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1. a) The first two columns are dependent and therefore the matrix is not invertible.  [2] 

 

b) aA 1)det( and therefore, in order for A  to be invertible then 1a .   [2] 

 

c) The required volume is 4)
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d) )det()1()det()det()det( AAAA nT  . If n  is an odd positive integer then 1)1(  n  

and therefore, 0)det()det()det(  AAA . This means that the matrix is not invertible. 

             [4] 
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10)det()det(  AB  since B  is obtained by transposing A  and making a single row 

swap.           [4] 

f) We select the first orthogonal direction to be 
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aA and 6A . Therefore, 
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q .  The second direction is: 
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The solution of the system bFx   is given now through the system bQRx T  

  [6] 
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2. a)  

(i) The sequential steps of elimination give the following intermediate matrices: 
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We know that REA with  
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The row space has dimension 2. A basis of the row space can be formed by the first two 

rows of R .         [2] 

(ii) The nullspace has dimension 6-2=4. We choose the free variables to be the ones which 

correspond to columns 3 to 6. We then find the four special solutions. These consist a 

basis of the nullspace. They are:  T000101 ,  T001042  , 

 T010030  ,  T100021      [2] 

(iii) The column space has the same dimension as the row space, i.e., 2. We can choose any 

two independent columns for example the first two, to form a basis for the column 

space.          [2] 

(iv) REA  and the last two rows of  R  are zero and therefore, the last 2 rows of E  form 

a basis of the left nullspace which has dimension is 2.    [2] 

 

b)  

(i) FALSE since the maximum number of independent vectors in nR  is n . [1] 

(ii) TRUE the zero vector is dependent to all vectors. [1] 

(iii) TRUE since if two vectors in T  were dependent then two vectors in S  would be 

dependent. [1] 

(iv) TRUE obvious [1] 

(v) FALSE if the rows are more than the columns and columns are independent the system 

might not have a solution. [2] 
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c) 

(i) We have a set of equations 
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and therefore the system is 
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The system doesn’t have a solution since the solutions that is obtained from 2 of the 

equations doesn’t satisfy the rest.       [2] 

 

(ii) Instead of solving the system 


















































1

1

0

0

11

01

11

21

D

C
 we solve the system 

5

4
,

10

7

1

2

42

26

20

1

1

2

62

24

1

1

0

0

1012

1111

11

01

11

21

1012

1111

































































































































DC
D

C

D

C

D

C

 

  

The straight line is 5/410/7 t .       [2] 

(iii) The error vector is 
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3. a) For 0  the characteristic polynomial is 7. Therefore, 0 is not a root of the characteristic 

polynomial in which case the matrix is invertible. [2] 

 

b) In that case 
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Therefore, 
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c) Consider the matrix : The eigenvalues are 4,4,2,2 and therefore the matrix has repeated 

eigenvalues. It might or might not be diagonalizable. The eigenvectors are 
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which are independent. Therefore, the matrix is diagonalizable. [6] 

  

d)  

(i) For matrix A  we have  
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An eigenvector can be  T111   
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The eigenvectors are      TTT
yxyxyx 110101   [3] 

 

(ii) For matrix B  we have  
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An eigenvector can be  T111   
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An eigenvector can be  T011   [3] 

 

(iii) A  is diagonalizable because it has 3 independent eigenvectors but B  is not. [2] 

A
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(iv) 
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