Imperial College London

Signals and Systems

Tutorial Sheet 1

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Prohlem1

Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic, odd/even. If the signal is periodic specify its period.
(i) $x(t)=2 \sin (2 \pi t)$

Periodic with period 1. Odd because $\sin (-t)=-\sin (t)$.
(ii) $\quad x(t)=\left\{\begin{array}{cc}3 e^{-2 t} & t \geq 0 \\ 0 & t<0\end{array}\right.$

This is a causal system and therefore, it is aperiodic. A periodic system exists over the entire range of time from $-\infty$ to ∞.
Neither odd nor even. An odd or even signal must have non-zero values within both the positive and the negative range.
(iii) $\quad x(t)=\frac{1}{|t|}$

Aperiodic. Even because $x(-t)=x(t)$.

Prohlem1cont.

- For a signal of the form $x(t)=\sin (a \pi t)+\sin (b \pi t)$ to be periodic, the numbers a and b have to be commensurable.
In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a / b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.)

Proof

We test the periodicity as follows:

$$
\begin{aligned}
& x(t+T)=\sin (a \pi(t+T))+\sin (b \pi(t+T))=\sin (a \pi t) \cos (a \pi T)+ \\
& \cos (a \pi t) \sin (a \pi T)+\sin (b \pi t) \cos (b \pi T)+\cos (b \pi t) \sin (b \pi T) \\
& x(t)=x(t+T) \text { if } a \pi T=2 m \pi \text { and } b \pi T=2 n \pi, m, n \text { integers. Therefore, } \\
& \qquad \frac{a}{b}=\frac{m}{n}
\end{aligned}
$$

Hence, the numbers a and b have to be commensurable.

Prohlem1cont.

Based on the analysis of the previous slide we have:
(iv) $x(t)=\sin \left(\frac{2}{5} \pi t\right)+\sin \left(\frac{2}{3} \pi t\right), a=\frac{2}{5}, b=\frac{2}{3}, \frac{a}{b}=\frac{3}{5}=\frac{m}{n}$.

Hence, the numbers a and b are commensurable and the signal is periodic.
$a \pi T=2 m \pi \Rightarrow T=\frac{2 m}{a}=5 m$
$b \pi T=2 n \pi \Rightarrow T=\frac{2 n}{b}=3 n$.

Therefore $5 m=3 n \Rightarrow m=3, n=5, T=15$.
Furthermore, $x(t)$ is odd.
(v) $x(t)=\sin (2 \pi t)+\sin (\sqrt{2} \pi t), a=2, b=\sqrt{2}, \frac{a}{b}=\sqrt{2} \neq \frac{m}{n}$.

Hence, the numbers a and b are not commensurable and the signal is aperiodic (although it doesn't look like in the figure!!!).
Furthermore, $x(t)$ is odd.

Imperial College

Problem 2

Sketch the signal:

$$
x(t)=\left\{\begin{array}{cl}
1-t & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now sketch each of the following and describe how each of the signals can be derived from the original signal $x(t)$.
(i) $x(t+3)=\left\{\begin{array}{rc}1-(t+3)=-t-2 & 0 \leq t+3 \leq 1 \Rightarrow-3 \leq t \leq-2 \\ 0 & \text { otherwise }\end{array}\right.$

Imperial College
London

Problem 2 cont.

$$
x(t)=\left\{\begin{array}{cl}
1-t & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(ii) $\quad x(t / 3)=\left\{\begin{array}{cc}1-t / 3 & 0 \leq t / 3 \leq 1 \Rightarrow 0 \leq t \leq 3 \\ 0 & \text { otherwise }\end{array}\right.$

Imperial College
London

Problem 2 cont.

$$
x(t)=\left\{\begin{array}{cl}
1-t & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(iii)

$$
\left\{\begin{array}{cc}
1-\left(\frac{t}{3}+1\right)=-\frac{t}{3} & 0 \leq \frac{t}{3}+1 \leq 1 \Rightarrow-1 \leq \frac{t}{3} \leq 0 \Rightarrow-3 \leq t \leq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Imperial College
London

Problem 2 cont.

$$
x(t)=\left\{\begin{array}{cl}
1-t & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(iv)

$$
\left\{\begin{array}{cc}
x(-t+2)= & \\
1-(-t+2)=t-1 & 0 \leq-t+2 \leq 1 \Rightarrow \\
0 & -1 \leq t-2 \leq 0 \Rightarrow 1 \leq t \leq 2 \\
\text { otherwise }
\end{array}\right.
$$

Imperial College
London

Problem 2 cont.

$$
x(t)=\left\{\begin{array}{cl}
1-t & 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(v)

$$
\begin{gathered}
x(-2 t+1)= \\
\left\{\begin{array}{cc}
1-(-2 t+1)=2 t & 0 \leq-2 t+1 \leq 1 \Rightarrow-1 \leq-2 t \leq 0 \Rightarrow 0 \leq t \leq \frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Prohlem 3

Sketch each of the following discrete-time signals, specify if the signal is periodic/non-periodic, odd/even. If the signal is periodic specify its period.
(i) $\quad x[n]=\cos (n \pi)$

Periodic and even. $\cos (n+T) \pi=\cos (n \pi) \cos (T \pi)-\sin (n \pi) \sin (T \pi)$ $\cos (T \pi)=1, \sin (T \pi)=0 \Rightarrow T=2$.
Signal form is obvious.
(ii) $\quad x[n]=\left\{\begin{array}{cc}0.5^{-n} & n \leq 0 \\ 0 & n>0\end{array}\right.$

Aperiodic. Neither odd nor even.
The continuous version is depicted on the right.

Problem 3 cont.

(iii) What is the maximum possible frequency of the discrete exponential $e^{j \omega_{0} n}$? Compare this result with the case $e^{j \omega_{0} t}$.

This question will be solved later, when we deal with the Fourier transform decompositions for discrete signals.

Problem 4

Consider the rectangular function:

$$
\Pi(t)=\left\{\begin{array}{cc}
1 & |t|<1 / 2 \Rightarrow-\frac{1}{2}<t<\frac{1}{2} \\
1 / 2 & |t|=\frac{1}{2} \Rightarrow t=-\frac{1}{2}, \frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

(i) Sketch $x(t)=\sum_{k=0}^{1} \Pi(t-k)$

$$
\begin{aligned}
& \Pi(t-1)=\left\{\begin{array}{cc}
1 & |t-1|<\frac{1}{2} \Rightarrow-\frac{1}{2}<t-1<\frac{1}{2} \Rightarrow \frac{1}{2}<t<\frac{3}{2} \\
1 / 2 & t=\frac{1}{2}, \frac{3}{2} \\
0 & \text { otherwise }
\end{array}\right. \\
& x(t)=\sum_{k=0}^{1} \Pi(t-k)=\left\{\begin{array}{cc}
1 & -\frac{1}{2}<t<\frac{3}{2} \\
1 / 2 & t=-\frac{1}{2}, \frac{3}{2} \\
0 & \text { otherwise }
\end{array} \quad-\left.\left.\frac{1 / 2}{1 / 2}\right|_{0} ^{1}\right|_{1 / 2} ^{1 / 2}\right.
\end{aligned}
$$

(ii) Sketch $x(t)=\sum_{-\infty}^{\infty} \Pi(t-k)$. It is very easy to spot that $x(t)=1$.

Problem 5

Consider a discrete-time signal $x[n]$, fed as input into a system. The system produces the discrete-time output $y[n]$ such that

$$
y[n]=\left\{\begin{array}{cc}
x[n] & n \text { even } \\
0 & n \text { odd }
\end{array}\right.
$$

(i) Is the system described above memoryless? Explain It is memoryless since the output at time instant n depends on the input only at time instant n and not past or future time instants.
(ii) Is the system described above causal? Explain. It is causal since the output at time instant n depends on the input only at time instant n and not future time instants.
(iii) Are causal systems in general memoryless? Explain.

No. If the output at time instant n depends on the input at time instant n and past time instants the system is causal but not memoryless.

Problem 5 cont.

(iv) Is the system linear and time-invariant? Explain.

The output can be written in a compact form as a function of the input as:

$$
y[n]=\frac{x[n]+(-1)^{n} x[n]}{2}
$$

We see that if the input signal $x_{1}[n]$ produces an output signal $y_{1}[n]$ and the input signal $x_{2}[n]$ produces an output signal $y_{2}[n]$ then the input signal $a_{1} x_{1}[n]+a_{2} x_{2}[n]$ produces the output
$y_{3}[n]=\frac{\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right)+(-1)^{n}\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right)}{2}=a_{1} y_{1}[n]+a_{2} y_{2}[n]$.
Therefore, the system is linear.
However, if the input signal $x[n]$ produces an output signal $y[n]$ then the input signal $x\left[n-n_{o}\right]$ produces the output $y_{1}[n]=\frac{x\left[n-n_{o}\right]+(-1)^{n} x\left[n-n_{o}\right]}{2}$.
We see that $y\left[n-n_{o}\right]=\frac{x\left[n-n_{o}\right]+(-1)^{n-n_{o x}\left[n-n_{o}\right]}}{2} \neq y_{1}[n]$
Therefore, the system is time-varying.

Problem 6

State with a brief explanation if the following systems are linear/non-linear, causal/non-causal, time invariant/time-varying. $x[n], y[n]$ are input/output.
(i) $y[n]=x[n]-x[n-1]$

We see that if the input signal $x_{1}[n]$ produces an output signal $y_{1}[n]$ and the input signal $x_{2}[n]$ produces an output signal $y_{2}[n]$ then the input signal $a_{1} x_{1}[n]+a_{2} x_{2}[n]$ produces the output
$y_{3}[n]=$
$a_{1} x_{1}[n]+a_{2} x_{2}[n]-a_{1} x_{1}[n-1]-a_{2} x_{2}[n-1]=a_{1} y_{1}[n]+a_{2} y_{2}[n]$
Therefore, the system is linear.
If the input signal $x[n]$ produces an output signal $y[n]$ then the input signal $x\left[n-n_{o}\right]$ produces the output $y_{1}[n]=x\left[n-n_{o}\right]-x\left[n-1-n_{o}\right]$
We see that $y\left[n-n_{o}\right]=y_{1}[n]$
Therefore, the system is time invariant.
The system is causal since the output does not depend on future inputs.

Problem 6 cont.

(ii) $y[n]=\operatorname{sgn}(x[n])$

We see that if the input signal $x_{1}[n]$ produces an output signal $y_{1}[n]$ and the input signal $x_{2}[n]$ produces an output signal $y_{2}[n]$ then the input signal $a_{1} x_{1}[n]+a_{2} x_{2}[n]$ produces the output

$$
y_{3}[n]=\operatorname{sgn}\left(a_{1} x_{1}[n]+a_{2} x_{2}[n]\right) \neq a_{1} y_{1}[n]+a_{2} y_{2}[n]
$$

Therefore, the system is non-linear.

However, if the input signal $x[n]$ produces an output signal $y[n]$ then the input signal $x\left[n-n_{o}\right]$ produces the output $y_{1}[n]=\operatorname{sgn}\left(x\left[n-n_{o}\right]\right)$.
We see that $y\left[n-n_{o}\right]=\operatorname{sgn}\left(x\left[n-n_{o}\right]\right)=y_{1}[n]$.
Therefore, the system is time invariant.

The system is causal since the output does not depend on future inputs.

Problem 6 cont.

(iii) $y[n]=n^{2} x[n+2]$

The input $x_{1}[n]$ produces an output $y_{1}[n]$.
The input $x_{2}[n]$ produces an output $y_{2}[n]$.
The input $a_{1} x_{1}[n]+a_{2} x_{2}[n]$ produces the output

$$
y_{3}[n]=n^{2}\left(a_{1} x_{1}[n+2]+a_{2} x_{2}[n+2]\right)=a_{1} y_{1}[n]+a_{2} y_{2}[n]
$$

Therefore, the system is linear.

However, if the input signal $x[n]$ produces an output signal $y[n]$ then the input signal $x\left[n-n_{o}\right]$ produces the output $y_{1}[n]=n^{2} x\left[n-n_{o}+2\right]$.
We see that $y\left[n-n_{o}\right]=\left(n-n_{o}\right)^{2} x\left[n-n_{o}+2\right] \neq y_{1}[n]$
Therefore, the system is time-varying.

The system is non-causal since if $n>0$ then $n+2>n$ which shows that the output requires future values of the input in order to be calculated.

Prohlem 7

State with a brief explanation if the following systems are linear/non-linear, causal/non-causal, time invariant/time-varying. $x(t)$ is the input and $y(t)$ is the output.
(i) $y(t)=x(t) \cos \left(2 \pi f_{0} t+\phi\right)$

The input $x_{1}(t)$ produces the output $y_{1}(t)=x_{1}(t) \cos \left(2 \pi f_{0} t+\phi\right)$.
The input $x_{2}(t)$ produces the output $y_{2}(t)=x_{2}(t) \cos \left(2 \pi f_{0} t+\phi\right)$.
The linear combination $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ produces the output $y_{3}(t)=\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right) \cos \left(2 \pi f_{0} t+\phi\right)=a_{1} y_{1}(t)+a_{2} y_{2}(t)$ Therefore, the system is linear.

If the input $x(t)$ produces an output $y(t)$, then the input $x\left(t-t_{o}\right)$ produces the output $y_{1}(t)=x\left(t-t_{o}\right) \cos \left(2 \pi f_{0} t+\phi\right)$
We see that $y\left(t-t_{o}\right)=x\left(t-t_{o}\right) \cos \left(2 \pi f_{0}\left(t-t_{o}\right)+\phi\right) \neq y_{1}(t)$
Therefore, the system is time-varying.

The system is causal since the output does not depend on future inputs.

Prohlem 7 cont.

(ii) $y(t)=\operatorname{Aos}\left(2 \pi f_{0} t+x(t)\right)$

The input $x_{1}(t)$ produces the output $y_{1}(t)=A \cos \left(2 \pi f_{0} t+x_{1}(t)\right)$.
The input $x_{2}(t)$ produces the output $y_{2}(t)=A \cos \left(2 \pi f_{0} t+x_{2}(t)\right)$.
The linear combination $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ produces the output $y_{3}(t)=A \cos \left(2 \pi f_{0} t+a_{1} x_{1}(t)+a_{2} x_{2}(t)\right) \neq a_{1} y_{1}(t)+a_{2} y_{2}(t)$
Therefore, the system is non-linear.
If the input $x(t)$ produces an output $y(t)$, then the input $x\left(t-t_{o}\right)$ produces the output $y_{1}(t)=A \cos \left(2 \pi f_{0} t+x\left(t-t_{o}\right)\right)$.
We see that $y\left(t-t_{o}\right)=A \cos \left(2 \pi f_{0}\left(t-t_{o}\right)+x\left(t-t_{o}\right)\right) \neq y_{1}(t)$
Therefore, the system is time-varying.

The system is causal since the output does not depend on future inputs.

Prohlem 7 cont.

(iii) $y(t)=\int_{-\infty}^{t} x(\delta) d \delta$

The input $x_{1}(t)$ produces the output $y_{1}(t)=\int_{-\infty}^{t} x_{1}(\delta) d \delta$.
The input $x_{2}(t)$ produces the output $y_{2}(t)=\int_{-\infty}^{t} x_{2}(\delta) d \delta$.
The linear combination $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ produces the output

$$
y_{3}(t)=\int_{-\infty}^{t}\left(a_{1} x_{1}(\delta)+a_{2} x_{2}(\delta)\right) d \delta=a_{1} y_{1}(t)+a_{2} y_{2}(t)
$$

Therefore, the system is linear.
If the input $x(t)$ produces an output $y(t)$, then the input $x\left(t-t_{o}\right)$ produces the output $y_{1}(t)=\int_{-\infty}^{t} x_{2}\left(\delta-t_{o}\right) d \delta$.
Replace $\delta-t_{o}=\tau \Rightarrow y_{1}(t)=\int_{-\infty}^{t-t_{o}} x_{2}(\tau) d \tau$ (observe that $d \delta=d \tau$ and if
$\delta=t$ then $\tau=t-t_{o}$).
We see that $y\left(t-t_{o}\right)=\int_{-\infty}^{t-t_{o}} x(\delta) d \delta=y_{1}(t)$
Therefore, the system is time-invariant.
The system is causal since the output does not depend on future inputs.

Prohlem 7 cont.

(iv) $y(t)=x(2 t)$

The input $x_{1}(t)$ produces the output $y_{1}(t)=x_{1}(2 t)$.
The input $x_{2}(t)$ produces the output $y_{2}(t)=x_{2}(2 t)$.
The linear combination $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ produces the output

$$
y_{3}(t)=a_{1} x_{1}(2 t)+a_{2} x_{2}(2 t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)
$$

Therefore, the system is linear.
If the input $x(t)$ produces an output $y(t)$, then the input $x\left(t-t_{o}\right)$ produces the output $y_{1}(t)=x\left(2 t-t_{o}\right)$.
We see that $y\left(t-t_{o}\right)=x\left(2\left(t-t_{o}\right)\right) \neq y_{1}(t)$
Therefore, the system is time-varying.
The system is non-causal since if $t>0$ then $2 t>t$ which shows that the output requires future values of the input in order to be calculated.

Prohlem 7 cont.

(iv) $y(t)=x(-t)$

The input $x_{1}(t)$ produces the output $y_{1}(t)=x_{1}(-t)$.
The input $x_{2}(t)$ produces the output $y_{2}(t)=x_{2}(-t)$.
The linear combination $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ produces the output

$$
y_{3}(t)=a_{1} x_{1}(-t)+a_{2} x_{2}(-t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)
$$

Therefore, the system is linear.
If the input $x(t)$ produces an output $y(t)$, then the input $x\left(t-t_{o}\right)$ produces the output $y_{1}(t)=x\left(-t-t_{o}\right)$.
We see that $y\left(t-t_{o}\right)=x\left(-\left(t-t_{o}\right)\right)=x\left(-t+t_{o}\right) \neq y_{1}(t)$.
Therefore, the system is time-varying.
The system is non-causal since if $t<0$ then $-t>t$ which shows that the output requires future values of the input in order to be calculated.

