Maths for Signals and Systems

Problem Sheet 7

Singular Value Decomposition (SVD)

Consider a matrix A of dimension $m \times n$ with $m<n$ and rank r. Recall from the lectures that $r \leq m$. The matrix $A A^{T}$ is square, symmetric and of dimension $m \times m$. The matrix $A^{T} A$ is square, symmetric and of dimension $n \times n$. The following properties hold:

- Both $A A^{T}$ and $A^{T} A$ have rank r (the same rank as the original matrix A).
- The m eigenvalues of $A^{T} A$ are identical to the eigenvalues of $A A^{T}$ and the rest $n-m$ eigenvalues are 0 .
- The so called singular values of A are the square roots of the non-zero eigenvalues of $A A^{T}$ (or $A^{T} A$).
- Matrix A has a so called Singular Value Decomposition (SVD) of the form $A=U \Sigma V^{T}$ where U is of dimension $m \times m, \Sigma$ is of dimension $m \times n$ and V is of dimension $n \times n$. Furthermore, U contains the eigenvectors of $A A^{T}$ in its columns, V contains the eigenvectors of $A^{T} A$ in its columns and $\Sigma_{i j}=\left\{\begin{array}{cc}\sigma_{i}=\sqrt{\lambda_{i}} & i=j, i \leq r \\ 0 & \text { otherwise }\end{array}\right.$ with $\lambda_{i}, i=1, \ldots, r$ the non-zero eigenvalues of $A A^{T}$ (or $A^{T} A$).
- The above comments imply that $A A^{T}=U \Sigma^{2} U^{T}$ and $A^{T} A=V \Sigma^{2} V^{T}$.

The above analysis is straightforward in the case of $m>n$.
To understand better the structure of Σ, in the case of a 3×4 matrix of rank 2 we have $\Sigma=\left[\begin{array}{cccc}\sigma_{1} & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, whereas in the case of a 4×3 matrix of rank 2 we have $\Sigma=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Problems

1. Find the singular values of the matrix $A=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]$.

Solution

We compute $A A^{T}$. (This is the smaller of the two symmetric matrices associated with A.) We get $A A^{T}=\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 2\end{array}\right]$. We next find the eigenvalues of this matrix. The characteristic polynomial is $\lambda^{3}-6 \lambda^{2}+6 \lambda=\lambda\left(\lambda^{2}-6 \lambda+6\right)$. This gives three eigenvalues: $\lambda_{1}=3+\sqrt{3}$, $\lambda_{2}=3-\sqrt{3}$ and $\lambda_{3}=0$. Note that all are positive, and that there are two nonzero eigenvalues,
corresponding to the fact that A has rank 2 . For the singular values of A, we now take the square roots of the eigenvalues of $A A^{T}$, so $\sigma_{1}=\sqrt{3+\sqrt{3}}$ and $\sigma_{2}=\sqrt{3-\sqrt{3}}$. (We don't have to mention the singular values which are zero.)
2. Find the singular values of the matrix $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.

Solution

We use the same approach: $B B^{T}=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$. This has characteristic polynomial $\lambda^{2}-10 \lambda+9$ so $\lambda_{1}=9$ and $\lambda_{2}=1$ are the eigenvalues. Hence, the singular values are 3 and 1.
3. Find the singular values of $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$ and find the SVD of A.

Solution

We compute $A A^{T}$ and find $A A^{T}=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 2\end{array}\right]$. The characteristic polynomial is $-\lambda^{3}+10 \lambda^{2}-16 \lambda=-\lambda\left(\lambda^{2}-10 \lambda+16\right)=-\lambda(\lambda-8)(\lambda-2)$.

The eigenvalues of $A A^{T}$ are $\lambda_{1}=8, \lambda_{2}=2$ and $\lambda_{3}=0$. Thus, the singular values are $\sigma_{1}=2 \sqrt{2}$ and $\sigma_{2}=\sqrt{2}$ (and $\sigma_{3}=0$). To give the decomposition, we consider the diagonal matrix of singular values $\Sigma=\left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0\end{array}\right]$. Next, we find an orthonormal set of eigenvectors for $A A^{T}$.
For $\lambda_{1}=8$, we find an eigenvector $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{T}$ - normalizing gives $u_{1}=\left[\begin{array}{lll}1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6}\end{array}\right]^{T}$. For $\lambda_{2}=2$ we find $u_{2}=\left[\begin{array}{lll}-1 / \sqrt{3} & 1 / \sqrt{3} & -1 / \sqrt{3}\end{array}\right]^{T}$, and finally for $\lambda_{3}=0$ we get $u_{3}=\left[\begin{array}{lll}1 / \sqrt{2} & 0 & -1 / \sqrt{2}\end{array}\right]^{T}$. This gives the matrix:

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{6} & -1 / \sqrt{3} & 1 / \sqrt{2} \\
2 / \sqrt{6} & 1 / \sqrt{3} & 0 \\
1 / \sqrt{6} & -1 / \sqrt{3} & -1 / \sqrt{2}
\end{array}\right]
$$

Finally, we have to find an orthogonal set of eigenvectors for $A^{T} A=\left[\begin{array}{ccc}2 & 2 \sqrt{2} & 0 \\ 2 \sqrt{2} & 6 & 2 \\ 0 & 2 & 2\end{array}\right]$.

This can be done in two ways. We show both ways, starting with orthogonal diagonalization. We already know that the eigenvalues will be $\lambda_{1}=8, \lambda_{2}=2$ and $\lambda_{3}=0$. This gives eigenvectors $v_{1}=\left[\begin{array}{lll}1 / \sqrt{6} & 3 / \sqrt{12} & 1 / \sqrt{12}\end{array}\right]^{T}, v_{2}=\left[\begin{array}{lll}1 / \sqrt{3} & 0 & -2 / \sqrt{6}\end{array}\right]^{T}$ and $v_{3}=\left[\begin{array}{lll}1 / \sqrt{2} & -1 / 2 & 1 / 2\end{array}\right]^{T}$. Put these together to get:

$$
V=\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
3 / \sqrt{12} & 0 & -1 / 2 \\
1 / \sqrt{12} & -2 / \sqrt{6} & 1 / 2
\end{array}\right]
$$

For a quicker method, we calculate the columns of V using those of U using the formula:

$$
\begin{aligned}
& v_{i}=\frac{1}{\sigma_{i}} A^{T} u_{i} \\
& v_{1}=\frac{1}{2 \sqrt{2}}\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right]=\frac{1}{2 \sqrt{2}}\left[\begin{array}{c}
2 \sqrt{2} / \sqrt{6} \\
6 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{6} \\
3 / \sqrt{12} \\
1 / \sqrt{12}
\end{array}\right] .
\end{aligned}
$$

We can similarly calculate the other two columns.
Either way we can now verify the formula $A=U \Sigma V^{T}$.
4. Find the SVD of the matrix $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.

Solution

We first compute $A A^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $A^{T} A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
We see immediately that the eigenvalues of $A A^{T}$ are $\lambda_{1}=\lambda_{2}=2$ (and hence, the eigenvalues of $A^{T} A$ are 2 and 0 , both with multiplicity 2). Thus, the matrix A has singular value $\sigma_{1}=\sigma_{2}=\sqrt{2}$.
Next, an orthonormal basis of eigenvectors of $A A^{T}$ is $u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. (You can choose any orthonormal basis of R^{2} here because $A A^{T}$ is a multiple of the identity, but the one chosen makes computation easiest.) Thus, we set $U=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
For $A^{T} A$, the eigenvectors which correspond to the value of 2 are obtained from the formula below:
$\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]=2\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right] \Rightarrow \begin{gathered}x+z=2 x \Rightarrow z=x \\ y+w=2 y \Rightarrow y=w \\ x+z=2 z \Rightarrow x=z \\ y+w=2 w \Rightarrow y=w\end{gathered}$

Therefore the eigenvectors which correspond to the eigenvalue of 2 are of the form $\left[\begin{array}{l}x \\ y \\ x \\ y\end{array}\right]=x\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]+y\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$. Therefore two orthonormal eigenvectors are $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$.
The eigenvectors which correspond to the eigenvalue of 0 are obtained from the formula below:
$\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right] \Rightarrow \begin{aligned} & x+z=0 \Rightarrow z=-x \\ & y+w=0 \Rightarrow y=-w\end{aligned}$
Therefore the eigenvectors which correspond to the eigenvalue of 0 are of the form $\left[\begin{array}{c}x \\ y \\ -x \\ -y\end{array}\right]=x\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]+y\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$. Therefore two orthonormal eigenvectors are $\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$.
Therefore, $V=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right]$
$A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cccc}\sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right]$

