Maths for Signals and Systems

Problem Sheet 5

Problems

1. The Lucas numbers are similar to the Fibonacci numbers but the initial conditions are $L_{1}=1$ and $L_{2}=3$. The relationship $L_{k+2}=L_{k+1}+L_{k}$ holds. Find L_{100}.

Solution

We define u_{k} to be the 2-dimensional column vector $u_{k}=\left[\begin{array}{c}L_{k+1} \\ L_{k}\end{array}\right]$. In that case $u_{k+1}=\left[\begin{array}{c}L_{k+2} \\ L_{k+1}\end{array}\right]$. We also create the "fake" equation $L_{k+1}=L_{k+1}$. From the two equations:

$$
\begin{gathered}
L_{k+2}=L_{k+1}+L_{k} \\
L_{k+1}=L_{k+1}
\end{gathered}
$$

we can formulate the matrix form:

$$
u_{k+1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] u_{k}
$$

The eigenvalues of the matrix are obtained from $\left|\begin{array}{cc}1-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=0 \Rightarrow-\lambda+\lambda^{2}-1=0 \Rightarrow \lambda^{2}=\lambda+1$ and they are $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}$. The eigenvectors are obtained from:
$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] x_{i}=\lambda_{i} x_{i} \Rightarrow\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{i 1} \\ x_{i 2}\end{array}\right]=\lambda_{i}\left[\begin{array}{l}x_{i 1} \\ x_{i 2}\end{array}\right] \Rightarrow x_{i 1}+x_{i 2}=\lambda_{i} x_{i 1}$ and $x_{i 1}=\lambda_{i} x_{i 2}, i=1,2$. By choosing $x_{i 2}=1$, we have $x_{i}=\left[\begin{array}{c}\lambda_{i} \\ 1\end{array}\right]$.
We write $u_{1}=\left[\begin{array}{l}L_{2} \\ L_{1}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. We assume that $u_{1}=c_{1} x_{1}+c_{2} x_{2} \Rightarrow\left[\begin{array}{l}3 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{c}\frac{1+\sqrt{5}}{2} \\ 1\end{array}\right]+c_{2}\left[\frac{1-\sqrt{5}}{2}\right]$. This gives us $3=c_{1} \frac{1+\sqrt{5}}{2}+\left(1-c_{1}\right) \frac{1-\sqrt{5}}{2}=c_{1}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)+\frac{1-\sqrt{5}}{2} \Rightarrow \sqrt{5} c_{1}=\frac{5+\sqrt{5}}{2} \Rightarrow c_{1}=\frac{1+\sqrt{5}}{2}=\lambda_{1}$
$c_{2}=1-c_{1}=1-\frac{1+\sqrt{5}}{2}=\lambda_{2}$.
We have $A=S \Lambda S^{-1}$ and $A^{2}=S \Lambda S^{-1} S \Lambda S^{-1}=S \Lambda^{2} S^{-1}$ and in general $A^{n}=S \Lambda^{n} S^{-1}$. We see that $u_{2}=A u_{1}, \quad u_{3}=A u_{2}=A A u_{1}=A^{2} u_{1}$ and generally $u_{k+1}=A^{k} u_{1}$. Therefore, we have $u_{100}=A^{99} u_{1}=S \Lambda^{99} S^{-1} u_{1}$.
$S=\left[\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ 1 & 1\end{array}\right], \quad S^{-1}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}1 & -\lambda_{2} \\ -1 & \lambda_{1}\end{array}\right]$ and $S^{-1} u_{1}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}1 & -\lambda_{2} \\ -1 & \lambda_{1}\end{array}\right]\left[\begin{array}{l}\lambda_{1}^{2}+\lambda_{2}^{2} \\ \lambda_{1}+\lambda_{2}\end{array}\right]=\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right]$
$\Lambda^{99} S^{-1} u_{1}=\Lambda^{99}\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right]=\left[\begin{array}{c}\lambda_{1}^{100} \\ \lambda_{2}^{100}\end{array}\right]$ and
$u_{100}=\left[\begin{array}{l}L_{101} \\ L_{100}\end{array}\right]=A^{99} u_{1}=S \Lambda^{99} S^{-1} u_{1}=\left[\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ 1 & 1\end{array}\right]\left[\begin{array}{l}\lambda_{1}^{100} \\ \lambda_{2}^{100}\end{array}\right]=\left[\begin{array}{l}\lambda_{1}^{101}+\lambda_{2}^{101} \\ \lambda_{1}^{100}+\lambda_{2}^{100}\end{array}\right]$ and therefore
$L_{100}=\lambda_{1}^{100}+\lambda_{2}^{100}$.
2. Find the inverse, the eigenvalues and the determinant of A

$$
A=\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]
$$

Solution

$A=5 I-\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right|=5 I-B$ where B is a matrix of size 4×4 with all its elements equal to 1 .
We observe that A is the sum of two symmetric matrices. Matrix $5 I$ has eigenvalues $5,5,5,5$ and matrix B is singular with rank 1 . This is quite obvious since its rows are the same. Therefore, matrix B has an eigenvalue $\lambda=0$ repeated 3 times. The $4^{\text {th }}$ eigenvalue of B is obtained from the trace of B and is equal to $\lambda=4$. Matrices $5 I$ and B are symmetric and therefore, we can always find a set of orthonormal eigenvectors for them. If we consider the matrix B its eigenvector that corresponds to $\lambda=4$ is $\left.\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right]^{T}$. The rest of the eigenvectors are given by

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \Rightarrow x+y+z+w=0
$$

A nice choice for the eigenvector set is the set of the rows of the so called Hadamard matrix.

$$
S=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

These eigenvectors can also be chosen to be the eigenvectors of the matrix $5 I$. Since we can assume that $5 I$ and B share the same set of eigenvectors we can assume that the eigenvalues of A are equal to the eigenvalues of $5 I$ minus the eigenvalues of B. Therefore, the eigenvalues of A are $1,5,5,5$. Its eigenvectors are the same as the eigenvectors of $5 I$ and B, i.e., the rows of the Hadamard matrix shown above.
The determinant of A is $1 \cdot 5 \cdot 5 \cdot 5=125$.
3. (i) Carry out the eigenvalue decomposition of the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$.
(ii) Carry out the eigenvalue decomposition of A^{3}, B^{3} and A^{-1}.

Solution

(i) The eigenvalues of $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ are found from $\left|\begin{array}{cc}1-\lambda & 2 \\ 0 & 3-\lambda\end{array}\right|=0 \Rightarrow(1-\lambda)(3-\lambda)=0$ and they are $\lambda=1, \lambda=3$. The eigenvector that correspond to $\lambda=1$ is found from $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$. We have $3 y=y \Rightarrow y=0$ and therefore the eigenvector is of the form $\left[\begin{array}{l}x \\ 0\end{array}\right]$ with x a non-zero integer. The eigenvector that correspond to $\lambda=3$ is found from $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=3\left[\begin{array}{l}x \\ y\end{array}\right]$. We have $2 x=2 y \Rightarrow x=y$ and therefore the eigenvector is of the form $\left[\begin{array}{l}x \\ x\end{array}\right]$ with x a non-zero integer. Therefore $S=\left[\begin{array}{ll}x & x \\ 0 & x\end{array}\right]$ and $S^{-1}=\frac{1}{x^{2}}\left[\begin{array}{cc}x & -x \\ 0 & x\end{array}\right]$. The eigenvalue decomposition of $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ is $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\frac{1}{x^{2}}\left[\begin{array}{ll}x & x \\ 0 & x\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}x & -x \\ 0 & x\end{array}\right]$.

The eigenvalues of $B=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$ are found from $\left|\begin{array}{cc}1-\lambda & 1 \\ 3 & 3-\lambda\end{array}\right|=0 \Rightarrow$ $(1-\lambda)(3-\lambda)-3=0 \Rightarrow \lambda^{2}-4 \lambda=0 \Rightarrow \lambda=0, \lambda=4$. The eigenvector that correspond to $\lambda=0$ is found from $\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. We have $x=-y$ and therefore the eigenvector is of the form $\left[\begin{array}{c}x \\ -x\end{array}\right]$ with x a non-zero integer. The eigenvector that correspond to $\lambda=4$ is found from $\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=4\left[\begin{array}{l}x \\ y\end{array}\right]$. We have $y=3 x$ and therefore the eigenvector is of the form $\left[\begin{array}{c}x \\ 3 x\end{array}\right]$ with x a non-zero integer. Therefore $S=\left[\begin{array}{cc}x & x \\ -x & 3 x\end{array}\right]$ and $S^{-1}=\frac{1}{4 x^{2}}\left[\begin{array}{cc}3 x & -x \\ x & x\end{array}\right]$. The eigenvalue decomposition of $B=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$ is $B=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]=\frac{1}{4 x^{2}}\left[\begin{array}{cc}x & x \\ -x & 3 x\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}3 x & -x \\ x & x\end{array}\right]$.
(ii) $A^{2}=\frac{1}{x^{2}}\left[\begin{array}{ll}x & x \\ 0 & x\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 9\end{array}\right]\left[\begin{array}{cc}x & -x \\ 0 & x\end{array}\right]$ and $A^{-1}=\frac{1}{x^{2}}\left[\begin{array}{cc}x & x \\ 0 & x\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 1 / 3\end{array}\right]\left[\begin{array}{cc}x & -x \\ 0 & x\end{array}\right]$. $B^{2}=\frac{1}{4 x^{2}}\left[\begin{array}{cc}x & x \\ -x & 3 x\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 0 & 16\end{array}\right]\left[\begin{array}{cc}3 x & -x \\ x & x\end{array}\right]$.
In this question we used the fact that the eigenvalues of the inverse of a matrix are the inverses of the eigenvalues of the original matrix.
4. (i) Suppose that $A=S \Lambda S^{-1}$. What is the eigenvalue matrix of $A+2 I$?
(ii) What is the eigenvector matrix of $A+2 I$?
(iii) Carry out the eigenvector decomposition of $A+2 I$.

Solution

(i) The eigenvectors of $2 I$ can be chosen to be the eigenvectors which form the matrix S in $A=S \Lambda S^{-1}$. Since we can assume that A and $2 I$ share the same set of eigenvectors we can assume that the eigenvalues of $A+2 I$ are equal to the eigenvalues of A plus the eigenvalues of $2 I$. Therefore, the eigenvalue matrix of $A+2 I$ is $\Lambda+2 I$.
(ii) It is obvious from the above analysis that the eigenvector matrix of $2 I$ is S.
(iii) $A+2 I=S(\Lambda+2 I) S^{-1}=S \Lambda S^{-1}+S 2 I S^{-1}=A+2 I$
5. Consider the matrix $A=I_{n \times n}+B_{n \times n}$ where $B_{n \times n}$ is a matrix with all its elements equal to 1 , of size $n \times n$. It is given that $A^{-1}=I_{n \times n}+c B_{n \times n}$. Find c.

Solution

$A A^{-1}=I_{n \times n}=\left(I_{n \times n}+B_{n \times n}\right)\left(I_{n \times n}+c B_{n \times n}\right)=I_{n \times n} I_{n \times n}+c I_{n \times n} B_{n \times n}+B_{n \times n} I_{n \times n}+c B_{n \times n} B_{n \times n}$
$=I_{n \times n}+c B_{n \times n}+B_{n \times n}+c B_{n \times n}{ }^{2} \Rightarrow c B_{n \times n}+B_{n \times n}+c B_{n \times n}{ }^{2}=0$
We can easily see that $B_{n \times n}{ }^{2}=n B_{n \times n}$.
Therefore, $c B_{n \times n}+B_{n \times n}+c n B_{n \times n}=0 \Rightarrow c+1+c n=0 \Rightarrow c=\frac{-1}{n+1}$.

