\right) \ldots\left(d_{N} e^{j \theta_{N}}\right)}$
$=b_{0} \frac{r_{1} r_{2} \ldots r_{N}}{d_{1} d_{2} \ldots d_{N}} e^{j\left[\left(\phi_{1}+\phi_{2}+\cdots+\phi_{N}\right)-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{N}\right)\right]}$
- Therefore, the magnitude and phase at $s=p$ are given by:
$|H(s)|_{s=p}=b_{0} \frac{r_{1} r_{2} \ldots r_{N}}{d_{1} d_{2} \ldots d_{N}}$
$=b_{0} \frac{\text { product of the distances of zeros to } p}{\text { product of the distances of poles to } p}$

$\angle H(s)_{s=p}=\left(\phi_{1}+\phi_{2}+\cdots+\phi_{N}\right)-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{N}\right)$
$=$ sum of zeros' angles to $p$ - sum of poles' angles to $p$
- If $b_{0}$ is negative, there is an additional phase $\pi$ since in that case $b_{0}=-\left|b_{0}\right|=\left|b_{0}\right| e^{j \pi}$.


## Gain enhancement by a single pole

- Consider the hypothetical case of a single pole at $-a+j \omega_{0}$.
- The amplitude response at a specific value of $\omega,|H(j \omega)|$, is found by measuring the length of the line that connects the pole to the point $j \omega$.
- If the length of the above mentioned line is $d$, then $|H(j \omega)|$ is proportional to $\frac{1}{d}$.

$$
|H(j \omega)|=\frac{K}{d}
$$

- As $\omega$ increases from zero, $d$ decreases progressively until $\omega$ reaches the value $\omega_{0}$.
- As $\omega$ increases beyond $\omega_{0}, d$ increases progressively.
- Therefore, the peak of $|H(j \omega)|$ occurs at $\omega_{0}$. As $a$ becomes smaller, i.e., as the pole moves closer to the imaginary axis the gain enhancement at $\omega_{0}$ becomes more prominent ( $d$ becomes very small.)



## Gain enhancement by a single pole cont.

- In conclusion, we can enhance a gain at a frequency $\omega_{0}$ by placing a pole opposite the point $j \omega_{0}$.
- The closer the pole is to $j \omega_{0}$, the higher is the gain at $\omega_{0}$ and furthermore, the enhancement is more prominent around $\omega_{0}$.
- In the extreme case of $a=0$ (pole on the imaginary axis) the gain at $\omega_{0}$ goes to infinity.
- Recall that poles must lie on the left half of the $s$-plane.
- Repeated poles further enhance the frequency selectivity effect



## Imperial College

## Gain enhancement by a pair of complex conjugate poles

- In a real system, a complex pole at $-a+j \omega_{0}$ must be accompanied by its conjugate pole $-a-j \omega_{0}$.
- The amplitude response at a specific value of $\omega,|H(j \omega)|$, is found by measuring the length of the two lines that connect the poles to the point $j \omega$.
- If the lengths of the above mentioned lines are $d, d^{\prime}$ then $|H(j \omega)|=\frac{K}{d d^{\prime}}$.
- We can see graphically that the presence of the conjugate pole does not affect substantially the behaviour of the system around $\omega_{0}$. This is because as we move around $\omega_{0}$, $d^{\prime}$ does not change dramatically.




## Imperial College

## Gain suppression by a pair of complex conjugate zeros

- Consider a real system with a pair of complex conjugate zeros at $-a+j \omega_{0}$ and $-a-j \omega_{0}$.
- The amplitude response at a specific value of $\omega,|H(j \omega)|$ is again found by measuring the length of the two lines that connect the zeros to the point $j \omega$.
- If the lengths of the above mentioned lines are $r, r^{\prime}$ then $|H(j \omega)|=K r r^{\prime}$.
- In that case, the minimum of $|H(j \omega)|$ occurs at $\omega_{0}$.
- As a becomes smaller, i.e., as the zero moves closer to the imaginary axis, the gain suppression at $\omega_{0}$ becomes more prominent.
- In the extreme case of $a=0$ (zero on the imaginary axis) the gain at $\omega_{0}$ goes to zero.




## Imperial College

## Phase response due to a pair of complex conjugate poles

- Angles formed by the poles $-a+j \omega_{0}$ and $-a-j \omega_{0}$ at $\omega=0$ are equal and opposite.
- Their contribution to the phase response is $\angle H(j \omega)=-\left(\theta_{1}+\theta_{2}\right)$.
- As $\omega$ increases from 0 up, the angle $\theta_{1}$ (due to pole $-a+j \omega_{0}$ ), which has a negative value at $\omega=0$, is reduced in magnitude.
- As $\omega$ increases from 0 up, the angle $\theta_{2}$ (due to pole $-a-j$ ، which has a positive value at $\omega=0$, increases in magnitude.
- As a result, both $\theta_{1}, \theta_{2}$, increase continuously and approach the value of $\pi / 2$ as $\omega \rightarrow \infty$.
- Therefore, $\theta_{1}+\theta_{2}$, the sum of the two angles, increases continuously and approaches the value of $\pi-\pi$ as $\omega \rightarrow \infty$.



## Phase response due to a pair of complex conjugate zeros

- Similar arguments regarding the phase are applied for a pair of complex conjugate zeros $-a+j \omega_{0}$ and $-a-j \omega_{0}$.
- $\angle H(j \omega)=\left(\phi_{1}+\phi_{2}\right)$




## Lowpass filters. The simplest case.

- A lowpass filter is a system with a frequency response that has its maximum gain at $\omega=0$.
- We showed in detail previously that a pole enhances the gain of the frequency response at frequencies which are within its close neighbourhood.
- Therefore, for a maximum gain at $\omega=0$, we must place pole(s) on the real axis, within the left half plane, opposite the point $\omega=0$.
- The simplest lowpass filter has a single real pole and can be described by the transfer function:

$$
H(s)=\frac{\omega_{c}}{s+\omega_{c}}
$$

- Observe that by putting $\omega_{c}$ to the numerator we achieve $H(0)=1$.
- If the distance from the pole to a point $j \omega$ is $d$ then $|H(j \omega)|=\frac{\omega_{c}}{d}$.



## Lowpass filters. Wall of poles - Butterworth filters

- An ideal lowpass filter has a constant gain of 1 up to a desired frequency $\omega_{c}$ and then the gain drops to 0 .
- Therefore, for an ideal lowpass filter an enhanced gain is required within the frequency range 0 to $\omega_{c}$. This implies that a pole must be placed opposite every single frequency within the range 0 to $\omega_{c}$.
- We require ideally a continuous "wall of poles" facing the imaginary axis opposite the range 0 to $\omega_{c}$, and consequently, their complex conjugates facing the imaginary axis opposite the range 0 to $-\omega_{c}$.
- At this stage we are not interested in investigating the optimal shape of this wall of poles.
- We can prove that for a maximally flat response within the range 0 to $\omega_{c}$, the wall is a semicircle.
- A maximally flat amplitude response implies:
$\left.\frac{d^{i}|H(\omega)|}{d \omega^{i}}\right|_{\omega=0}=0, i=0,1,2, \ldots$



## Imperial College

## Lowpass filters. Wall of poles - Butterworth filters cont.

- We can prove that for a maximally flat response within the range 0 to $\omega_{c}$, the wall is a semicircle with infinite number of poles.
- In practice we use $N$ poles and we end up with a filter with non-ideal characteristics.
- Observe the response as a function of $N$.
- This family of filters are called Butterworth filters.
- There are families of filters with different characteristics (Chebyshev etc.)



## Bandpass filters

- An ideal bandpass filter has a constant gain of 1 placed symmetrically around a desired frequency $\omega_{0}$; otherwise the gain drops to 0 .
- Therefore, we require ideally a continuous wall of poles facing the imaginary axis opposite $\omega_{0}$, and consequently, their complex conjugates facing the imaginary axis opposite $-\omega_{0}$.




## Bandstop [Notch] filters

- An ideal bandstop (notch) filter has 0 amplitude response placed symmetrically around a desired frequency $\omega_{0}$; otherwise the gain is 1 .
- Realization in theory requires infinite number of zeros and poles.
- Let us consider a second order notch filter with zero gain at $\omega_{0}$.
- We must have zeros at $\pm j \omega_{0}$.
- For $\lim _{\omega \rightarrow \infty}|H(j \omega)|=1$ the number of poles must be equal to the number of zeros. (For $\omega \rightarrow \infty$ the distance of all poles and zeros from $\omega$ is basically the same.)
- Based on the above two points, we must have two poles.
- In order to have $|H(0)|=1$ each pole much pair up with a zero and their distances from the origin must be the same.
> This requirement can be satisfied if we place the two conjugate poles along a semicircle of radius $\omega_{0}$ that lies within the left half plane.


## Bandstop [Notch] filters cont.

- Based on the previous statements, the pole-zero configuration and the amplitude response of a bandstop filter are shown in the two figures below.
- Observe the behaviour of the amplitude response as a function of $\theta$, the angle that the pole vector forms with the negative real axis.




## Notch filter example

- Design a second-order notch filter to suppress 60 Hz hum in a radio receiver.
- Make $\omega_{0}=120 \pi$. Place zeros are at $s= \pm j \omega_{0}$, and poles at $-\omega_{0} \cos \theta \pm$ $j \omega_{0} \sin \theta$. We obtain:

$$
\begin{gathered}
H(s)=\frac{\left(s-j \omega_{0}\right)\left(s+j \omega_{0}\right)}{\left(s+\omega_{0} \cos \theta+j \omega_{0} \sin \theta\right)\left(s+\omega_{0} \cos \theta-j \omega_{0} \sin \theta\right)} \\
\quad=\frac{s^{2}+\omega_{0}{ }^{2}}{s^{2}+\left(2 \omega_{0} \cos \theta\right) s+\omega_{0}^{2}}=\frac{s^{2}+142122.3}{s^{2}+(753.98 \cos \theta) s+142122.3} \\
|H(j \omega)|=\frac{-\omega^{2}+142122.3}{\sqrt{\left(-\omega^{2}+142122.3\right)^{2}+(753.98 \omega \cos \theta)^{2}}}
\end{gathered}
$$

## Imperial College

## Practical filter specifications


$\uparrow$
$|H(j \omega)|$
$\uparrow$
$|H(j \omega)| \quad$ Band-pass Filter

$\underset{|H(j \omega)|}{\uparrow} \quad$ Band-stop Filter


## Butterworth filters again

- Let us consider a normalised low-pass filter (i.e., one that has a cut-off frequency at 1) with an amplitude characteristic given by the equation:

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2 n}}}
$$

- As $n \rightarrow \infty$, this gives a ideal LPF response:
- $|H(j \omega)|=1$ if $\omega \leq 1$
$\uparrow$
$|\mathcal{H}(j \omega)|$
- $|H(j \omega)|=0$ if $\omega>1$



## Butterworth filters cont.

- In the previous amplitude response we replace $\omega$ with $\frac{s}{j}$ and we obtain:

$$
|H(j \omega)|^{2}=H(j \omega) H^{*}(\omega)=H(j \omega) H(-j \omega)=\frac{1}{1+\omega^{2 n}} \Rightarrow H(s) H(-s)=\frac{1}{1+\left(\frac{s}{j}\right)^{2 n}}
$$

- The poles of $H(s) H(-s)$ are given by $1+\left(\frac{s}{j}\right)^{2 n}=0 \Rightarrow\left(\frac{s}{j}\right)^{2 n}=-1$.
- We know that $-1=e^{j \pi(2 k-1)}$ and $j=e^{j \frac{\pi}{2}}$.
- $\left(\frac{s}{j}\right)^{2 n}=-1 \Rightarrow s^{2 n}=j^{2 n} \cdot(-1)=e^{\left(j \frac{\pi}{2}\right) 2 n} \cdot e^{j \pi(2 k-1)}=e^{j \pi n} \cdot e^{j \pi(2 k-1)}$
$\Rightarrow s^{2 n}=e^{j \pi(2 k-1+n)} \Rightarrow s=e^{\frac{j \pi(2 k-1+n)}{2 n}}, k$ integer.
- Therefore, the poles of $H(s) H(-s)$ lie along the unit circle (a circle around the origin with radius equal to 1 ). There are $2 n$ distinct poles given by:

$$
s_{k}=e^{\frac{j \pi(2 k-1+n)}{2 n}}, k=1,2, \ldots, 2 n
$$

## Butterworth filters cont.

- We are only interested in $H(s)$, not $H(-s)$. Therefore, we choose the poles of the low-pass filter to be those lying on the left half plane only. These poles are:

$$
s_{k}=e^{\frac{j \pi(2 k-1+n)}{2 n}}=\cos \frac{\pi}{2 n}(2 k-1+n)+j \sin \frac{\pi}{2 n}(2 k-1+n), k=1,2, \ldots, n
$$

- The transfer function of the filter is:

$$
H(s)=\frac{1}{\left(s-s_{1}\right)\left(s-s_{2}\right) \ldots\left(s-s_{n}\right)}
$$

- This is a class of filters known as Butterworth filters.


## Butterworth filters cont.

- To resume, Butterworth filters are a family of filters with poles distributed evenly around the left half of the unit circle. The poles are given by:

$$
s_{k}=e^{\frac{j \pi(2 k+n-1)}{2 n}}, k=1,2, \ldots, n
$$

- We assume $\omega_{c}=1$.
- Below are the pole locations for Butterworth filters for orders $n=1$ to 4 .

$$
H(s)=\frac{1}{\left(s-s_{1}\right)\left(s-s_{2}\right) \ldots\left(s-s_{n}\right)}
$$






## Butterworth filters. Example

- Consider a fourth-order Butterworth filter (i.e., $n=4$ ).
- The poles are at angles $\frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}$.
- Therefore, the pole locations are:
$-0.3827 \pm j 0.9239,-0.9239 \pm j 0.3827$.


Therefore, $H(s)=\frac{1}{\left(s^{2}+0.7654 s+1\right)\left(s^{2}+1.8478 s+1\right)}=\frac{1}{s^{4}+2.6131 s^{3}+3.4142 s^{2}+2.6131 s+1}$

$$
\text { Coefficients of Butterworth polynomial: } B_{n}(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+1
$$

| $n$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $a_{8}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
| 2 | 1.41421356 |  |  |  |  |  |  |  |
| 3 | 2.00000000 | 2.00000000 |  |  |  |  |  |  |
| 4 | 2.61312593 | 3.41421356 | 2.61312593 |  |  |  |  |  |
| 5 | 3.23606798 | 5.23606798 | 5.23606798 | 3.23606798 |  |  |  |  |
| 6 | 3.86370331 | 7.46410162 | 9.14162017 | 7.46410162 | 3.86370331 |  |  |  |
| 7 | 4.49395921 | 10.09783468 | 14.59179389 | 14.59179389 | 10.09783468 | 4.49395921 |  |  |
| 8 | 5.12583090 | 13.13707118 | 21.84615097 | 25.68835593 | 21.84615097 | 13.13707118 | 5.12583090 |  |
| 9 | 5.75877048 | 16.58171874 | 31.16343748 | 41.98638573 | 41.98638573 | 31.16343748 | 16.58171874 | 5.75877048 |
| 10 | 6.39245322 | 20.43172909 | 42.80206107 | 64.88239627 | 74.23342926 | 64.88239627 | 42.80206107 | 20.43172909 |

## Relating this lecture to other courses

- You will learn about poles and zeros in your $2^{\text {nd }}$ year control course. The emphasis here is to provide you with intuitive understanding of their effects on frequency response.
- You will probably do Butterworth filters in your $2^{\text {nd }}$ year analogue circuits course.
- Some of you will be implementing the notch filter in your $3^{\text {rd }}$ year on a real-time digital signal processor (depending on options you take), and others will learn more about filter design in your $3^{\text {rd }}$ and $4^{\text {th }}$ year.

