Imperial College London

Signals and Systems

Tutorial Sheet 3 - Gonvolution

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Problem1 1 (i)

Find the convolution:
(i) $y(t)=u(t) * u(t), u(t)$ is the unit step function

We will use the definition:

$$
y(t)=\int_{-\infty}^{\infty} u(\tau) u(t-\tau) d \tau
$$

METHOD

In all questions we will find the range of values of τ for which both functions inside the integral are non zero. Remember that one of the functions is reversed and shifted.

$$
\begin{align*}
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.
$y(t)=\int_{-\infty}^{\infty} u(\tau) u(t-\tau) d \tau=\int_{0}^{t} u(\tau) u(t-\tau) d \tau=\int_{0}^{t} d \tau=t, t \geq 0$.
Hence, $y(t)=t u(t)$.

Prohlem1[ii]

Find the convolution:
(ii) $\quad y(t)=e^{-a t} u(t) * e^{-b t} u(t)$

$$
\begin{align*}
& y(t)=\int_{-\infty}^{\infty} e^{-a \tau} u(\tau) e^{-b(t-\tau)} u(t-\tau) d \tau \\
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} e^{-a \tau} u(\tau) e^{-b(t-\tau)} u(t-\tau) d \tau=\int_{0}^{t} e^{-a \tau} u(\tau) e^{-b(t-\tau)} u(t-\tau) d \tau \\
& =\int_{0}^{t} e^{-a \tau} e^{-b(t-\tau)} d \tau=e^{-b t} \int_{0}^{t} e^{-a \tau} e^{b \tau} d \tau=e^{-b t} \int_{0}^{t} e^{-(a-b) \tau} d \tau \\
& =\left.\frac{e^{-b t}}{-(a-b)} e^{-(a-b) \tau}\right|_{0} ^{t}=\frac{e^{-b t}}{-(a-b)}\left(e^{-(a-b) t}-1\right)=\frac{1}{-(a-b)}\left(e^{-a t}-e^{-b t}\right), t \geq 0
\end{aligned}
$$

Hence,

$$
y(t)=\frac{e^{-a t}-e^{-b t}}{b-a} u(t)
$$

Prohlem 1 [iii]

Find the convolution:
(iii) $y(t)=t u(t) * u(t)$

$$
\begin{align*}
& y(t)=\int_{-\infty}^{\infty} \tau u(\tau) u(t-\tau) d \tau \\
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.
$y(t)=\int_{-\infty}^{\infty} \tau u(\tau) u(t-\tau) d \tau=\int_{0}^{t} \tau u(\tau) u(t-\tau) d \tau$
$=\int_{0}^{t} \tau d \tau=\left.\frac{\tau^{2}}{2}\right|_{0} ^{t}=\frac{t^{2}}{2}, t \geq 0$
Hence,
$y(t)=\frac{t^{2}}{2} u(t)$

Prohlem 2 [i]

Find the convolution:
(i) $y(t)=(\sin (t) u(t)) * u(t)$

$$
\begin{align*}
& y(t)=\int_{-\infty}^{\infty} \sin (\tau) u(\tau) u(t-\tau) d \tau \\
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.
$y(t)=\int_{-\infty}^{\infty} \sin (\tau) u(\tau) u(t-\tau) d \tau=\int_{0}^{t} \sin (\tau) u(\tau) u(t-\tau) d \tau$
$=\int_{0}^{t} \sin (\tau) d \tau=-\left.\cos (\tau)\right|_{0} ^{t}=-(\cos (t)-\cos (0))=1-\cos (t), t \geq 0$ Hence,

$$
y(t)=(1-\cos (t)) u(t)
$$

Prohlem 2 [ii]

Find the convolution:
(ii) $y(t)=(\cos (t) u(t)) * u(t)$

$$
\begin{align*}
& y(t)=\int_{-\infty}^{\infty} \cos (\tau) u(\tau) u(t-\tau) d \tau \\
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} \cos (\tau) u(\tau) u(t-\tau) d \tau=\int_{0}^{t} \cos (\tau) u(\tau) u(t-\tau) d \tau \\
& =\int_{0}^{t} \cos (\tau) d \tau=\left.\sin (\tau)\right|_{0} ^{t}=\sin (t)-\sin (0)=\sin (t), t \geq 0
\end{aligned}
$$

Hence,
$y(t)=\sin (t) u(t)$

Problem 3 [a]

(a) The unit impulse response of an LTI system is $h(t)=e^{-t} u(t)$. Find this system's zero-state response $y(t)$ if the input is $f(t)=u(t)$.

$$
\begin{align*}
& y(t)=e^{-t} u(t) * u(t) \\
& y(t)=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) u(t-\tau) d \tau \\
& u(\tau) \neq 0 \text { if } \tau \geq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} e^{-\tau} u(\tau) u(t-\tau) d \tau=\int_{0}^{t} e^{-\tau} u(\tau) u(t-\tau) d \tau \\
& =\int_{0}^{t} e^{-\tau} d \tau=-\left.e^{-\tau}\right|_{0} ^{t}=-\left(e^{-t}-1\right)=1-e^{-t}, t \geq 0
\end{aligned}
$$

Hence,

$$
y(t)=\left(1-e^{-t}\right) u(t)
$$

Prohlem 3 [h]

(b) The unit impulse response of an LTI system is $h(t)=e^{-t} u(t)$. Find this system's zero-state response $y(t)$ if the input is $f(t)=e^{-2 t} u(t)$.
$y(t)=e^{-t} u(t) * e^{-2 t} u(t)$
For this question we can refer to Question 1 (ii) with $a=1, b=2$.
We see immediately that:

$$
y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)
$$

Problem 3 [c]

(c) The unit impulse response of an LTI system is $h(t)=e^{-t} u(t)$. Use Integration Tables to find this system's zero-state response $y(t)$ if the input is $f(t)=\sin (3 t) u(t)$.
$y(t)=e^{-t} u(t) * \sin (3 t) u(t)$
$y(t)=\int_{-\infty}^{\infty} \sin (3 \tau) u(\tau) e^{-(t-\tau)} u(t-\tau) d \tau$
$u(\tau) \neq 0$ if $\tau \geq 0$
$u(t-\tau) \neq 0$ if $t-\tau \geq 0 \Rightarrow \tau \leq t$
Therefore, from (1) and (2) we form the condition $0 \leq \tau \leq t$. This condition makes sense if $t \geq 0$.
$y(t)=\int_{-\infty}^{\infty} \sin (3 \tau) u(\tau) e^{-(t-\tau)} u(t-\tau) d \tau=\int_{0}^{t} \sin (3 \tau) e^{-(t-\tau)} d \tau$
$=e^{-t} \int_{0}^{t} \sin (3 \tau) e^{\tau} d \tau$
The solution continues on the next slide. To find the expression for the integral you can use the site
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

Problem 3 [c] cont.

From Tables of integrals involving exponential and trigonometric functions (see link at the end of previous slide) we have:
$\int \sin (b \tau) e^{a \tau} d \tau=\frac{e^{a \tau}}{a^{2}+b^{2}}(a \sin (b \tau)-b \cos (b \tau))=\frac{e^{a \tau}}{\sqrt{a^{2}+b^{2}}} \sin (b \tau-\phi)$ where $\cos (\phi)=\frac{a}{\sqrt{a^{2}+b^{2}}}$
For $a=1, b=3$ we have $\cos (\phi)=\frac{1}{\sqrt{10}} \Rightarrow \phi=\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)=71.565^{\circ}$
Therefore, $\int \sin (3 \tau) e^{\tau} d \tau=\frac{e^{\tau}}{\sqrt{10}} \sin \left(3 \tau-71.565^{\circ}\right)$.
$y(t)=e^{-t} \int_{0}^{t} \sin (3 \tau) e^{\tau} d \tau=e^{-t}\left(\frac{e^{t}}{\sqrt{10}} \sin \left(3 t-71.565^{\circ}\right)-\frac{1}{\sqrt{10}} \sin \left(-71.565^{\circ}\right)\right)$
$=\frac{1}{\sqrt{10}} \sin \left(3 t-71.565^{\circ}\right)+\frac{e^{-t}}{\sqrt{10}} \sin \left(71.565^{\circ}\right)$
$=\frac{1}{\sqrt{10}} \sin \left(3 t-71.565^{\circ}\right)+\frac{0.9486 e^{-t}}{\sqrt{10}}=-\frac{1}{\sqrt{10}} \cos \left(3 t-71.565^{\circ}+\frac{\pi}{2}\right)+\frac{0.9486 e^{-t}}{\sqrt{10}}$
$=-\frac{1}{\sqrt{10}} \cos \left(3 t-71.565^{\circ}+90^{\circ}\right)+\frac{0.9486 e^{-t}}{\sqrt{10}}=-\frac{1}{\sqrt{10}} \cos \left(3 t+18.435^{\circ}\right)+\frac{0.9486 e^{-t}}{\sqrt{10}}$

Problem 4

By applying the shift property of convolution, find the system's response $y(t)$ (i.e. zero-state response) given that $h(t)=e^{-t} u(t)$ and that the input $f(t)$ is as shown in figure below.

Solution

We observe that the input is $f(t)=u(t)-u(t-1)$.
$y(t)=e^{-t} u(t) *(u(t)-u(t-1))=e^{-t} u(t) * u(t)-e^{-t} u(t) * u(t-1)$
In Problem 3(a) we proved that $e^{-t} u(t) * u(t)=\left(1-e^{-t}\right) u(t)$.
Therefore, from the shift property of convolution (See Slide 15 Lecture 4)
$e^{-t} u(t) * u(t-1)=\left(1-e^{-(t-1)}\right) u(t-1)$.
$y(t)=e^{-t} u(t) *(u(t)-u(t-1))=\left(1-e^{-t}\right) u(t)-\left(1-e^{-(t-1)}\right) u(t-1)$.

Problem 4 cont.

$$
y(t)=e^{-t} u(t) *(u(t)-u(t-1))=\left(1-e^{-t}\right) u(t)-\left(1-e^{-(t-1)}\right) u(t-1)
$$

- The function $\left(1-e^{-t}\right) u(t)$ is the positive blue curve shown in figure below.
- The function $-\left(1-e^{-(t-1)}\right) u(t-1)$ is the negative blue curve shown in figure below.
- The required function $y(t)$ is the purple and green curve shown in figures below.

Imperial College

Problem 5 [a]

A first-order allpass filter impulse response is given by

$$
h(t)=-\delta(t)+2 e^{-t} u(t)
$$

(a) Find the zero-state response of this filter for the input $e^{t} u(-t)$.

$$
\begin{align*}
& y(t)=\left(-\delta(t)+2 e^{-t} u(t)\right) * e^{t} u(-t)=-\delta(t) * e^{t} u(-t)+2 e^{-t} u(t) * \\
& e^{t} u(-t)=-e^{t} u(-t)+2 e^{-t} u(t) * e^{t} u(-t) \\
& \text { Let's focus on } 2 e^{-t} u(t) * e^{t} u(-t) \\
& \qquad 2 e^{-t} u(t) * e^{t} u(-t)=\int_{-\infty}^{\infty} e^{\tau} u(-\tau) 2 e^{-(t-\tau)} u(t-\tau) d \tau \\
& u(-\tau) \neq 0 \text { if }-\tau \geq 0 \Rightarrow \tau \leq 0 \tag{1}\\
& u(t-\tau) \neq 0 \text { if } t-\tau \geq 0 \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

For $t \geq 0$ the intersection of conditions (1) and (2) is
$(\tau \leq 0) \cap(\tau \leq t)=(\tau \leq 0)$

$$
\begin{gathered}
2 e^{-t} u(t) * e^{t} u(-t)=\int_{-\infty}^{0} e^{\tau} u(-\tau) 2 e^{-(t-\tau)} u(t-\tau) d \tau=\int_{-\infty}^{0} e^{\tau} 2 e^{-(t-\tau)} d \tau \\
=e^{-t} \int_{-\infty}^{0} 2 e^{2 \tau} d \tau=\left.e^{-t} e^{2 \tau}\right|_{-\infty} ^{0}=e^{-t}
\end{gathered}
$$

Problem 5 cont.

For $t<0$ the intersection of conditions (1) and (2) is
$(\tau \leq 0) \cap(\tau \leq t)=(\tau \leq t)$

$$
\begin{gathered}
2 e^{-t} u(t) * e^{t} u(-t)=\int_{-\infty}^{t} e^{\tau} u(-\tau) 2 e^{-(t-\tau)} u(t-\tau) d \tau=\int_{-\infty}^{t} e^{\tau} 2 e^{-(t-\tau)} d \tau \\
=e^{-t} \int_{-\infty}^{t} 2 e^{2 \tau} d \tau=\left.e^{-t} e^{2 \tau}\right|_{-\infty} ^{t}=e^{t}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
2 e^{-t} u(t) * e^{t} u(-t)= \begin{cases}e^{t} & t<0 \\
e^{-t} & t \geq 0\end{cases} \\
-\delta(t) * e^{t} u(-t)=-e^{t} u(-t)
\end{gathered} \begin{gathered}
-\delta(t) * e^{t} u(-t)+2 e^{-t} u(t) * e^{t} u(-t)= \begin{cases}-e^{t} u(-t)+e^{t} & t<0 \\
-e^{t} u(-t)+e^{-t} & t \geq 0\end{cases} \\
=\left\{\begin{array}{cc}
-e^{t}+e^{t}=0 & t<0 \\
0+e^{-t}=e^{-t} & t \geq 0
\end{array}\right.
\end{gathered}
$$

Hence, $y(t)=e^{-t} u(t)$.

Problem 5 cont.

A first-order allpass filter impulse response is given by

$$
h(t)=-\delta(t)+2 e^{-t} u(t)
$$

(b) Sketch the input and the corresponding zero-state response.

- The input $e^{t} u(-t)$ is the red curve shown in figure below left.
- The zero-state response $y(t)=e^{-t} u(t)$ is the blue curve shown in figure below right.

Problem 6 [a]

(a) Find and sketch the convolution:

$$
y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau
$$

$$
\begin{aligned}
& f_{1}(t)=A u(t-2)-A u(t-3) \\
& f_{2}(t)=B u(-t-2)-B u\left(-t-\frac{5}{2}\right)
\end{aligned}
$$

Problem 6 [a] cont.

(a) Find and sketch the convolution:

$$
\begin{align*}
& y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& f_{1}(t)=A u(t-2)-A u(t-3) \text { and } f_{2}(t)=B u(-t-2)-B u\left(-t-\frac{5}{2}\right) \\
& f_{1}(t)=\left\{\begin{array}{ll}
A & 2 \leq t \leq 3 \\
0 & \text { elsewhere }
\end{array} \text { and } f_{2}(t)=\left\{\begin{array}{cc}
B & -2.5 \leq t \leq-2 \\
0 & \text { elsewhere }
\end{array}\right.\right. \\
& f_{1}(\tau) \neq 0 \Rightarrow 2 \leq \tau \leq 3 \tag{1}\\
& f_{2}(t-\tau) \neq 0 \Rightarrow-2.5 \leq t-\tau \leq-2 \Rightarrow 2 \leq \tau-t \leq 2.5 \\
& \Rightarrow t+2 \leq \tau \leq t+2.5 \tag{2}
\end{align*}
$$

- Condition (1) forms Interval 1 shown in blue line below with fixed bounds 2 and 3.
- Condition (2) forms Interval 2 shown in red line below with moving bounds $t+2$ and $t+2$. 5. Interval 2 is narrower than Interval 1 .
- The green line below represents the variable of integration τ.

Prohlem 6 [a] cont.

Scenario I:

- Interval 2 overlaps with Interval 1 from the left.
- This means that the upper bound of Interval 2 lies within Interval 1 and the lower bound of Interval 2 is outside Interval 1.
- The above implies that $t+2.5 \geq 2 \Rightarrow t \geq-0.5$ and $t+2 \leq 2 \Rightarrow t \leq 0$ and therefore, by combining the above conditions we obtain $-0.5 \leq t \leq 0$.
- The overlapping area is from 2 to $t+2.5$. It is highlighted with a circle in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario I.

$$
\begin{gathered}
f_{1}(t) * f_{2}(t)=\int_{2}^{t+2.5} f_{1}(\tau) f_{2}(t-\tau) d \tau=A B \int_{2}^{t+2.5} d \tau=A B(t+0.5) \\
-0.5 \leq t \leq 0
\end{gathered}
$$

Prohlem 6 [a] cont.

Scenario II:

- Interval 2 lies within Interval 1.
- This means that both the upper and lower bounds of Interval 2 lie within Interval 1.
The above implies that $t+2 \geq 2 \Rightarrow t \geq 0$ and $t+2.5 \leq 3 \Rightarrow t \leq 0.5$, and therefore, by combining the above conditions we obtain $0 \leq t \leq 0.5$
- The overlapping area is from $t+2$ to $t+2.5$. It is highlighted with an oval in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario II.

$$
\begin{gathered}
f_{1}(t) * f_{2}(t)=\int_{t+2}^{t+2.5} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{t+2}^{t+2.5} A B d \tau=\frac{A B}{2}, 0 \leq t \leq 0.5 \\
\text { (shown left with } A \boldsymbol{B}=\mathbf{1} \text {) }
\end{gathered}
$$

Problem 6 [a] cont.

Scenario III:

- Interval 2 overlaps with Interval 1 from the right.
- This means that the lower bound of Interval 2 lies within Interval 1 and the upper bound of Interval 2 is outside Interval 1.
- The above implies that $t+2 \leq 3 \Rightarrow t \leq 1$ and $t+2.5 \geq 3 \Rightarrow t \geq 0.5$ and therefore, by combining the two conditions we obtain $0.5 \leq t \leq 1$.
- The overlapping area is from $t+2$ to 3 . It is highlighted with a circle in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario III.

$$
f_{1}(t) * f_{2}(t)=\int_{t+2}^{3} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{t+2}^{3} A B d \tau=A B(1-t), 0.5 \leq t \leq 1
$$

(shown left with $A B=1$)

Prohlem 6 [a] cont.

By combining Scenarios I, II and III above, we obtain the result of convolution for the entire range of time as depicted in the figure below.

Prohlem 6 [h]

(b) Find and sketch the convolution:

$$
y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau
$$

$$
\begin{aligned}
& f_{1}(t)=u(t+2) \\
& f_{2}(t)=u(t+2)-u(t-1)
\end{aligned}
$$

Problem 6 [h]

(b) Find and sketch the convolution:

$$
\begin{align*}
& y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& f_{1}(t)=u(t+2) \text { and } f_{2}(t)=u(t+2)-u(t-1) \\
& f_{1}(t)=\left\{\begin{array}{cc}
1 & t+2 \geq 0 \Rightarrow t \geq-2 \\
0 & \text { elsewhere }
\end{array} \text { and } f_{2}(t)=\left\{\begin{array}{cc}
1 & -2 \leq t \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.\right. \\
& f_{1}(\tau) \neq 0 \Rightarrow-2 \leq \tau \tag{1}\\
& f_{2}(t-\tau) \neq 0 \Rightarrow-2 \leq t-\tau \leq 1 \Rightarrow-1 \leq \tau-t \leq 2 \\
& \Rightarrow t-1 \leq \tau \leq t+2 \tag{2}
\end{align*}
$$

- Condition (1) forms Interval 1 shown in blue line below with a fixed lower bound -2. It has infinite length since its upper bound is $+\infty$.
- Condition (2) forms Interval 2 shown in red line below with moving bounds $t-1$ and $t+2$.
- The green line below represents the variable of integration τ.

Problem 6 [b] cont.

Scenario I:

- Interval 2 overlaps with Interval 1 from the left.
- This means that the upper bound of Interval 2 lies within Interval 1 and the lower bound of Interval 2 is outside Interval 1.
- The above implies that $t+2 \geq-2 \Rightarrow t \geq-4$ and $t-1 \leq-2 \Rightarrow t \leq-1$
and therefore, by combining the above conditions we obtain $-4 \leq t \leq-1$.
- The overlapping area is from -2 to $t+2$. It is highlighted with a circle.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario I.

$$
f_{1}(t) * f_{2}(t)=\int_{-2}^{t+2} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{-2}^{t+2} d \tau=t+4,-4 \leq t \leq-1
$$

Prohlem 6 [h] cont.

Scenario II:

- Interval 2 lies within Interval 1.
- This means that the lower bound of Interval 2 lies within Interval 1.
- The above implies that $t-1 \geq-2 \Rightarrow t \geq-1$.
- The overlapping area is from $t-1$ to $t+2$. It is highlighted with an oval.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario II.

$$
f_{1}(t) * f_{2}(t)=\int_{t-1}^{t+2} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{t-1}^{t+2} d \tau=3,-1 \leq t
$$

Problem 6 [h] cont.

By combining Scenarios I and II above, we obtain the result of convolution for the entire range of time as depicted in the figure below.

Problem 6 [c]

(c) Find and sketch the convolution:

$$
y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau
$$

$$
\begin{aligned}
& f_{1}(t)=-t(u(-t)-u(-t-1)) \\
& f_{2}(t)=u(t)
\end{aligned}
$$

Problem 6 [c] cont.

(c) Find and sketch the convolution:

$$
\begin{align*}
& y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& f_{1}(t)=-t(u(-t)-u(-t-1)) \text { and } f_{2}(t)=u(t) \\
& f_{1}(t)=\left\{\begin{array}{ccc}
-t & -1 \leq t \leq 0 \\
0 & \text { elsewhere }
\end{array} \text { and } f_{2}(t)=\left\{\begin{array}{cc}
1 & t \geq 0 \\
0 & \text { elsewhere }
\end{array}\right.\right. \\
& f_{1}(\tau) \neq 0 \Rightarrow-1 \leq \tau \leq 0 \tag{1}\\
& f_{2}(t-\tau) \neq 0 \Rightarrow 0 \leq t-\tau \Rightarrow \tau \leq t \tag{2}
\end{align*}
$$

- Condition (1) forms Interval 1 shown in blue line below with fixed bounds -1 and 0.
- Condition (2) forms Interval 2 shown in red line below with a moving upper bound t. It is of infinite length since its lower bound is $-\infty$.
- The green line below represents the variable of integration τ.

Prohlem 6 [c]

Scenario I:

- Interval 2 overlaps with Interval 1 from the left.
- This means that the upper bound of Interval 2 lies within Interval 1.
\circ The above implies that $t \geq-1$ and $t \leq 0$ and therefore, by combining the above conditions we obtain $-1 \leq t \leq 0$.
- The overlapping area is from -1 to t. It is highlighted with a circle.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario I .
$f_{1}(t) * f_{2}(t)=\int_{-1}^{t}-\tau d \tau=-\left.\frac{\tau^{2}}{2}\right|_{-1} ^{t}=-\frac{t^{2}}{2}+\frac{1}{2},-1 \leq t \leq 0$.

Problem 6 [c] cont.

Scenario II:

- Interval 1 lies within Interval 2.
- The above implies that $t \geq 0$.
- The overlapping area is from -1 to 0 .
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario II.
$f_{1}(t) * f_{2}(t)=\int_{-1}^{0}-\tau d \tau=-\left.\frac{\tau^{2}}{2}\right|_{-1} ^{0}=\frac{1}{2}, 0 \leq t$.
By combining Scenarios I and II above, we obtain the result of convolution for the entire range of time as depicted in the figure below.

Prohlem 6 [d]

(d) Find and sketch the convolution:

$$
y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau
$$

$$
\begin{aligned}
& f_{1}(t)=e^{t}(u(-t)-u(-t-2)) \\
& f_{2}(t)=e^{-2 t}(u(t)-u(t-1))
\end{aligned}
$$

Prohlem 6 [d] cont.

(d) Find and sketch the convolution:

$$
\begin{align*}
& y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& f_{1}(t)=e^{t}(u(-t)-u(-t-2)) \text { and } f_{2}(t)=e^{-2 t}(u(t)-u(t-1)) \\
& f_{1}(t)=\left\{\begin{array}{cc}
e^{t} & -2 \leq t \leq 0 \\
0 & \text { elsewhere }
\end{array} \text { and } f_{2}(t)=\left\{\begin{array}{cc}
e^{-2 t} & 0 \leq t \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.\right. \\
& f_{1}(\tau) \neq 0 \Rightarrow-2 \leq \tau \leq 0 \tag{1}\\
& f_{2}(t-\tau) \neq 0 \Rightarrow 0 \leq t-\tau \leq 1 \Rightarrow-1 \leq \tau-t \leq 0 \Rightarrow t-1 \leq \tau \leq t(2)
\end{align*}
$$

- Condition (1) forms Interval 1 shown in blue line below with fixed bounds -2 and 0.
- Condition (2) forms Interval 2 shown in red line below with moving bounds $t-1$ and t.
- The green line below represents the variable of integration τ.

Prohlem 6 [d] cont.

Scenario I:

- Interval 2 overlaps with Interval 1 from the left.
- This means that the upper bound of Interval 2 lies within Interval 1 and the lower bound of Interval 2 is outside Interval 1.
- The above implies that $t \geq-2$ and $t-1 \leq-2 \Rightarrow t \leq-1$ and therefore, by combining the above conditions we obtain $-2 \leq t \leq-1$.
- The overlapping area is from -2 to t. It is highlighted with a circle in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario I.
$f_{1}(t) * f_{2}(t)=\int_{-2}^{t} e^{\tau} e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{-2}^{t} e^{3 \tau} d \tau=e^{-2 t} \frac{1}{3}\left(e^{3 t}-e^{-6}\right)$
$=\frac{1}{3}\left(e^{t}-e^{-6} e^{-2 t}\right),-2 \leq t \leq-1$
(shown with the green curve right)

Prohlem 6 [d] cont.

Scenario II:

- Interval 2 lies within Interval 1.
- The above implies that $t-1 \geq-2 \Rightarrow t \geq-1$ and $t \leq 0$ and therefore, by combining the above conditions we obtain $-1 \leq t \leq 0$.
- The overlapping area is from $t-1$ to t. It is highlighted with an oval in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario II.
$f_{1}(t) * f_{2}(t)=\int_{t-1}^{t} e^{\tau} e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{t-1}^{t} e^{3 \tau} d \tau=e^{-2 t} \frac{1}{3}\left(e^{3 t}-e^{(3 t-3)}\right)$
$=\frac{1}{3}\left(e^{t}-e^{t-3}\right),-1 \leq t \leq 0$
(shown with the red curve right)

Problem 6 (d) cont.

Scenario III:

- Interval 2 overlaps with Interval 1 from the right.
- This means that the lower bound of Interval 2 lies within Interval 1 and the upper bound of Interval 2 is outside Interval 1.
- The above implies that $t-1 \leq 0 \Rightarrow t \leq 1$ and $t \geq 0$ and therefore, by combining the above conditions we obtain $0 \leq t \leq 1$.
- The overlapping area is from $t-1$ to 0 . It is highlighted with a circle in the figure below.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario III.
$f_{1}(t) * f_{2}(t)=\int_{t-1}^{0} e^{\tau} e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{t-1}^{0} e^{3 \tau} d \tau=e^{-2 t} \frac{1}{3}\left(1-e^{(3 t-3)}\right)$
$=\frac{1}{3}\left(e^{-2 t}-e^{t-3}\right), 0 \leq t \leq 1$
(shown in the purple curve right)

Problem 6 [d] cont.

By combining Scenarios I, II and III above, we obtain the result of convolution for the entire range of time as depicted in the figure below.

Prohlem 7

Find and sketch $c(t)=f(t) * g(t)$ for the pair of functions shown below.

$$
\begin{aligned}
& f(t)=\sin (t)(u(t)-u(t-2 \pi)) \\
& g(t)=u(t)-u(t-2 \pi)
\end{aligned}
$$

Prohlem 7 cont.

Find and sketch the convolution:
$y(t)=f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau$
$f(t)=\sin (t)(u(t)-u(t-2 \pi))$ and $g(t)=u(t)-u(t-2 \pi)$
$f_{1}(t)=\left\{\begin{array}{cc}\sin (t) & 0 \leq t \leq 2 \pi \\ 0 & \text { elsewhere }\end{array}\right.$ and $f_{2}(t)= \begin{cases}1 & 0 \leq t \leq 2 \pi \\ 0 & \text { elsewhere }\end{cases}$
$f_{1}(\tau) \neq 0 \Rightarrow 0 \leq \tau \leq 2 \pi$
$f_{2}(t-\tau) \neq 0 \Rightarrow 0 \leq t-\tau \leq 2 \pi \Rightarrow-2 \pi \leq \tau-t \leq 0 \Rightarrow-2 \pi+t \leq \tau \leq t$ (2)

- Condition (1) forms Interval 1 shown in blue line below with fixed bounds 0 and 2π.
- Condition (2) forms Interval 2 shown in red line below with moving bounds $-2 \pi+t$ and t
- The green line below represents the variable of integration τ.

Prohlem 7 cont.

Scenario I:

- Interval 2 overlaps with Interval 1 from the left.
- This means that the upper bound of Interval 2 lies within Interval 1 and the lower bound of Interval 2 is outside Interval 1.
- The above implies that $t \geq 0$ and $-2 \pi+t \leq 0 \Rightarrow t \leq 2 \pi$ and therefore, by combining the above conditions we obtain $0 \leq t \leq 2 \pi$.
- The overlapping area is from 0 to t.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario l.

$$
f_{1}(t) * f_{2}(t)=\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{0}^{t} \sin (\tau) d \tau=-\cos (t)+1
$$

Prohlem 7 cont.

Scenario II:

- Interval 2 overlaps with Interval 1 from the right.
- This means that the lower bound of Interval 2 lies within Interval 1 and the upper bound of Interval 2 is outside Interval 1.
- The above implies that $-2 \pi+t \leq 2 \pi \Rightarrow t \leq 4 \pi$ and $t \geq 2 \pi$ and therefore, by combining the above conditions we obtain $2 \pi \leq t \leq 4 \pi$.
- The overlapping area is from $-2 \pi+t$ to 2π.
- The overlapping of the two intervals specifies the two bounds of the convolution integral for Scenario II.

$$
\begin{aligned}
& f_{1}(t) * f_{2}(t)=\int_{-2 \pi+t}^{2 \pi} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{-2 \pi+t}^{2 \pi} \sin (\tau) d \tau= \\
& -\left.\cos (\tau)\right|_{-2 \pi+t} ^{2 \pi}=-\cos (2 \pi)+\cos (-2 \pi+t)=\cos (t)-1
\end{aligned}
$$

Prohlem 7 cont.

By combining Scenarios I and II above, we obtain the result of convolution for the entire range of time as depicted in the figure below.

