

Signals and Systems

Lecture 11 Wednesday 22nd November 2017

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Effect on poles and zeros on frequency response

Consider a generic system transfer function

$$H(s) = \frac{P(s)}{Q(s)} = b_0 \frac{(s - z_1)(s - z_2) \dots (s - z_N)}{(s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_N)}$$

• The value of the transfer function at some complex frequency s = p is:

$$H(s) = \frac{P(s)}{Q(s)} = b_0 \frac{(p - z_1)(p - z_2) \dots (p - z_N)}{(p - \lambda_1)(p - \lambda_2) \dots (p - \lambda_N)}$$

$$H(s) = \frac{P(s)}{Q(s)} = b_0 \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \dots (r_N e^{j\phi_N})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \dots (d_N e^{j\theta_N})}$$

Re →

- The factor $p z_i$ is a complex number.
 - It is represented by a vector drawn
 from point z_i to point p in the complex plane.
 - Using polar coordinates we can write $p z_i = r_i e^{j\phi_i}$. with $r_i = |p - z_i|$ and $\phi_i = \angle (p - z_i)$
- Same comments are valid for the factor $p \lambda_i = d_i e^{j\theta_i}$.

Effect on poles and zeros on frequency response cont.

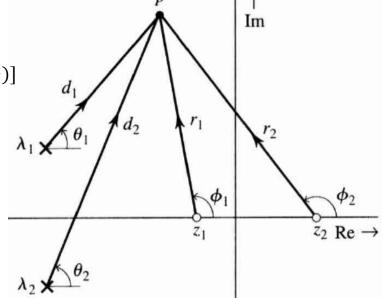
The previous form can be further modified as:

$$\begin{split} H(s) &= b_0 \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \dots (r_N e^{j\phi_N})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \dots (d_N e^{j\theta_N})} \\ &= b_0 \frac{r_1 r_2 \dots r_N}{d_1 d_2 \dots d_N} e^{j[(\phi_1 + \phi_2 + \dots + \phi_N) - (\theta_1 + \theta_2 + \dots + \theta_N)]} \end{split}$$

• Therefore, the magnitude and phase at s = p are given by: $r_1 r_2 \dots r_N$

$$|H(s)|_{s=p} = b_0 \frac{r_1 r_2 \dots r_N}{d_1 d_2 \dots d_N}$$

$$= b_0 \frac{\text{product of the distances of zeros to } p}{\text{product of the distances of poles to } p}$$



$$\angle H(s)_{s=p} = (\phi_1 + \phi_2 + \dots + \phi_N) - (\theta_1 + \theta_2 + \dots + \theta_N)$$

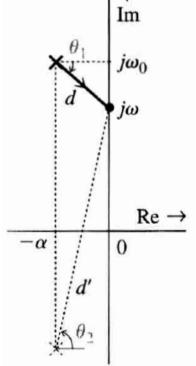
- = sum of zeros' angles to p sum of poles' angles to p
- If b_0 is negative, there is an additional phase π .

Gain enhancement by a single pole

- Consider the hypothetical case of a single pole at $-a + j\omega_0$.
- The amplitude response at a specific value of ω , $|H(j\omega)|$, is found by measuring the length of the line that connects the pole to the point $j\omega$.
- If the length of the above mentioned line is d, then $|H(j\omega)|$ is proportional to $\frac{1}{d}$.

$$|H(j\omega)| = \frac{K}{d}$$

- As ω increases from zero, d decreases progressively until ω reaches the value ω_0 .
- As ω increases beyond ω_0 , d increases progressively.
- Therefore, the peak of $|H(j\omega)|$ occurs at ω_0 . As a becomes smaller, i.e., as the pole moves closer to the imaginary axis the gain enhancement at ω_0 becomes more prominent (d becomes very small.)



Gain enhancement by a single pole cont.

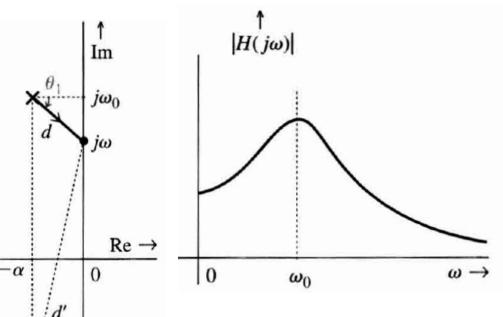
- In the extreme case of a=0 (pole on the imaginary axis) the gain at ω_0 goes to infinity.
- Repeated poles further enhance the frequency selective effect.

• In conclusion, we can enhance a gain at a frequency ω_0 by placing a pole

opposite the point $j\omega_0$.

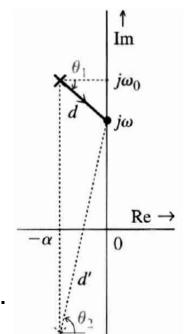
The closer the pole is to $j\omega_0$, the higher is the gain at ω_0 and furthermore, the enhancement is more prominent around ω_0 .

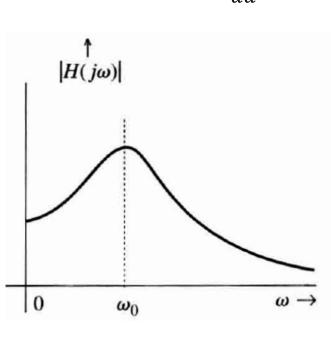
Recall that poles must lie
 on the left half of the s —plane.



Gain enhancement by a pair of complex conjugate poles

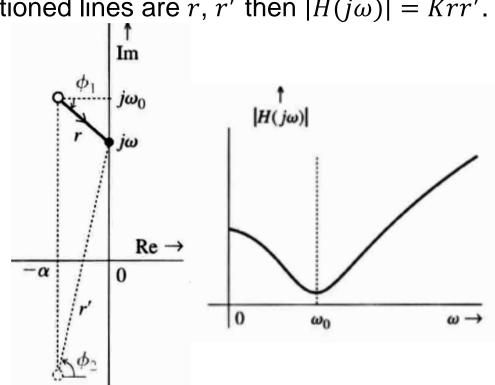
- In a real system, a complex pole at $-a + j\omega_0$ must be accompanied by its conjugate pole $-a j\omega_0$.
- The amplitude response at a specific value of ω , $|H(j\omega)|$, is found by measuring the length of the two lines that connect the poles to the point $j\omega$.
- If the lengths of the above mentioned lines are d, d' then $|H(j\omega)| = \frac{K}{dd'}$.
- We can see graphically that the presence of the conjugate pole does not affect substantially the behaviour of the system around ω_0 . This is because as we move around ω_0 , d' does not change dramatically.





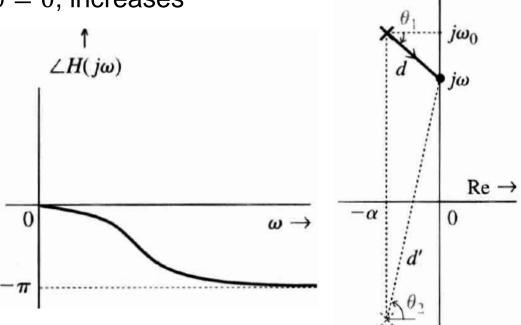
Gain suppression by a pair of complex conjugate zeros

- Consider a real system with a pair of complex conjugate zeros at $-a + j\omega_0$ and $-a j\omega_0$.
- The amplitude response at a specific value of ω , $|H(j\omega)|$ is again found by measuring the length of the two lines that connect the zeros to the point $j\omega$.
- If the lengths of the above mentioned lines are r, r' then $|H(j\omega)| = Krr'$.
- In that case, the minimum of $|H(j\omega)|$ occurs at ω_0 .
- As a becomes smaller, i.e., as the zero moves closer to the imaginary axis, the gain suppression at ω_0 becomes more prominent.



Phase response due to a pair of complex conjugate poles

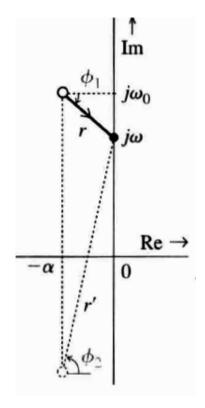
- Angles formed by the poles $-a+j\omega_0$ and $-a-j\omega_0$ at $\omega=0$ are equal and opposite.
- As ω increases from 0 up, the angle θ_1 (due to pole $-a+j\omega_0$), which has a negative value at $\omega=0$, is reduced in magnitude.
- As ω increases from 0 up, the angle θ_2 (due to pole $-a-j\omega_0$), which has a positive value at $\omega=0$, increases in magnitude.
- As a result, $\theta_1 + \theta_2$, the sum of the two angles, increases continuously and approaches a value of π as $\omega \to \infty$.
- $\angle H(j\omega) = -(\theta_1 + \theta_2)$

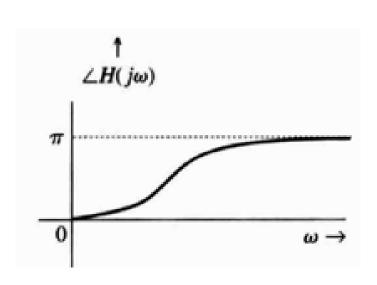


Im

Phase response due to a pair of complex conjugate zeros

- Similar arguments regarding the phase are applied for a pair of complex conjugate zeros $-a + j\omega_0$ and $-a j\omega_0$.
- $\angle H(j\omega) = (\phi_1 + \phi_2)$



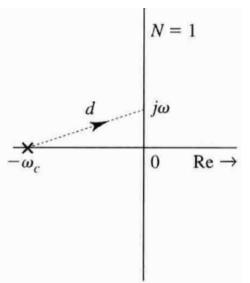


Lowpass filters. The simplest case.

- A lowpass filter is a system with a frequency response that has its maximum gain at $\omega = 0$.
- We showed in detail previously that a pole enhances the gain of the frequency response at frequencies which are within its close neighbourhood.
- Therefore, for a maximum gain at $\omega = 0$, we must place pole(s) on the real axis, within the left half plane, opposite the point $\omega = 0$.
- The simplest lowpass filter can be described by the transfer function:

$$H(s) = \frac{\omega_c}{s + \omega_c}$$

- Observe that by putting ω_c to the numerator we achieve H(0) = 1.
- If the distance from the pole to a point $j\omega$ is d then $|H(j\omega)| = \frac{\omega_c}{d}$.



Lowpass filters. Wall of poles – Butterworth filters

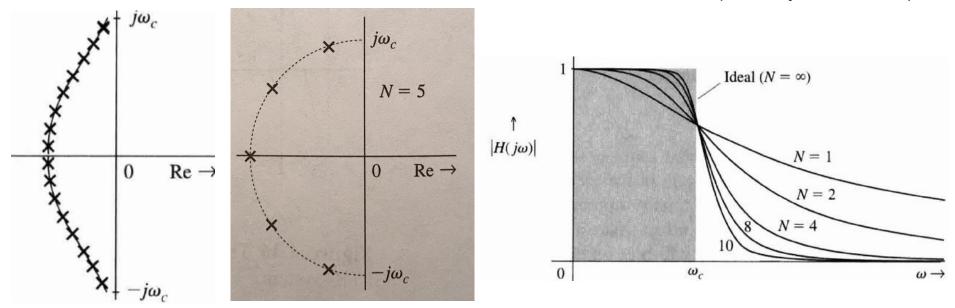
- An ideal lowpass filter has a constant gain of 1 up to a desired frequency ω_c and then the gain drops to 0.
- Therefore, for an ideal lowpass filter an enhanced gain is required within the frequency range 0 to ω_c . This implies that a pole must be placed opposite every single frequency within the range 0 to ω_c .
- We require ideally a continuous "wall of poles" facing the imaginary axis opposite the range 0 to ω_c , and consequently, their complex conjugates facing the imaginary axis opposite the range 0 to $-\omega_c$.
 - At this stage we are not interested in investigating the optimal shape of this wall of poles.
 - We can prove that for a maximally flat response within the range 0 to ω_c , the wall is a semicircle.
 - A maximally flat amplitude response implies:

$$\left. \frac{d^{i}|H(\omega)|}{d\omega^{i}} \right|_{\omega=0} = 0, i = 0, \dots, 2N-1$$



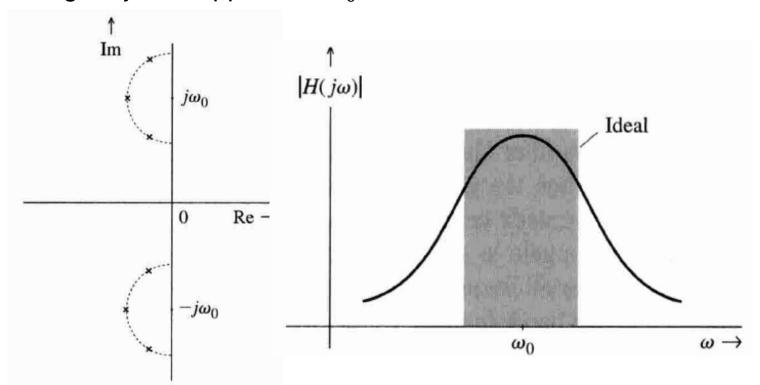
Lowpass filters. Wall of poles – Butterworth filters.

- We can prove that for a maximally flat response within the range 0 to ω_c , the wall is a semicircle with infinite number of poles.
- In practice we use N poles and we end up with a filter with non-ideal characteristics.
- Observe the response as a function of *N*.
- This family of filters are called Butterworth filters.
- There are families of filters with different characteristics (Chebyshev etc.)



Bandpass filters

- An ideal bandpass filter has a constant gain of 1 placed symmetrically around a desired frequency ω_0 ; otherwise the gain drops to 0.
- Therefore, we require ideally a continuous wall of poles facing the imaginary axis opposite ω_0 , and consequently, their complex conjugates facing the imaginary axis opposite $-\omega_0$.

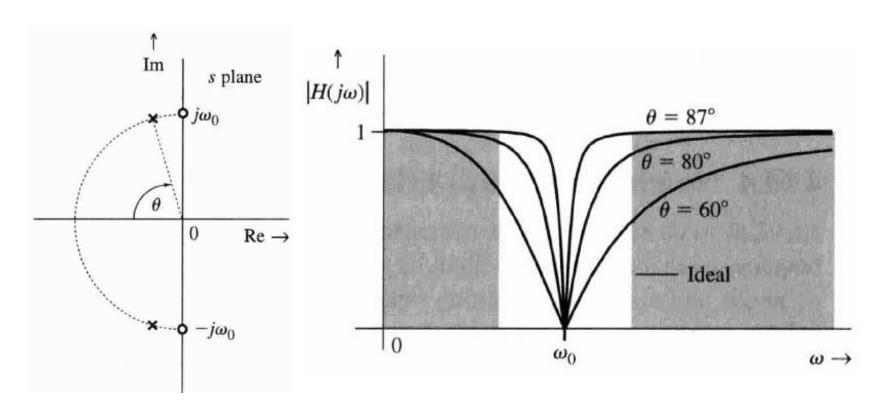


Bandstop (Notch) filters

- An ideal bandstop (notch) filter has 0 amplitude response placed symmetrically around a desired frequency ω_0 ; otherwise the gain is 1.
- Realization in theory requires infinite number of zeros and poles.
- Let us consider a second order notch filter with zero gain at ω_0 .
 - We must have zeros at $\pm j\omega_0$.
 - For $\lim_{\omega \to \infty} |H(j\omega)| = 1$ the number of poles must be equal to the number of zeros. (For $\omega \to \infty$ the distance of all poles and zeros from ω is basically the same.)
 - Based on the above two points, we must have two poles.
 - In order to have |H(0)| = 1 each pole much pair up with a zero and their distances from the origin must be the same.
 - \succ This requirement can be satisfied if we place the two conjugate poles along a semicircle of radius ω_0 that lies within the left half plane.

Bandstop (Notch) filters cont.

- Based on the previous statements, the pole-zero configuration and the amplitude response of a bandstop filter are shown in the two figures below.
- Observe the behaviour of the amplitude response as a function of θ , the angle that the pole vector forms with the negative real axis.



Notch filter example

- Design a second-order notch filter to suppress 60Hz hum in a radio receiver.
- Make $\omega_0 = 120\pi$. Place zeros are at $s = \pm j\omega_0$, and poles at $-\omega_0 \cos\theta \pm j\omega_0 \sin\theta$. We obtain:

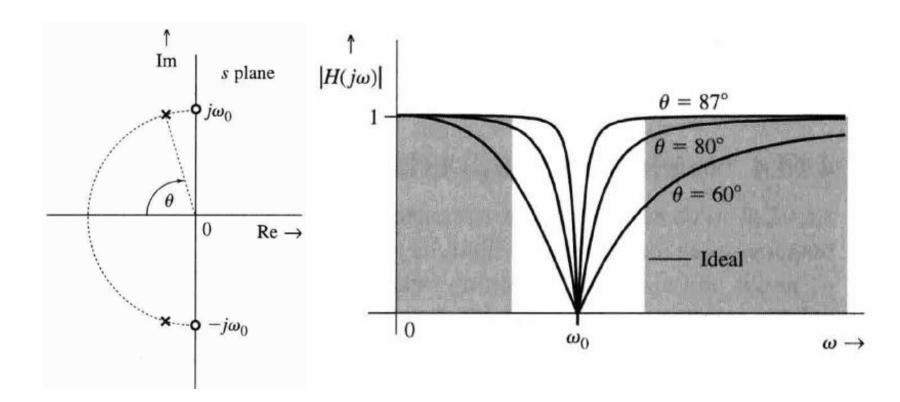
$$H(s) = \frac{(s - j\omega_0)(s + j\omega_0)}{(s + \omega_0 \cos\theta + j\omega_0 \sin\theta)(s + \omega_0 \cos\theta - j\omega_0 \sin\theta)}$$

$$= \frac{s^2 + \omega_0^2}{s^2 + (2\omega_0 \cos\theta)s + \omega_0^2} = \frac{s^2 + 142122.3}{s^2 + (753.98\cos\theta)s + 142122.3}$$

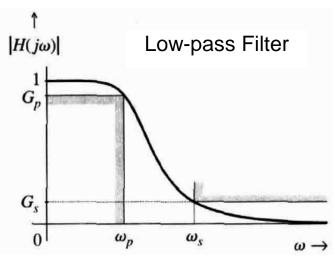
$$|H(j\omega)| = \frac{-\omega^2 + 142122.3}{\sqrt{(-\omega^2 + 142122.3)^2 + (753.98\omega\cos\theta)^2}}$$

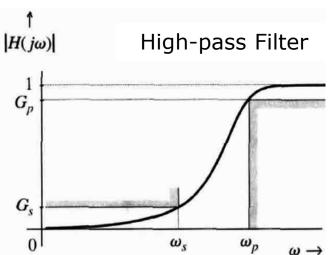
Notch filter example cont.

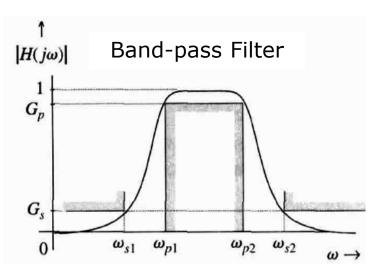
 The figures below depict the location of poles and zeros within the plane and the amplitude response.

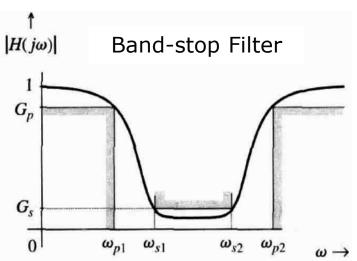


Practical filter specification









Butterworth filters again

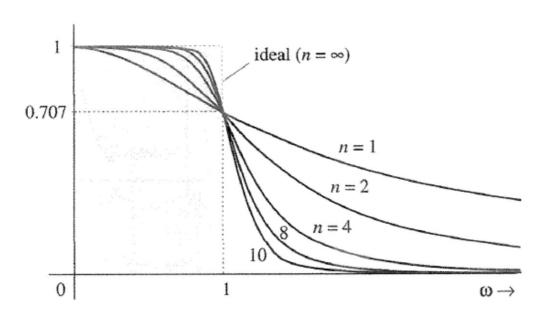
 Let us consider a normalised low-pass filter (i.e., one that has a cut-off frequency at 1) with an amplitude characteristic given by the equation:

$$|H(j\omega)| = \frac{1}{\sqrt{1+\omega^{2n}}}$$

- As $n \to \infty$, this gives a ideal LPF response:
 - $|H(j\omega)| = 1$ if $\omega \le 1$

$$|\mathcal{H}(j\omega)|$$

• $|H(j\omega)| = 0 \text{ if } \omega > 1$



Butterworth filters cont.

• In the previous amplitude response we replace $s = j\omega$ and we obtain:

$$|H(j\omega)|^2 = \frac{1}{1+\omega^{2n}} \Rightarrow H(s)H(-s) = \frac{1}{1+\left(\frac{s}{j}\right)^{2n}}$$

- The poles of H(s)H(-s) are given by $1 + \left(\frac{s}{j}\right)^{2n} = 0 \Rightarrow \left(\frac{s}{j}\right)^{2n} = -1$.
- We know that $-1 = e^{j\pi(2k-1)}$ and $j = e^{j\frac{\pi}{2}}$.
- $\left(\frac{s}{j}\right)^{2n} = -1 \Rightarrow s^{2n} = j^{2n} \cdot (-1) = e^{\left(j\frac{\pi}{2}\right)^{2n}} \cdot e^{j\pi(2k-1)} = e^{j\pi n} \cdot e^{j\pi(2k-1)}$

$$\Rightarrow s^{2n} = e^{j\pi(2k-1+n)} \Rightarrow s = e^{\frac{j\pi(2k-1+n)}{2n}}, k \text{ integer.}$$

• Therefore, the poles of H(s)H(-s) lie along the unit circle (a circle around the origin with radius equal to 1). There are 2n distinct poles given by:

$$s_k = e^{\frac{j\pi(2k-1+n)}{2n}}, k = 1, 2, ..., 2n$$

Butterworth filters cont.

• We are only interested in H(s), not H(-s). Therefore, we choose the poles of the low-pass filter to be those lying on the left half plane only. These poles are:

$$s_k = e^{\frac{j\pi(2k-1+n)}{2n}} = \cos\frac{\pi}{2n}(2k-1+n) + j\sin\frac{\pi}{2n}(2k-1+n), k = 1,2,...,n$$

The transfer function of the filter is:

$$H(s) = \frac{1}{(s - s_1)(s - s_2) \dots (s - s_N)}$$

This is a class of filters known as Butterworth filters.

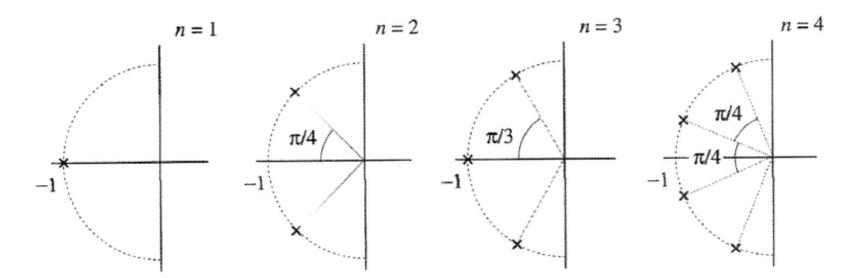
Butterworth filters cont.

To resume, Butterworth filters are a family of filters with poles distributed evenly around the left half of the unit circle. The poles are given by:

$$s_k = e^{\frac{j\pi(2k+n-1)}{2n}}, k = 1,2,...,n$$

- We assume $\omega_c = 1$.
- Here are the pole locations for Butterworth filters for orders n=1 to 4.

$$H(s) = \frac{1}{(s - s_1)(s - s_2) \dots (s - s_N)}$$



Imperial College London

Butterworth filters cont.

- Consider a fourth-order Butterworth filter (i.e., n = 4).
- The poles are at angles $\frac{5\pi}{8}$, $\frac{7\pi}{8}$, $\frac{9\pi}{8}$, $\frac{11\pi}{8}$.
- Therefore, the pole locations are:

$$-0.3827 \pm j0.9239$$
, $-0.9239 \pm j0.3827$.

Therefore,
$$H(s) = \frac{1}{(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)} = \frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$$

Coefficients of Butterworth polynomial: $B_n(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + 1$

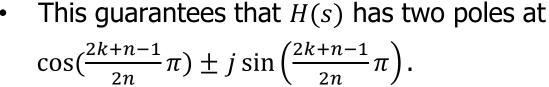
\overline{n}	a_1	a ₂	a_3	a_4	a_5	a_6	a_7	<i>a</i> ₈	a_9
	1 41 401 25 6								
2	1.41421356								
3	2.00000000	2.00000000							
4	2.61312593	3.41421356	2.61312593						
5	3.23606798	5.23606798	5.23606798	3.23606798					
6	3.86370331	7.46410162	9.14162017	7.46410162	3.86370331				
7	4.49395921	10.09783468	14.59179389	14.59179389	10.09783468	4.49395921			
8	5.12583090	13.13707118	21.84615097	25.68835593	21.84615097	13.13707118	5.12583090		
9	5.75877048	16.58171874	31.16343748	41.98638573	41.98638573	31.16343748	16.58171874	5.75877048	
10	6.39245322	20.43172909	42.80206107	64.88239627	74.23342926	64.88239627	42.80206107	20.43172909	6.39245322

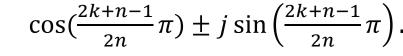
Design of Butterworth filters with Sallen-Key

The transfer function of the Sallen-Key filter on the right is:

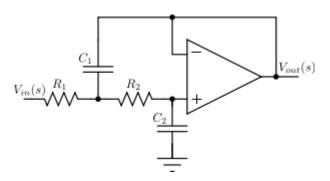
$$H(s) = \frac{1}{1 + C_2(R_1 + R_2)s + C_1C_2R_1R_2s^2}$$

- Assuming that $\omega_c = 1$ and n even we choose:
 - $C_1C_2R_1R_2=1$
 - $C_2(R_1 + R_2) = -2\cos(\frac{2k+n-1}{2n}\pi)$

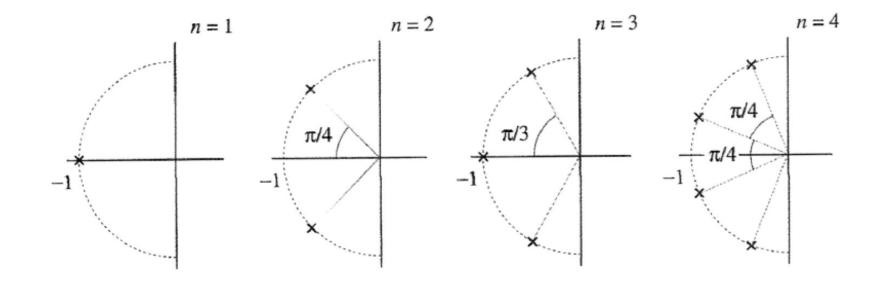




- Cascade n/2 such filters.
- When n is odd the remaining real pole can be implemented with an RC circuit.



Design of Butterworth filters with Sallen-Key



One RC circuit

One Sallen-Key with k = 1and n = 2 One Sallenkey with k = 1, n = 3 followed by one RC circuit A cascade of two Sallenkey with n=4and k=1,2.

Design of Butterworth filters with Sallen-Key

- So far we have considered only normalized Butterworth filters with 3dB bandwidth and $\omega_c = 1$.
- We can design filters for any other cut-off frequency by substituting s by s/ω_c .
- For example, the transfer function for a second-order Butterworth filter for $\omega_c = 100$ is given by:

$$H(s) = \frac{1}{(\frac{s}{100})^2 + \sqrt{2}(\frac{s}{100}) + 1} = \frac{1}{s^2 + 100\sqrt{2}s + 10^4}$$

Relating this lecture to other courses

- You will learn about poles and zeros in your 2nd year control course.
 The emphasis here is to provide you with intuitive understanding of their effects on frequency response.
- You will probably do Butterworth filters in your 2nd year analogue circuits course.
- Some of you will be implementing the notch filter in your 3rd year on a real-time digital signal processor (depending on options you take), and others will learn more about filter design in your 3rd and 4th year.