Maths for Signals and Systems

Problem Sheet 6

Problems

1. Consider a matrix A with eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1$ and eigenvectors $x_{1}=\left[\begin{array}{ll}\cos \theta & \sin \theta\end{array}\right]^{T}$ and $x_{2}=\left[\begin{array}{ll}-\sin \theta & \cos \theta\end{array}\right]^{T}$. Show that $A=A^{T}, A^{2}=I, \operatorname{det}(A)=-1, A^{-1}=A$.

Solution

The eigenvectors of this matrix are perpendicular to each other, since:

$$
x_{1}^{T} x_{2}=\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]=0 .
$$

Furthermore, their magnitude is 1 , since:

$$
\left\|x_{i}\right\|^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1, i=1,2
$$

For the above reasons, we conclude that the eigenvectors of matrix A are orthogonal and therefore, A is a symmetric matrix and $A=A^{T}$.
Moreover, A can be diagonalised as $A=Q \Lambda Q^{T}$ with Q a matrix which contains the eigenvectors of A in its columns, i.e., $Q=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$.
$A^{2}=Q \Lambda Q^{T} Q \Lambda Q^{T}=Q \Lambda^{2} Q^{T}$ (note that $Q^{T} Q=I$) and $\Lambda^{2}=\left[\begin{array}{cc}(-1)^{2} & 0 \\ 0 & 1^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$, so that $A^{2}=Q \Lambda^{2} Q^{T}=Q I Q^{T}=Q Q^{T}=I$.
$\operatorname{det}(A)=\lambda_{1} \lambda_{2}=(-1) \cdot 1=-1$.
Finally from $A^{2}=I$ we see that $A^{-1}=A$.
2. Consider a matrix A with $A^{3}=0$. Find the eigenvalues of A. Give an example of a matrix of any size that satisfies $A^{3}=0$, with $A \neq 0$. In case that a matrix A satisfies $A^{3}=0$ and is also symmetric, prove that $A=0$.

Solution

The eigenvalues of A^{3} are λ_{i}^{3}, where λ_{i} are the eigenvalues of A. This can be seen from the fact that if λ_{i} is an eigenvalue of A with corresponding eigenvector x_{i} then $A^{3} x_{i}=A^{2} A x_{i}=A^{2} \lambda_{i} x_{i}=\lambda_{i} A A x_{i}=\lambda_{i} A \lambda_{i} x_{i}=\lambda_{i}^{3} x_{i} . \quad$ But $\quad A^{3} x_{i}=\lambda_{i}^{3} x_{i}=0 \quad$ and therefore, $\lambda_{i}^{3} x_{i}=0 \Rightarrow \lambda_{i}^{3}=0 \Rightarrow \lambda_{i}=0$. An example of a matrix which is non-zero but has zero eigenvalues is $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ with $A^{n}=0, \forall n$. In case where A is symmetric, the diagonalisation of A is $A=Q \Lambda Q^{T}$ with Q an orthogonal matrix that contains the eigenvectors of A. $A=Q \Lambda Q^{T}=Q 0 Q^{T}=0$.
3. Show that the eigenvalues of a symmetric matrix A with real entries are real.

Solution

Suppose that λ is an eigenvalue of A that corresponds to the eigenvector x. In that case we have the following:
$A x=\lambda x \Rightarrow(A x)^{*}=(\lambda x)^{*} \Rightarrow A^{*} x^{*}=\lambda^{*} x^{*} \Rightarrow$
$A x^{*}=\lambda^{*} x^{*}$ since A is real.
In the above we transpose both sides and we get:
$\left(A x^{*}\right)^{T}=\left(\lambda^{*} x^{*}\right)^{T} \Rightarrow\left(A x^{*}\right)^{T}=\lambda^{*}\left(x^{*}\right)^{T}$
Now we multiply both sides from the right with x :
$\left(A x^{*}\right)^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow\left(x^{*}\right)^{T} A^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow\left(x^{*}\right)^{T} A x=\lambda^{*}\left(x^{*}\right)^{T} x$, since A is symmetric.
$\left(x^{*}\right)^{T} \lambda x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow \lambda\left(x^{*}\right)^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow \lambda=\lambda^{*}$. Therefore, λ is real.
4. (i) A skew-symmetric (or antisymmetric) matrix B has the property $B^{T}=-B$. Show that the eigenvalues of a skew-symmetric matrix B with real entries are purely imaginary.
(ii) Show that the diagonal elements of a skew-symmetric matrix are 0 .

Solution

(i) $\quad B x=\lambda x \Rightarrow(B x)^{*}=(\lambda x)^{*} \Rightarrow B^{*} x^{*}=\lambda^{*} x^{*} \Rightarrow$
$B x^{*}=\lambda^{*} x^{*}$ since B is real.
In the above we transpose both sides and we get:
$\left(B x^{*}\right)^{T}=\left(\lambda^{*} x^{*}\right)^{T} \Rightarrow\left(B x^{*}\right)^{T}=\lambda^{*}\left(x^{*}\right)^{T}$
Now we multiply both sides from the right with x :
$\left(B x^{*}\right)^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow\left(x^{*}\right)^{T} B^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow-\left(x^{*}\right)^{T} B x=\lambda^{*}\left(x^{*}\right)^{T} x$, since B is skewsymmetric.
$-\left(x^{*}\right)^{T} \lambda x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow-\lambda\left(x^{*}\right)^{T} x=\lambda^{*}\left(x^{*}\right)^{T} x \Rightarrow-\lambda=\lambda^{*}$. Therefore, $\lambda \quad$ is purely imaginary. The only real eigenvalue that a skew-symmetric matrix might have is the zero eigenvalue.
(ii) We know that $B^{T}=-B$ and therefore if $b_{i j}$ is a random element of B then $b_{i j}=-b_{j i}$. Therefore, for the diagonal elements we have $b_{i i}=-b_{i i}$ and this gives $b_{i i}=0$.
5. Consider the skew-symmetric matrix

$$
M=\frac{1}{\sqrt{3}}\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right]
$$

(i) Show that $\|M v\|=\|v\|$, with v any 4-dimensional column vector. What observation can you make out of this result?
(ii) Using the trace of M, the result of 5(i) and furthermore, the result of Problem 4 above, find all four eigenvalues of M.

Solution

(i)

$$
\begin{aligned}
& M v=\frac{1}{\sqrt{3}}\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
y+z+w \\
-x-z+w \\
-x+y-w \\
-x-y+z
\end{array}\right] \\
& \|M v\|^{2}=\frac{1}{3}\left[(y+z+w)^{2}+(-x-z+w)^{2}+(-x+y-w)^{2}+(-x-y+z)^{2}\right] \\
& =\frac{1}{3}\left[\left(y^{2}+z^{2}+w^{2}+2 y z+2 z w+2 y w\right)+\left(x^{2}+z^{2}+w^{2}-2 x w-2 z w+2 x z\right)\right] \\
& +\frac{1}{3}\left[\left(x^{2}+y^{2}+w^{2}+2 x w-2 y w-2 x y\right)+\left(x^{2}+y^{2}+z^{2}-2 x z-2 y z+2 x y\right)\right] \\
& =\frac{1}{3}\left[\left(y^{2}+z^{2}+w^{2}\right)+\left(x^{2}+z^{2}+w^{2}\right)\right]+\frac{1}{3}\left[\left(y^{2}+z^{2}+w^{2}\right)+\left(x^{2}+z^{2}+w^{2}\right)\right] \\
& =x^{2}+y^{2}+z^{2}+w^{2}=\|v\|^{2} \Rightarrow\|M v\|=\|v\| .
\end{aligned}
$$

If we take an eigenvalue λ of matrix M which correspond to the eigenvector v, we have that $\quad M v=\lambda v \Rightarrow\|M v\|=\|\lambda v\|$. Based on the result $\|M v\|=\|v\|$ we have $\|v\|=\|\lambda v\|=\|\lambda\|\|\nu\| \Rightarrow\|\lambda\|=1$. Therefore, the eigenvalues of the given matrix have magnitude 1.
(ii) In Problem 4 we proved that the eigenvalues of a skew-symmetric matrix are purely imaginary. For this particular case we also see that they have magnitude of 1 . Therefore, for matrix M we can say that the eigenvalues are i or $-i$ or 0 . The matrix has four eigenvalues and they sum up to zero. The determinant of M is not zero (it is actually $\frac{1}{(\sqrt{3})^{4}} 9=1$) which means that the matrix is full rank and therefore, it doesn't have any zero eigenvalues. Therefore, two of them are equal to i and the rest are equal to $-i$.
6. Consider matrices A and B shown below:

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(i) In which of these classes do they belong to? Invertible, orthogonal, projection, permutation, diagonalisable, Markov.
(ii) Which of the factorisations $L U, Q R, S \Lambda S^{-1}, Q \Lambda Q^{-1}$ are possible for A and B ?

Solution

(i) For A we have:

Eigenvalues are $-1,1,1$ and corresponding eigenvectors are $\left[\begin{array}{ccc}-1 & 0 & 1\end{array}\right]^{T},\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$. The eigenvectors are independent and also orthogonal. The determinant is -1 . A is invertible (its determinant is non-zero), orthogonal (its rows are orthogonal to each other), permutation (obvious), diagonalisable (any invertible matrix is diagonalisable), Markov (satisfies the Markov properties - rows/columns have positive elements which sum up to 1). It is not a projection matrix because it doesn't satisfy the property $A^{2}=A$.

For B we have:
Eigenvalues are $1,0,0$ and corresponding eigenvectors are $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T},\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{ccc}-1 & 1 & 0\end{array}\right]^{T}$. The eigenvectors are independent and also orthogonal. The determinant is 0 .
B is projection ($B^{2}=B$ and is symmetric), diagonalizable (it has a set of independent eigenvectors), Markov (satisfies the Markov properties - rows/columns have positive elements which sum up to 1). It is not orthogonal or permutation.
(ii) For a 3×3 matrix the $L U$ decomposition looks like:
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lcc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]=L U$
For the given matrix A we have $a_{11}=0$ and therefore, at least one of l_{11} and u_{11} has to be zero. In that case either L or U is singular. This is not possible since A is not singular. Therefore, A doesn't have an $L U$ decomposition. In order for A to have an $L U$ decomposition, we must reorder the rows of A, i.e., A must be multiplied from the left with a permutation matrix P, and in that case we have $P A=L U$.
A has a $Q R$ decomposition as follows:
$A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
For the given matrix B we find the $L U$ decomposition using elimination, as follows:
$B=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and therefore, B does have an $L U$ decomposition.
$B=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{ccc}0.577 & 0.816 & 0 \\ 0.577 & -0.408 & 0.707 \\ 0.577 & -0.408 & -0.707\end{array}\right]\left[\begin{array}{ccc}0.577 & 0.577 & 0.577 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ where the matrix $\left[\begin{array}{ccc}0.577 & 0.816 & 0 \\ 0.577 & -0.408 & 0.707 \\ 0.577 & -0.408 & -0.707\end{array}\right]$ is orthogonal, therefore B does have a $Q R$ decomposition.

Both matrices have $S \Lambda S^{-1}$ decomposition since they have a set of independent eigenvectors.
Both matrices have $Q \Lambda Q^{-1}$ decomposition since, due to their symmetry, we can choose a set of independent and also orthogonal eigenvectors.

