Imperial College London

Signals and Systems

Lecture 10 Final

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Frequency response of a LTI system to an everlasting exponential or a cosine

- We have seen in a previous lecture that a LTI's system response to an everlasting exponential $x(t)=e^{s_{0} t}$ is $H\left(s_{0}\right) e^{s_{0} t}$.
[Proof: If $h(t)$ is the unit impulse response of an LTI system then: $\left.y(t)=h(t) * e^{s_{0} t}=\int_{-\infty}^{\infty} h(\tau) e^{s_{0}(t-\tau)} d \tau=e^{s_{0} t} \int_{-\infty}^{\infty} h(\tau) e^{-s_{0} \tau} d \tau=e^{s t} H\left(s_{0}\right)\right]$
- We represent such input-output pair as:

$$
e^{s_{0} t} \Rightarrow H\left(s_{0}\right) e^{s_{0} t}
$$

- We set $s_{0}=j \omega_{0}$. This yields the so called frequency response evaluated at $\omega=\omega_{0}$.

$$
\begin{gathered}
e^{j \omega_{0} t} \Rightarrow H\left(j \omega_{0}\right) e^{j \omega_{0} t} \\
\cos \left(\omega_{0} t\right)=\operatorname{Re}\left\{e^{j \omega_{0} t}\right\} \Rightarrow \operatorname{Re}\left\{H\left(j \omega_{0}\right) e^{j \omega_{0} t}\right\}
\end{gathered}
$$

- It is often better to express $H(j \omega)$ in polar form as:

$$
H(j \omega)=|H(j \omega)| e^{j \angle H(j \omega)}
$$

- Therefore, $H(j \omega) e^{j \omega t}=|H(j \omega)| e^{j \angle H(j \omega)} e^{j \omega t}=|H(j \omega)| e^{j(\omega t+\angle H(j \omega))}$

$$
\cos \left(\omega_{0} t\right) \Rightarrow\left|H\left(j \omega_{0}\right)\right| \cos \left[\omega_{0} t+\angle H\left(j \omega_{0}\right)\right]
$$

- $H(j \omega)$: Frequency response
- |H(j $) \mid$: Amplitude response
- $\angle H(j \omega)$: Phase response

Frequency response of a LTI system to an everlasting exponential or a cosine cont.

- We can also show that a LTI's system response to an everlasting exponential $x(t)=e^{j \omega_{0} t+\theta_{0}}$ is $e^{j \omega_{0} t+\theta_{0}} H(j \omega)$.

Proof:

If $h(t)$ is the unit impulse response of a LTI system then:

$$
\begin{aligned}
y(t)= & h(t) * e^{j \omega_{0} t+\theta_{0}}=\int_{-\infty}^{\infty} h(\tau) e^{j \omega_{0}(t-\tau)+\theta_{0}} d \tau \\
& =e^{j \omega_{0} t+\theta_{0}} \int_{-\infty}^{\infty} h(\tau) e^{-j \omega_{0} \tau} d \tau=e^{j \omega_{0} t+\theta_{0}} H\left(j \omega_{0}\right)
\end{aligned}
$$

- Therefore,

$$
\cos \left(\omega_{0} t+\theta_{0}\right) \Rightarrow\left|H\left(j \omega_{0}\right)\right| \cos \left[\omega_{0} t+\theta_{0}+\angle H\left(j \omega_{0}\right)\right]
$$

- $H(j \omega)$: Frequency response
- $|H(j \omega)|$: Amplitude response
- $\angle H(j \omega)$: Phase response

Example

- Find the frequency response (amplitude and phase response) of a system with transfer function:

$$
H(s)=\frac{s+0.1}{s+5}
$$

Then find the system response $y(t)$ for inputs $x(t)=\cos 2 t$ and $x(t)=\cos \left(10 t-50^{\circ}\right)$.

- We substitute $s=j \omega$. Then, we obtain $H(j \omega)=\frac{j \omega+0.1}{j \omega+5}$.
- Amplitude response: $|H(j \omega)|=\frac{\sqrt{\omega^{2}+0.01}}{\sqrt{\omega^{2}+25}}$.
- Phase response: $\angle H(j \omega)=\Phi(\omega)=\tan ^{-1}\left(\frac{\omega}{0.1}\right)-\tan ^{-1}\left(\frac{\omega}{5}\right)$.

Imperial College

Example cont.

- Amplitude response: $|H(j \omega)|=\frac{\sqrt{\omega^{2}+0.01}}{\sqrt{\omega^{2}+25}}$.
- Phase response: $\angle H(j \omega)=\Phi(\omega)=\tan ^{-1}\left(\frac{\omega}{0.1}\right)-\tan ^{-1}\left(\frac{\omega}{5}\right)$.

Example cont.

- Consider the input $x(t)=\cos 2 t$. We have:

$$
\cos (\omega t+\theta) \Rightarrow|H(j \omega)| \cos [\omega t+\theta+\angle H(j \omega)]
$$

In that case we have $\omega_{0}=2$ and $\theta_{0}=0$.

- Amplitude response: $|H(j 2)|=\frac{\sqrt{2^{2}+0.01}}{\sqrt{2^{2}+25}}=0.372$.
- Phase response: $\angle H(j 2)=\Phi(j 2)=\tan ^{-1}\left(\frac{2}{0.1}\right)-\tan ^{-1}\left(\frac{2}{5}\right)=65.3^{\circ}$.
- Therefore,

$$
y(t)=0.372 \cos \left(2 t+65.3^{\circ}\right)
$$

$x(t)=\cos 2 t$

Imperial College

Example cont.

- Consider the input $x(t)=\cos \left(10 t-50^{\circ}\right)$. We have:

$$
\cos (\omega t+\theta) \Rightarrow|H(j \omega)| \cos [\omega t+\theta+\angle H(j \omega)]
$$

In that case we have $\omega_{0}=10$ and $\theta_{0}=-50$.

- Amplitude response:

$$
|H(j 10)|=0.894
$$

- Phase response:

$$
\angle H(j 10)=\Phi(j 10)=26^{\circ} .
$$

- Therefore, $y(t)=0.894 \cos \left(10 t-50^{\circ}+26^{\circ}\right)$

Frequency response of delay of T sec

- The transfer function of an ideal delay is $H(s)=e^{-s T}$.
- Therefore,
- Amplitude response: $|H(j \omega)|=\left|e^{-j \omega T}\right|=1$.
- Phase response: $\angle H(j \omega)=\Phi(j \omega)=-\omega T$.
- Therefore:
- Delaying a signal by T has no effect on its amplitude.
- It results in a linear phase shift (with frequency) with a gradient of $-T$.
- The quantity $-\frac{d \Phi(\omega)}{d \omega}=\tau_{g}=T$ is known as Group Delay.

Frequency response of an ideal dififerentiator

- The transfer function of an ideal differentiator is $H(s)=s$.
- For $s=j \omega$ we have $H(j \omega)=j \omega=\omega e^{j \frac{\pi}{2}}$.
- Therefore, for $\omega>0$ we obtain:
- Amplitude response: $|H(j \omega)|=\omega$.
- Phase response: $\angle H(j \omega)=\frac{\pi}{2}$.

Example

- Consider the input of an ideal differentiator to be $x(t)=\cos \omega t$.
- The output is:
$\frac{d}{d t}(\cos \omega t)=-\omega \sin \omega t=\omega \cos \left(\omega t+\frac{\pi}{2}\right)$
- That's why differentiator is not a nice component to work with; it amplifies high frequency components (i.e., noise).

Imperial College

Frequency response of an ideal integrator

- The transfer function of an ideal integrator is $H(s)=\frac{1}{s}$.
- For $s=j \omega, H(j \omega)=\frac{1}{j \omega}=-j \frac{1}{\omega}=\frac{1}{\omega} e^{-j \frac{\pi}{2}}$.
- Therefore, for $\omega>0$ we obtain:
- Amplitude response: $|H(j \omega)|=\frac{1}{\omega}$.
- Phase response: $\angle H(j \omega)=-\frac{\pi}{2}$.

- Consider the input of an ideal integrator to be $x(t)=\cos \omega t$.
- The output is:
$\int \cos \omega t d t=\frac{1}{\omega} \sin \omega t=\frac{1}{\omega} \cos \left(\omega t-\frac{\pi}{2}\right)$
- That's why an integrator is a nice component to work with; it supresses high frequency components (i.e., noise).

Bode Plots: Asymptotic hehaviour of amplitude and phase response

- Consider a system with transfer function:

$$
H(s)=\frac{K\left(s+a_{1}\right)\left(s+a_{2}\right)}{s\left(s+b_{1}\right)\left(s^{2}+b_{2} s+b_{3}\right)}=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left(\frac{s}{a_{1}}+1\right)\left(\frac{s}{a_{2}}+1\right)}{s\left(\frac{s}{b_{1}}+1\right)\left(\frac{s^{2}}{b_{3}}+\frac{b_{2}}{b_{3}} s+1\right)}
$$

- The poles are the roots of the denominator polynomial. In this case, the poles of the system are $s=0, s=-b_{1}$ and the solutions of the quadratic

$$
s^{2}+b_{2} s+b_{3}=0
$$

Which we assume to form a complex conjugate pair.

- The zeros are the roots of the numerator polynomial. In this case, the zeros of the system are: $s=-a_{1}, s=-a_{2}$.

Bode Plots: Asymptotic hehaviour of amplitude and phase response

- Now let $s=j \omega$. The amplitude response $|H(j \omega)|$ can be rearranged as:

$$
|H(j \omega)|=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left|1+\frac{j \omega}{a_{1}}\right|\left|1+\frac{j \omega}{a_{2}}\right|}{|j \omega|\left|1+\frac{j \omega}{b_{1}}\right|\left|1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{3}}\right|}
$$

- We express the above in decibel (i.e., $20 \log (\cdot)$):

$$
\begin{gathered}
20 \log |H(j \omega)|=20 \log \frac{K a_{1} a_{2}}{b_{1} b_{3}}+20 \log \left|1+\frac{j \omega}{a_{1}}\right|+20 \log \left|1+\frac{j \omega}{a_{2}}\right| \\
-20 \log |j \omega|-20 \log \left|1+\frac{j \omega}{b_{1}}\right|-20 \log \left|1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{3}}\right|
\end{gathered}
$$

- By imposing a log operation the amplitude response (in dB) is broken into building block components that are added together.
- We have three types of building block terms: A term $j \omega$, a first order term $1+\frac{j \omega}{a}$ and a second order term with complex conjugate roots.

Advantages of logarithmic units

- They are desirable in several applications, where the variables considered have a very large range of values.
- The above is particularly true in frequency response amplitude plots since we require to plot frequency response from 10^{-6} to 10^{6} or higher.
- A plot of such a large range on a linear scale will bury much of the useful information at lower frequencies.
- In humans the relationship between stimulus and perception is logarithmic.
- This means that if a stimulus varies as a geometric progression (i.e., multiplied by a fixed factor), the corresponding perception is altered in an arithmetic progression (i.e., in additive constant amounts). For example, if a stimulus is tripled in strength (i.e., 3×1), the corresponding perception may be two times as strong as its original value (i.e., $1+1$).
- There is behind the above observations developed by Weber and Frechner.

Imperial College

Building blocks for Bode plots a pole at the origin: amplitude response

- A pole at the origin $1 / s$ contributes to the frequency response with the term $-20 \log |j \omega|=-20 \log \omega$.
- We can effect further simplification by using the logarithmic function for the variable ω itself. Therefore, we define $u=\log \omega$.
- Therefore, $-20 \log \omega=-20 u$.
- The above is a straight line with a slope of -20 .
- A ratio of 10 in ω is called a decade. If $\omega_{2}=10 \omega_{1}$ then
$u_{2}=\log \omega_{2}=\log 10 \omega_{1}=\log 10+\log \omega_{1}=1+\log \omega_{1}=1+u_{1}$ $-20 \log \omega_{2}=-20 \log 10 \omega_{1}=-20 \log 10-20 \log \omega_{1}=-20-20 \log \omega_{1}$
- A ratio of 2 in ω is called an octave. If $\omega_{2}=2 \omega_{1}$ then $u_{2}=\log \omega_{2}=\log 2 \omega_{1}=\log 2+\log \omega_{1}=0.301+\log \omega_{1}=0.301+u_{1}$
$-20 \log \omega_{2}=-20 \log 2 \omega_{1}=-20 \log 2-20 \log \omega_{1}=-6.02-20 \log \omega_{1}$
- Based on the above, equal increments in u are equivalent to equal ratios in ω.
- The amplitude response plot has a slope of $-20 \mathrm{~dB} /$ decade or $-20(0.301)=$ - 6.02dB/octave.
- The amplitude plot crosses the ω axis at $\omega=1$, since $u=\log \omega=0$ for $\omega=1$.

Bode plots - azero at the origin: amplitude

- A zero at the origin s contributes to the frequency response with the term $20 \log |j \omega|=20 \log \omega=20 u$.
- The amplitude plot has a slope of $20 \mathrm{~dB} /$ decade or $20(0.301)=$ $6.02 \mathrm{~dB} /$ octave.
- The amplitude plot for a zero at the origin is a mirror image about the ω axis of the plot for a pole at the origin.
- As you can see the horizontal axis depicts $u=\log \omega$ and not ω.

Amplitude responses of a pole (solid line) and a zero (dotted line) at the origin

Bode plots - first order pole: amplitude response

- The log amplitude of a first order pole at $-a$ is $-20 \log \left|1+\frac{j \omega}{a}\right|$.
- $\omega \ll a \Rightarrow-20 \log \left|1+\frac{j \omega}{a}\right| \approx-20 \log 1=0$
- $\quad \omega \gg a \Rightarrow-20 \log \left|1+\frac{j \omega}{a}\right| \approx-20 \log \left(\frac{\omega}{a}\right)=-20 \log \omega+20 \log a$

This represents a straight line (when plotted as a function of u, the log of ω) with a slope of $-20 d B /$ decade or $-20(0.301)=-6.02 d B /$ octave. When $\omega=a$ the log amplitude is zero. Hence, this line crosses the ω axis at $\omega=a$. Note that the asymptotes meet at $\omega=a$.

- The exact log amplitude for this pole is:

$$
-20 \log \left|1+\frac{j \omega}{a}\right|=-20 \log \left(1+\frac{\omega^{2}}{a^{2}}\right)^{\frac{1}{2}}=-10 \log \left(1+\frac{\omega^{2}}{a^{2}}\right)
$$

- The maximum error between the actual and asymptotic plots occurs at $\omega=a$ called corner frequency or break frequency. This error is:
err $(\boldsymbol{a})=$ exact_amplitude (\boldsymbol{a})-asymptotic_amplitude (\boldsymbol{a})
$=-10 \log \left(1+\frac{a^{2}}{a^{2}}\right)-0=-10 \log 2=-3 d \mathrm{~B}$.

Bode plots - first order zero: amplitude

- A first order zero at $-a$ gives rise to the term $20 \log \left|1+\frac{j \omega}{a}\right|$.
- $\omega \ll a \Rightarrow 20 \log \left|1+\frac{j \omega}{a}\right| \approx 20 \log 1=0$.
- $\omega \gg a \Rightarrow 20 \log \left|1+\frac{j \omega}{a}\right| \approx 20 \log \left(\frac{\omega}{a}\right)=20 \log \omega-20 \log a$.

This represents a straight line with a slope of $20 \mathrm{~dB} /$ decade.

- The amplitude plot for a zero at $-a$ is a mirror image about the ω axis of the plot for a pole at $-a$.

Imperial College
London

Summary of first order huilding hlocks for Bode plots: amplitude

Pole term: $-20 \log |j \omega|$

$$
=-20 \log \omega
$$

- Zero term: $20 \log |j \omega|$

$$
=20 \log \omega
$$

Pole term: $-20 \log \left|1+\frac{j \omega}{a}\right|$

- $\quad \omega \ll a \Rightarrow-20 \log \left|1+\frac{j \omega}{a}\right|$ $\approx-20 \log 1=0$
- $\quad \omega \gg a \Rightarrow-20 \log \left|1+\frac{j \omega}{a}\right|$
$\approx-20 \log \left(\frac{\omega}{a}\right)$
$=-20 \log \omega+20 \log a$
- $\omega=a$

$-20 \log |1+j|=-20 \log \sqrt{2} \approx-3 d b$

Imperial College

London

Error in the asymptotic approximation of amplitude due to a first order pole

- The error of the approximation as a function of ω is shown in the figure below.
- The actual plot can be obtained if we add the error to the asymptotic plot.
- Problem: Find the error when the frequency is equal to the corner frequency and 2,5 and 10 times larger or smaller.
(Answers: $-3 d B,-1 d B,-0.17 d B$, negligible. See subsequent slides.)

Imperial College

Error in the asymptotic approximation of amplitude due to a first order pole

- The error of the approximation of the true response with an asymptotic line at a frequency ω for the case of a first order pole is: $\operatorname{err}(\omega)=\operatorname{true}(\omega)-\operatorname{asymptotic}(\omega)$
$=-10 \log \left(1+\frac{\omega^{2}}{a^{2}}\right)-(-20 \log \omega+20 \log a)$
$=-10 \log \left(1+\frac{\omega^{2}}{a^{2}}\right)+20 \log \omega-20 \log a$
- For $\omega=a$ (also shown at bottom of Slide 16)

$$
\begin{aligned}
\operatorname{err}(\omega) & =-10 \log \left(1+\frac{a^{2}}{a^{2}}\right)+20 \log a-20 \log a=-10 \log (2)=-10 \cdot 0.3 \\
= & -3 \mathrm{~dB}
\end{aligned}
$$

- For $\omega=2 a$,
$\operatorname{err}(\omega)=-10 \log \left(1+\frac{4 a^{2}}{a^{2}}\right)+20 \log 2 a-20 \log a=$
$=-10 \log (5)+20 \log (2)=-10 \cdot 0.7+20 \cdot 0.3=-1 \mathrm{~dB}$

Bode plots - error of the approximation cont.

$$
\operatorname{err}(\omega)=-10 \log \left(1+\frac{\omega^{2}}{a^{2}}\right)+20 \log \omega-20 \log a
$$

- For $\omega=5 a$,

$$
\begin{aligned}
& \operatorname{err}(\omega)=-10 \log \left(1+\frac{25 a^{2}}{a^{2}}\right)+20 \log 5 a-20 \log a=-10 \log (26)+20 \log (5) \\
& =-10 \cdot 1.41497334+20 \cdot 0.69897=-0.17 \mathrm{~dB}
\end{aligned}
$$

For $\omega=10 a$,

$$
\begin{aligned}
\operatorname{err}(\omega) & =-10 \log \left(1+\frac{100 a^{2}}{a^{2}}\right)+20 \log 10 a-20 \log a \\
& =-10 \log (101)+20 \log (10)=-20.0432+20 \cdot 1 \cong 0
\end{aligned}
$$

Bode plots - second order pole : amplitude

- Now consider the quadratic term: $s^{2}+b_{2} s+b_{3}$.
- It is quite common to express the above term as:
$s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=\omega_{n}^{2}\left(\frac{s^{2}}{\omega_{n}^{2}}+2 \zeta \frac{s}{\omega_{n}}+1\right)=\omega_{n}^{2}\left[1+2 \zeta\left(\frac{s}{\omega_{n}}\right)+\left(\frac{s}{\omega_{n}}\right)^{2}\right]$
- The scalar ζ is called damping factor.
- The scalar ω_{n} is called natural frequency.
- The log amplitude response is obtained by setting $s=j \omega$ and taking the magnitude.
- For the time being we are not interested in the gain ω_{n}^{2}.
- log amplitude $=-20 \log \left|1+2 j \zeta\left(\frac{\omega}{\omega_{n}}\right)+\left(\frac{j \omega}{\omega_{n}}\right)^{2}\right|$
- $\omega<\omega_{n}, \log$ amplitude $\approx-20 \log 1=0$
- $\omega \gg \omega_{n}$, log amplitude $\approx-20 \log \left|-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right|=-40 \log \left(\frac{\omega}{\omega_{n}}\right)$
$=-40 \log \omega+40 \log \omega_{n}=-40 u+40 \log \omega_{n}$
The exact log amplitude is $-20 \log \left\{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}\right\}^{1 / 2}$

Bode plots - second order pole : amplitude

- The log amplitude involves a parameter ζ called damping factor, resulting in a different plot for each value of ζ.
- It can be proven that for complex-conjugate poles $\zeta<1$.
- For $\zeta \geq 1$, the two poles in the second order factor are not longer complex but real, and each of these two real poles can be dealt with as a separate first order factor.
- The amplitude plot for a pair of complex conjugate zeros is a mirror image about the ω axis of the plot for a pair of complex conjugate poles.

Imperial College
London

Bode plots - second order pole : amplitude

- The exact log amplitude is $=-20 \log \left\{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}\right\}^{1 / 2}$

Imperial College

London

Error in the asymptotic approximation of amplitude due to a pair of complex conjugate poles

- The error of the approximation as a function of ω is shown in the figure below for various values of ζ s.
- The actual plot can be obtained if we add the error to the asymptotic plot.

Bode plots example: amplitude

- Consider a system with transfer function:

$$
\begin{gathered}
H(s)=\frac{20 s(s+100)}{(s+2)(s+10)} \\
H(s)=\frac{20 \times 100}{2 \times 10} \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}=100 \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}
\end{gathered}
$$

- Step 1: Since the constant term is 100 or $20 \log 100=40 \mathrm{~dB}$, we relabel the horizontal axis as the 40 dB line.
- Step 2: For each pole and zero term draw an asymptotic plot.
- Step 3: Add all the asymptotes.
- Step 4: Apply corrections if possible. For corrections we use the frequencies $1,2,10,100$. They are mostly corner frequencies.

Bode plots example: amplitude. Corrections.

- Correction at $\omega=1$
- Due to corner frequency at $\omega=2$ is -1 dB .
- Due to corner frequency at $\omega=10$ is negligible.
- Due to corner frequency at $\omega=100$ is negligible.

Total correction at $\omega=1$ is $-1 d \mathrm{~B}$.

- Correction at $\omega=2$
- Due to corner frequency at $\omega=2$ is $-3 d \mathrm{~B}$.
- Due to corner frequency at $\omega=10$ is -0.17 dB .
- Due to corner frequency at $\omega=100$ is negligible.

Total correction at $\omega=2$ is -3.17 dB .

- Correction at $\boldsymbol{\omega}=\mathbf{1 0}$
- Due to corner frequency at $\omega=10$ is $-3 d \mathrm{~B}$.
- Due to corner frequency at $\omega=2$ is -0.17 dB .
- Due to corner frequency at $\omega=100$ is negligible.

Total correction at $\omega=10$ is -3.17 dB .

Bode plots example: amplitude. Corrections cont.

- Correction at $\boldsymbol{\omega}=\mathbf{1 0 0}$
- Due to corner frequency at $\omega=100$ is $3 d \mathrm{~B}$.
- Due to corner frequency at $\omega=2$ is negligible.
- Due to corner frequency at $\omega=10$ is negligible.

Total correction at $\omega=100$ is 3 dB .

- Correction at intermediate points other than corner frequencies may be considered for more accurate plots.

Imperial College
London

Bode plots example: total amplitude

- Observe now the final plot for the previous system with transfer function:

Bode plots: phase

- Now consider the phase response for the earlier transfer function:

$$
H(j \omega)=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left(1+\frac{j \omega}{a_{1}}\right)\left(1+\frac{j \omega}{a_{2}}\right)}{j \omega\left(1+\frac{j \omega}{b_{1}}\right)\left(1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{3}}\right)}
$$

- The phase response is:

$$
\begin{gathered}
\angle H(j \omega)=\angle\left(1+\frac{j \omega}{a_{1}}\right)+\angle\left(1+\frac{j \omega}{a_{2}}\right)-\angle j \omega \\
-\angle\left(1+\frac{j \omega}{b_{1}}\right)-\angle\left(1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{3}}\right)
\end{gathered}
$$

- Again, we have three types of terms.

Bode plots - a pole or zero at the origin: phase

- A pole at the origin gives rise to the term $-j \omega$.
- $H(j \omega)=-j \omega=\omega e^{-j \frac{\pi}{2}} \Rightarrow \angle H(j \omega)=-\angle j \omega=-90^{\circ}$.
- The phase is constant for all values of ω.
- A zero at the origin gives rise to the term $j \omega$.
- $\angle H(j \omega)=\angle j \omega=90^{\circ}$. The phase plot for a zero at the origin is a mirror image about the ω axis of the phase plot for a pole at the origin.

Bode plots - a first order pole or zero: phase

- A pole at $-a$ gives rise to the term $1+\frac{j \omega}{a}$.
- $\angle H(j \omega)=-\angle\left(1+\frac{j \omega}{a}\right)=-\tan ^{-1}\left(\frac{\omega}{a}\right)$.
- $\omega \ll a \Rightarrow \frac{\omega}{a} \ll 1 \Rightarrow-\tan ^{-1}\left(\frac{\omega}{a}\right) \approx 0$
- $\quad \omega \gg a \Rightarrow \frac{\omega}{a} \gg 1 \Rightarrow-\tan ^{-1}\left(\frac{\omega}{a}\right) \approx-90^{\circ}$
- The phase plot for a zero at $-a$ is a mirror image about the ω axis of the phase plot for a pole at the origin.

Bode plots - a first order pole or zero: phase

- We use a three-line segment asymptotic plot for greater accuracy. The asymptotes are:
- $\omega \leq a / 10 \Rightarrow 0^{\circ}$
- $\omega \geq 10 a \Rightarrow-90^{\circ}$
- A straight line with slope $-45^{\circ} /$ decade connects the above two asymptotes (from $\omega=a / 10$ to $\omega=10 a$) crossing the ω axis at $\omega=a / 10$.

Imperial College

London

Bode plots - a first order pole or zero: phase error

- The maximum error occurs at $\omega=0.1 a$ and $\omega=10 a$ and is 5.7°.
- The actual phase can be obtained if we add the error to the asymptotic plot.

$\operatorname{err}(10 a)=$ exact_phase $(10 a)$-asymptotic_phase (10a)
$=-\tan ^{-1}\left(\frac{10 a}{a}\right)-\left(-90^{\circ}\right)=-\tan ^{-1}\left(\frac{10 a}{a}\right)+90^{\circ}=-\tan ^{-1}(10)+90^{\circ}=$
$-84.28940686+90^{\circ}=5.7^{\circ}$.
err(0.1a) $=$ exact_phase $(0.1 a)$-asymptotic_phase ($0.1 a)$
$=-\tan ^{-1}\left(\frac{0.1 a}{a}\right)-0=-\tan ^{-1}(0.1)=-5.7^{\circ}$.

Bode plots - second order complex conjugate poles : phase

- Now consider the term:
$1+2 j \zeta\left(\frac{\omega}{\omega_{n}}\right)+\left(\frac{j \omega}{\omega_{n}}\right)^{2}=1-\left(\frac{\omega}{\omega_{n}}\right)^{2}+j 2 \zeta\left(\frac{\omega}{\omega_{n}}\right)$
$\angle H(j \omega)=-\tan ^{-1}\left[\frac{2 \zeta\left(\frac{\omega}{\omega_{n}}\right)}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right]$
- $\omega \ll \omega_{n} \Rightarrow \frac{\omega}{\omega_{n}} \approx 0$,

$$
\angle H(j \omega)=-\tan ^{-1}\left(\frac{0}{1-0}\right)=-\tan ^{-1}(0)=0
$$

- $\quad \omega \gg \omega_{n} \Rightarrow \frac{\omega}{\omega_{n}} \approx \infty$,

$$
\angle H(j \omega)=-\tan ^{-1}\left(\frac{2 \zeta \infty}{1-\infty^{2}}\right)=-\tan ^{-1}(0)=-180^{\circ},
$$

- The phase involves a parameter ζ, resulting in a different plot for each value of ζ.

Bode plots - second order complex conjugate poles : phase error

- An error plot is shown in the figure below for various values of ζ.
- The actual phase can be obtained if we add the error to the asymptotic plot.

Bode plots example: phase

- Consider the previous system with transfer function:

$$
H(s)=\frac{20 s(s+100)}{(s+2)(s+10)}=100 \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}
$$

- For the pole at $s=-2(a=-2)$ the phase plot is:
- $\omega \leq \frac{2}{10}=0.2 \Rightarrow 0^{\circ}$
- $\omega \geq 10 \cdot 2=20 \Rightarrow-90^{\circ}$
- A straight line with slope $-45^{\circ} /$ decade connects the above two asymptotes (from $\omega=0.2$ to $\omega=20$) crossing the ω axis at $\omega=0.2$.
- For the pole at $s=-10(a=-10)$ the phase plot is:
- $\omega \leq \frac{10}{10}=1 \Rightarrow 0^{\circ}$
- $\omega \geq 10 \cdot 10=100 \Rightarrow-90^{\circ}$
- A straight line with slope $-45^{\circ} /$ decade connects the above two asymptotes (from $\omega=1$ to $\omega=100$) crossing the ω axis at $\omega=1$.

Bode plots example: phase cont.

- Consider the previous system with transfer function:

$$
H(s)=\frac{20 s(s+100)}{(s+2)(s+10)}=100 \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}
$$

- The zero at the origin causes a 90° phase shift.
- For the zero at $s=-100(a=-100)$ the phase plot is:
- $\omega \leq \frac{100}{10}=10 \Rightarrow 0^{\circ}$
- $\omega \geq 10 \cdot 100=1000 \Rightarrow 90^{\circ}$
- A straight line with slope $45^{\circ} /$ decade connects the above two asymptotes (from $\omega=10$ to $\omega=1000$) crossing the ω axis at $\omega=$ 10.

Imperial College
London

Bode plots example: total phase cont.

- Consider the previous system with transfer function:

Relating this lecture to other courses

- You will be applying frequency response in various areas such as filters and $2^{\text {nd }}$ year control. You have also used frequency response in the $2^{\text {nd }}$ year analogue electronics course. Here we explore this as a special case of the general concept of complex frequency, where the real part is zero.
- You have come across Bode plots from $2^{\text {nd }}$ year analogue electronics course. Here we go deeper into where all these rules come from.
- We will apply much of what we have done so far in the frequency domain to analyse and design some filters in the next lecture.

