Signals and Systems

Lecture 14 Wednesday 12th December 2017

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Introduction. Time sampling theorem resume.

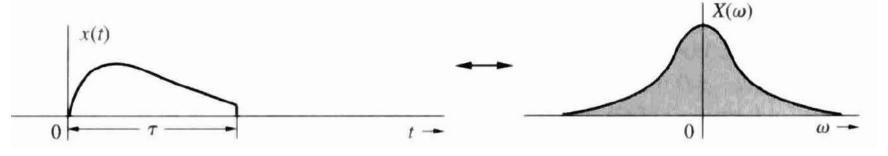
- We want to perform spectral analysis using computers. Therefore, we must
 - Window the incoming continuous-time signal.
 - Sample the windowed signal.
 - Compute a discrete-time version of the Fourier transform on the sampled, finite-duration signal. This transform is known as DFT.
- The goal of today's lecture: to understand the distortion introduced at each stage and how DFT is related to the original Fourier transform.
- We showed that a signal bandlimited to BHz can be reconstructed from signal samples at a rate of $f_s > 2B$ samples per second.
- Not that the signal spectrum exists over the frequency range (in Hz) from -B to B.
- The interval 2B is called <u>spectral width</u>.
 Note the difference between spectral width (2B) and bandwidth (B).
- Time sampling theorem: $f_s > 2B$ or $f_s > (spectral width)$.

Time sampling theorem has a dual: Spectral sampling theorem

- Consider a time-limited signal x(t) with a spectrum $X(\omega)$.
- In general, a time-limited signal is 0 for $t < T_1$ and $t > T_2$. The duration of the signal is $\tau = T_2 T_1$. Below we assume that $T_1 = 0$.
- Recall that $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\tau} x(t)e^{-j\omega t}dt$.
- The Fourier transform $X(\omega)$ is assumed real for simplicity.

Spectral sampling theorem

The spectrum $X(\omega)$ of a signal x(t), time-limited to a duration of τ seconds, can be reconstructed from the samples of $X(\omega)$ taken at a rate R samples per Hz, where $R > \tau$ (the signal width or duration in seconds).



Spectral sampling theorem

- We now construct the periodic signal x_{T₀}(t). This is a periodic extension of x(t) with period T₀ > τ.
- This periodic signal can be expressed using Fourier series.

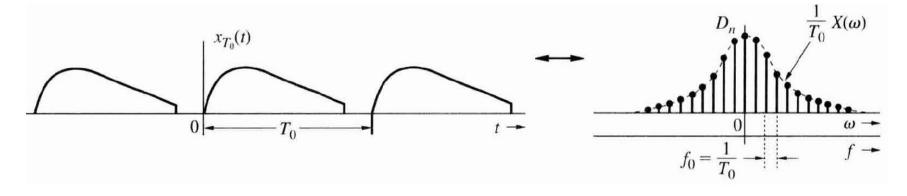
$$\begin{aligned} x_{T_0}(t) &= \sum_{n=-\infty}^{n=\infty} D_n e^{jn\omega_0 t}, \, \omega_0 = \frac{2\pi}{T_0} \\ D_n &= \frac{1}{T_0} \int_0^{T_0} x(t) \, e^{-jn\omega_0 t} dt = \frac{1}{T_0} \int_0^{\tau} x(t) \, e^{-jn\omega_0 t} dt = \frac{1}{T_0} X(n\omega_0) \end{aligned}$$

- The result indicates that the coefficients of the Fourier series for $x_{T_0}(t)$ are the values of $X(\omega)$ taken at integer multiples of ω_0 and scaled by $\frac{1}{\tau_0}$.
- The above implies that the spectrum of the periodic signal $x_{T_0}(t)$ is the sampled version of spectrum $X(\omega)$.

(Note that the spectrum of a periodic signal consists of the weights of the exponential terms in its Fourier series representation).

Spectral sampling theorem cont.

• The spectrum of the periodic signal $x_{T_0}(t)$ is the sampled version of spectrum $X(\omega)$ (see figure below).



- If successive cycles of $x_{T_0}(t)$ do not overlap, x(t) can be recovered from $x_{T_0}(t)$. This implies that $X(\omega)$ can be reconstructed from its samples.
- These samples are separated by the so called fundamental frequency $f_0 = \frac{1}{T_0} Hz$ or $\omega_0 = 2\pi f_0 rads/s$ of the periodic signal $x_{T_0}(t)$.
- Therefore, the condition for recovery is $T_0 > \tau \Rightarrow f_0 < \frac{1}{\tau}Hz$.

Spectral interpolation formula

• The reconstruct the spectrum $X(\omega)$ from the samples of $X(\omega)$, the samples should be taken at frequency intervals $f_0 < \frac{1}{\tau}Hz$. If the sampling rate is *R* samples/*Hz* we have:

$$R = \frac{1}{f_0} > \tau \text{ samples/Hz}$$

 In the previous lecture we proved that the continuous version of a signal can be recovered from its sampled version through the so called <u>signal</u> <u>interpolation formula</u>:

$$x(t) = \sum_{n} x(nT_s)h(t - nT_s) = \sum_{n} x(nT_s)\operatorname{sinc}\left(\frac{\pi t}{T_s} - n\pi\right)$$

We use the dual of the approach employed to derive the signal interpolation formula above, to obtain the spectral interpolation formula as follows. We assume that x(t) is time-limited to τ and centred at T_c .

$$X(\omega) = \sum_{n=-\infty} X(n\omega_0) \operatorname{sinc}\left(\frac{\omega T_0}{2} - n\pi\right) e^{-j(\omega - n\omega_0)T_c}, \, \omega_0 = \frac{2\pi}{T_0}, \, T_0 > \tau$$

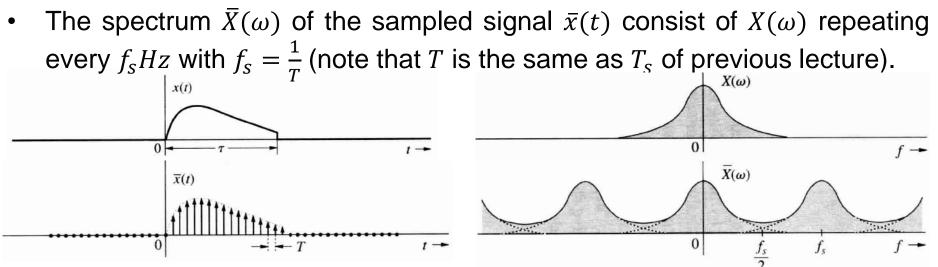
Spectral interpolation formula: Proof.

- We know that $x_{T_0}(t) = \sum_{n=-\infty}^{n=\infty} D_n e^{jn\omega_0 t}$, $\omega_0 = \frac{2\pi}{T_0}$
- Therefore, $\mathcal{F}\{x_{T_0}(t)\} = 2\pi \sum_{n=-\infty}^{n=\infty} D_n \,\delta(\omega n\omega_0)$ (see Eq. 7.26, Lathi).
- We can write $x(t) = x_{T_0}(t) \cdot \operatorname{rect}\left(\frac{t-T_c}{T_0}\right)$ (1)
- We know that $\mathcal{F}\left\{\operatorname{rect}\left(\frac{t}{T_0}\right)\right\} = T_0\operatorname{sinc}\left(\frac{\omega T_0}{2}\right)$.
- Therefore, $\mathcal{F}\left\{\operatorname{rect}\left(\frac{t-T_{c}}{T_{0}}\right)\right\} = T_{0}\operatorname{sinc}\left(\frac{\omega T_{0}}{2}\right)e^{-j\omega T_{c}}.$
- From (1) we see that $X(\omega) = \frac{1}{2\pi} \mathcal{F}\left\{x_{T_0}(t)\right\} * \mathcal{F}\left\{\operatorname{rect}\left(\frac{t-T_c}{T_0}\right)\right\}$

•
$$X(\omega) = \frac{1}{2\pi} 2\pi \left[\sum_{n=-\infty}^{n=\infty} D_n \,\delta(\omega - n\omega_0)\right] * T_0 \operatorname{sinc}\left(\frac{\omega T_0}{2}\right) e^{-j\omega T_c}$$
$$X(\omega) = \sum_{n=-\infty} D_n T_0 \operatorname{sinc}\left[\frac{(\omega - n\omega_0)T_0}{2}\right] e^{-j(\omega - n\omega_0)T_c}, \,\omega_0 = \frac{2\pi}{T_0}, \,T_0 > \tau$$
$$X(\omega) = \sum_{n=-\infty} X(n\omega_0) \operatorname{sinc}\left(\frac{\omega T_0}{2} - n\pi\right) e^{-j(\omega - n\omega_0)T_c}$$

Discrete Fourier Transform DFT

- The numerical computation of the Fourier transform requires samples of x(t) since computers can work only with discrete values.
- Furthermore, the Fourier transform can only be computed at some discrete values of ω .
- The goal of what follows is to relate the samples of X(ω) with the samples of x(t).
- Consider a time-limited signal x(t). Its spectrum $X(\omega)$ will not be bandlimited.



Discrete Fourier Transform DFT cont.

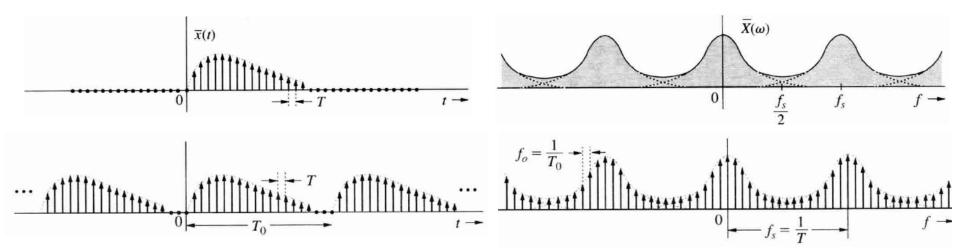
- Suppose now that the sampled signal $\bar{x}(t)$ is repeated periodically every T_0 seconds.
- According to the spectral sampling theorem, this operation results in sampling the spectrum at a rate of T_0 samples/Hz. This means that the samples are spaced at $f_0 = \frac{1}{T_0}Hz$.
- Therefore, when a signal is sampled and periodically repeated, its spectrum is also sampled and periodically repeated.
- The goal of what follows is to relate the samples of $X(\omega)$ with the samples of x(t). $\overline{x(t)}$ $\overline{x(t)}$ $\overline{x(t)$

Discrete Fourier Transform DFT cont.

- The number of samples of the discrete signal in one period T_0 is $N_0 = \frac{T_0}{T}$ (figure below left).
- The number of samples of the discrete spectrum in one period is $N'_0 = \frac{f_s}{f_s}$.

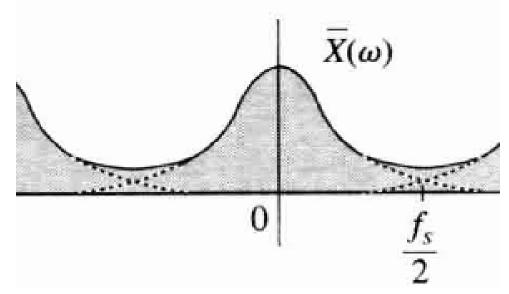
• We see that
$$N'_0 = \frac{f_s}{f_0} = \frac{\frac{1}{T}}{\frac{1}{T_0}} = \frac{T_0}{T} = N_0.$$

 This is an interesting observation: the number of samples in a period of time is identical to the number of samples in a period of frequency.



Aliasing and leakage effects

• Since $X(\omega)$ is not bandlimited, we will get some aliasing effect:



• Furthermore, if x(t) is not time limited, we need to truncate x(t) with a window function. This leads to leakage effect as discussed in previous lecture (sampling).

Formal definition of DFT

• If x(nT) and $X(r\omega_0)$ are the n^{th} and r^{th} samples of x(t) and $X(\omega)$ respectively, we define:

$$x_n = Tx(nT) = \frac{T_0}{N_0}x(nT)$$
$$X_r = X(r\omega_0), \ \omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$

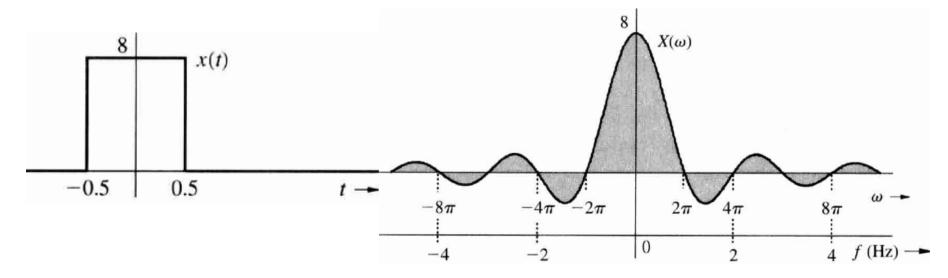
• It can be shown that x_n and X_r are related by the following equations:

$$X_{r} = \sum_{n=0}^{N_{0}-1} x_{n} e^{-jnr\Omega_{0}}$$
(1)
$$x_{n} = \frac{1}{N_{0}} \sum_{r=0}^{N_{0}-1} X_{r} e^{jrn\Omega_{0}}, \ \Omega_{0} = \omega_{0}T = \frac{2\pi}{N_{0}}$$
(2)

- The equations (1) and (2) above are the direct and inverse Discrete Fourier Transforms respectively, known as DFT and IDFT.
- In the above equations, the summation is performed from 0 to $N_0 1$. It can be shown that the summation can be performed over any successive N_0 values of n or r.

Example

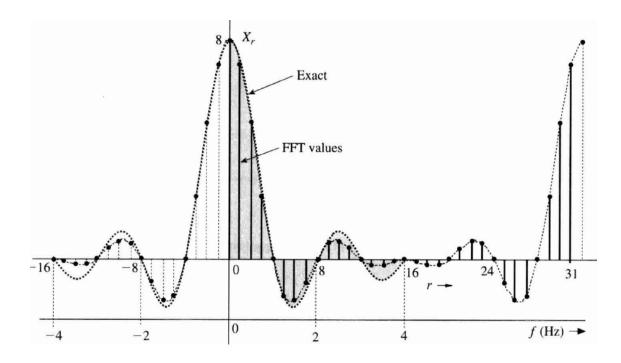
• Use DFT to compute the Fourier transform of 8rect(t) (Lathi page 808.)



- The essential bandwidth *B* (calculated by finding where the amplitude response drops to 1% of its peak value) is well above 16Hz. However, we select B = 4Hz:
 - To observe the effects of aliasing.
 - In order not to end up with a huge number of samples in time.

Example cont.

- $B = 4Hz, f_s = 8Hz, T = \frac{1}{f_s} = \frac{1}{8}.$
- For the frequency resolution we choose $f_0 = \frac{1}{4}Hz$. This choice gives us 4 samples in each lobe of $X(\omega)$ and $T_0 = \frac{1}{f_0} = 4s$.

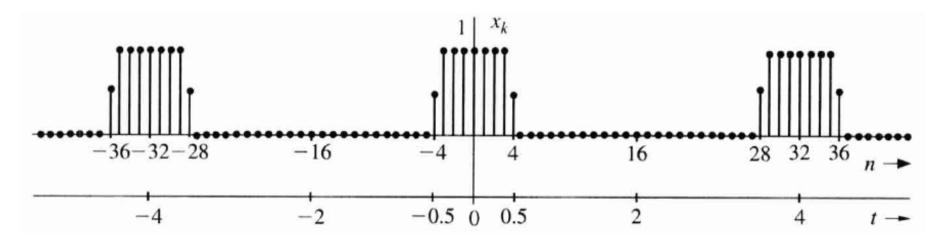


Example cont.

• $N_0 = \frac{T_0}{T} = \frac{4}{1/8} = 32$. Therefore, we must repeat x(t) every 4s and take samples every $\frac{1}{8}s$. This yields 32 samples in a period.

•
$$x_n = Tx(nT) = \frac{1}{8}x(\frac{n}{8})$$
 with $x(t) = 8rect(t)$.

• The DFT of the signal x_n is obtained by taking any full period of x_n (i.e., N_0 samples) and not necessarily N_0 over the interval $(0, T_0)$ as we assumed in the theoretical analysis of DFT.

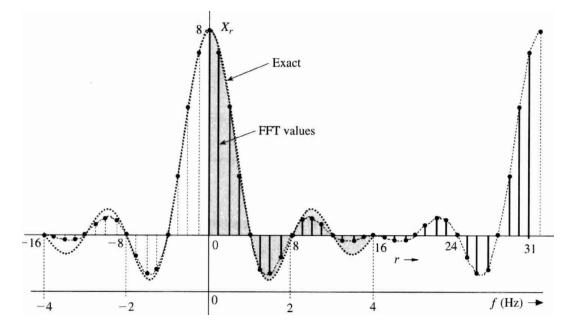


Example cont.

•
$$x_n = \begin{cases} 1 & 0 \le n \le 3 \\ 0 & 5 \le n \le 27 \\ 0.5 & n = 4,28 \end{cases}$$

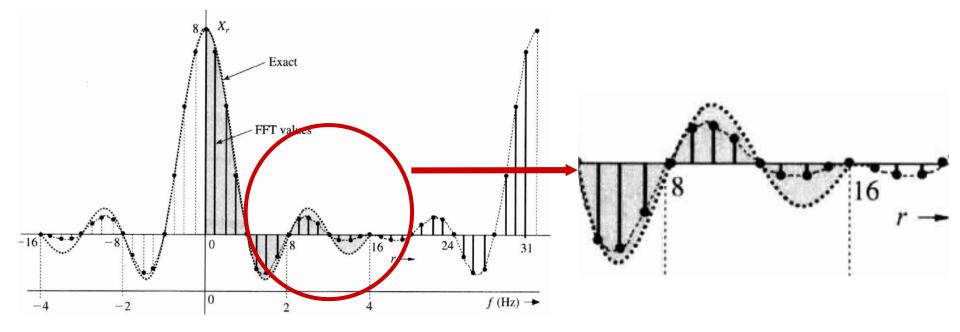
• $\Omega_0 = \frac{2\pi}{32} = \frac{\pi}{16}$ and $29 \le n \le 31$

• $X_r = \sum_{n=0}^{N_0 - 1} x_n e^{-jr\Omega_0 n} = \sum_{n=0}^{31} x_n e^{-jr(\pi/16)n}$. See figure below.



Example cont.

- Observe that X_r is periodic.
- The dotted curve depicts the Fourier transform of x(t) = 8rect(t).
- The aliasing error is quite visible when we use a single graph to compare the superimposed plots. The error increases rapidly with *r*.



Appendix: Proof of DFT relationships

• For the sampled signal we have:

$$\overline{x(t)} = \sum_{n=0}^{N_0 - 1} x(nT) \delta(t - nT).$$

Since $\delta(t - nT) \Leftrightarrow e^{-jn\omega T}$
$$\overline{X(\omega)} = \sum_{n=0}^{N_0 - 1} x(nT) e^{-jn\omega T}$$

For $|\omega| \le \frac{\omega_s}{2}$, $\overline{X(\omega)}$ the Fourier transform of $\overline{x(t)}$ is $\frac{X(\omega)}{T}$,

$$X(\omega) = T\overline{X(\omega)} = T\sum_{n=0}^{N_0-1} x(nT)e^{-jn\omega T}, \ |\omega| \le \frac{\omega_s}{2}$$
$$X_r = X(r\omega_0) = T\sum_{n=0}^{N_0-1} x(nT)e^{-jnr\omega_0 T}$$

i.e.,

• If we let $\omega_0 T = \Omega_0$ then $\Omega_0 = \omega_0 T = 2\pi f_0 T = \frac{2\pi}{N_0}$ and also $Tx(nT) = x_n$.

• Therefore, $X_r = \sum_{n=0}^{N_0-1} x_n e^{-jnr\Omega_0}$

Appendix: Proof of DFT relationships

• To prove the inverse relationship write:

$$\begin{split} \sum_{r=0}^{N_0-1} X_r e^{jrm\Omega_0} &= \sum_{r=0}^{N_0-1} \left[\sum_{n=0}^{N_0-1} x_n e^{-jnr\Omega_0} \right] e^{jrm\Omega_0} \Rightarrow \\ \sum_{r=0}^{N_0-1} X_r e^{jrm\Omega_0} &= \sum_{n=0}^{N_0-1} x_n \left[\sum_{r=0}^{N_0-1} e^{-jr(n-m)\Omega_0} \right] \\ \sum_{r=0}^{N_0-1} e^{-jr(n-m)\Omega_0} &= \sum_{r=0}^{N_0-1} e^{-jr(n-m)\frac{2\pi}{N_0}} = \begin{cases} N_0 & n-m=kN_0, k \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

• Since $0 \le m, n \le N_0 - 1$ the only multiple of N_0 that the term (n - m) can be is 0. Therefore:

$$\sum_{r=0}^{N_0-1} e^{-jr(n-m)\frac{2\pi}{N_0}} = \begin{cases} N_0 & n-m=0 \Rightarrow n=m\\ 0 & \text{otherwise} \end{cases}$$

• Therefore,

$$x_m = \frac{1}{N_0} \sum_{r=0}^{N_0 - 1} X_r e^{jrm\Omega_0}, \ \Omega_0 = \frac{2\pi}{N_0}$$