Maths for Signals and Systems

Problem Sheet 4

Problems

1. Consider a matrix A of size 3×3. Using the properties of determinants, find the determinants of three matrices $M_{i}, i=1,2,3$ which are obtained from A through the following operations:
(i) $\quad M_{1}$ is obtained by multiplying each element $a_{i j}$ of A with $(-1)^{i+j}$.
(ii) $\quad M_{2}$ is obtained when rows $1,2,3$ of A are subtracted from rows $2,3,1$.
(iii) M_{3} is obtained when rows $1,2,3$ of A are added to rows $2,3,1$.

Solution

(i) The matrix M_{1} is given as follows:
$M_{1}=\left[\begin{array}{ccc}a_{11} & -a_{12} & a_{13} \\ -a_{21} & a_{22} & -a_{23} \\ a_{31} & -a_{32} & a_{33}\end{array}\right]$. This can be written as

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore $\operatorname{det}\left(M_{1}\right)=(-1) \operatorname{det}(A)(-1)=\operatorname{det}(A)$.
(ii) $M_{2}=\left[\begin{array}{lll}a_{11}-a_{31} & a_{12}-a_{32} & a_{13}-a_{33} \\ a_{21}-a_{11} & a_{22}-a_{12} & a_{23}-a_{13} \\ a_{31}-a_{21} & a_{32}-a_{22} & a_{33}-a_{23}\end{array}\right]$. The rows of M_{2} add up to 0 and therefore, they are dependent. The determinant of M_{2} is 0 .
(iii) $M_{3}=\left[\begin{array}{l}\text { row } 1+\text { row } 3 \\ \text { row } 2+\text { row } 1 \\ \text { row } 3+\text { row } 2\end{array}\right]$

$$
\operatorname{det}\left(M_{3}\right)=\left|\begin{array}{l}
\text { row } 1+\text { row } 3 \\
\text { row } 2+\text { row 1 } \\
\text { row } 3+\text { row 2 }
\end{array}\right|=\left|\begin{array}{c}
\text { row } 1 \\
\text { row } 2+\text { row } 1 \\
\text { row } 3+\text { row } 2
\end{array}\right|+\left|\begin{array}{c}
\text { row } 3 \\
\text { row } 2+\text { row } 1 \\
\text { row } 3+\text { row } 2
\end{array}\right|
$$

$$
=\left|\begin{array}{c}
\text { row 1 } \\
\text { row } 2 \\
\text { row } 3+\text { row 2 }
\end{array}\right|+\left|\begin{array}{c}
\text { row 1 } \\
\text { row 1 } \\
\text { row } 3+\text { row 2 }
\end{array}\right|+\left|\begin{array}{c}
\text { row } 3 \\
\text { row } 2 \\
\text { row } 3+\text { row 2 }
\end{array}\right|+\left|\begin{array}{c}
\text { row } 3 \\
\text { row } 1 \\
\text { row } 3+\text { row } 2
\end{array}\right|
$$

$$
=\left|\begin{array}{l}
\text { row 1 } \\
\text { row 2 } \\
\text { row 3 }
\end{array}\right|+\left|\begin{array}{l}
\text { row 1 } \\
\text { row 2 } \\
\text { row 2 }
\end{array}\right|+\left|\begin{array}{l}
\text { row 1 } \\
\text { row 1 } \\
\text { row 3 }
\end{array}\right|+\left|\begin{array}{c}
\text { row 1 } \\
\text { row 1 } \\
\text { row 2 }
\end{array}\right|+\left|\begin{array}{c}
\text { row 3 } \\
\text { row 2 } \\
\text { row 3 }
\end{array}\right|+\left|\begin{array}{l}
\text { row 3 } \\
\text { row 2 } \\
\text { row 2 }
\end{array}\right|+\left|\begin{array}{l}
\text { row 3 } \\
\text { row 1 } \\
\text { row 3 }
\end{array}\right|+\left|\begin{array}{l}
\text { row 3 } \\
\text { row 1 } \\
\text { row 2 }
\end{array}\right|=
$$

$$
=\operatorname{det}(A)+0+0+0+0+0+0+(-1)(-1) \operatorname{det}(A)=2 \operatorname{det}(A) .
$$

2. Find the determinant of the following matrix and investigate whether the matrix is singular for certain values of the parameter a.

$$
A=\left[\begin{array}{ccc}
1-a & 1 & 1 \\
1 & 1-a & 1 \\
1 & 1 & 1-a
\end{array}\right]
$$

Solution

We subtract row 3 from row 1 . In that case the matrix becomes:

$$
\left[\begin{array}{ccc}
-a & 0 & a \\
1 & 1-a & 1 \\
1 & 1 & 1-a
\end{array}\right]
$$

Then we subtract row 3 from row 2 . The matrix now becomes:

$$
\left[\begin{array}{ccc}
-a & 0 & a \\
0 & -a & a \\
1 & 1 & 1-a
\end{array}\right]
$$

We obtain the determinant using the cofactors of the first row. Note that when we replace a row with a linear combination of rows the determinant doesn't change. In that case we have $\operatorname{det}(A)=-a[-a(1-a)-a]+a(0+a)=-a\left(-a+a^{2}-a-a\right)=-a\left(a^{2}-3 a\right)=-a^{2}(a-3)$.
The determinant is zero in the following two cases:

- $a=0$. In that case the original matrix is the "all ones" matrix which is obviously singular.
- $a=3$. In that case the original matrix becomes $A=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]$. In that case the rows or columns add up to 0 , and therefore, the matrix is singular.

3. (i) If the entries in every row of a matrix A add to zero, prove that $\operatorname{det}(A)=0$ by commenting on the solutions of the system $A x=0$.
(ii) If the entries of every row of a matrix add up to 1 , show that $\operatorname{det}(A-I)=0$. Does this mean that $\operatorname{det}(A)=\operatorname{det}(I)=1$?

Solution

(i) If the entries in every row add up to zero the "all ones" column vector is in the null space. Therefore, the null space is a non-zero subspace and therefore, the original matrix is singular.
(ii) If the entries of every row of the matrix add up to 1 , the entries in every row of $A-I$ add up to zero. Based on the comments of (i) we immediately see that $\operatorname{det}(A-I)=0$. That doesn't mean that $\operatorname{det}(A)=\operatorname{det}(I)=1$, since in general $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
4. A Hessenberg matrix is a square triangular matrix with one extra non-zero diagonal. The 2×2, 3×3 and 4×4 Hessenberg matrices are shown below:
$H_{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right], H_{3}=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right], H_{4}=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right]$
Use cofactors of row 1 to show that the 4 by 4 determinant satisfies Fibonacci's rule $\left|H_{4}\right|=\left|H_{3}\right|+\left|H_{2}\right|$. The same rule continues for all sizes, i.e., $\left|H_{n}\right|=\left|H_{n-1}\right|+\left|H_{n-2}\right|$. Which Fibonacci number is $\left|H_{n}\right|$?

Solution

The cofactor C_{11} for H_{4} is the determinant $\left|H_{3}\right|$. We also need the cofactor C_{12}. This is $C_{12}=-\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right|$. If we consider matrix H_{3}, this can be written as $H_{3}=\left[\begin{array}{ccc}1+1 & 1+0 & 0+0 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
Therefore,

$$
\begin{aligned}
& \left|H_{3}\right|=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right|+\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right| \Rightarrow C_{12}=-\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right|=-\left|H_{3}\right|+\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right| \Rightarrow \\
& C_{12}=-\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right|=-\left|H_{3}\right|+\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right|=-\left|H_{3}\right|+1 \cdot\left|H_{2}\right|=-\left|H_{3}\right|+\left|H_{2}\right| \\
& \left|H_{4}\right|=2 C_{11}+C_{12}=2\left|H_{3}\right|+\left(-\left|H_{3}\right|+\left|H_{2}\right|\right)=\left|H_{3}\right|+\left|H_{2}\right|
\end{aligned}
$$

We have $\left|H_{2}\right|=3,\left|H_{3}\right|=5,\left|H_{4}\right|=8$. By considering the Fibonacci sequence we immediately see that $\left|H_{n}\right|=F_{n+2}$.
5. (i) If A is the 10 by 10 "all-ones" matrix, how does the big formula for determinant give $\operatorname{det}(A)=0 ?$
(ii) If we multiply all n ! permutation matrices of size $n \times n$ is the resulting matrix's determinant +1 or -1 ?
(iii) If we multiply each element $a_{i j}$ of a matrix with the fraction $\frac{i}{j}$, how is the determinant of the matrix affected?

Solution

(i) In the big formula (please look at your notes), in case of a square matrix with even number of rows and columns, half of the products will be +1 and half of them will be -1 . Therefore, the determinant will be zero. This is anyway expected, since the 10 by 10 "all-ones" matrix is singular.
(ii) In the case of 2 by 2 matrices we have two distinct permutation matrices. These are $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ with determinants +1 and -1 respectively. Therefore, the determinant of the product is -1 .
In case of 3 by 3 matrices we have the following permutations:

There is an odd number of -1 s since in that case there are $\frac{6!}{2}=3$ permutations with an odd number of row exchanges. In that case the determinant of the product is $1 \times(-1) \times(-1) \times 1 \times(-1) \times 1=-1$.
For matrices of size greater than 3 we have that the number of permutation matrices with odd number of row exchanges is $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot n}{2}=3 \cdot 4 \cdot \ldots \cdot n, n \geq 4$. This is always even and therefore we have an even number of determinants equal to -1 and therefore, the total determinant is 1 .
(iii) In the "big formula" for the estimation of the determinant we have sums of products of the form $a_{1 a} a_{2 b} \cdot \ldots \cdot a_{n x}$ where all rows and all columns participate once. Therefore, if we multiply each element $a_{i j}$ of a matrix with the fraction $\frac{i}{j}$, the term $a_{1 a} a_{2 b} \cdot \ldots \cdot a_{n x}$ will be multiplied by all row numbers and divided by all column numbers and therefore will remain unchanged. Therefore, in that case the determinant remains unchanged.

