1. a) The first two columns are dependent and therefore the matrix is not invertible.
b) $\operatorname{det}(A)=1-a$ and therefore, in order for A to be invertible then $a \neq 1$.
c) The required volume is $\operatorname{det}\left(\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 1 & 5\end{array}\right]\right)=4$
d) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. If n is an odd positive integer then $(-1)^{n}=-1$ and therefore, $\operatorname{det}(A)=-\operatorname{det}(A) \Rightarrow \operatorname{det}(A)=0$. This means that the matrix is not invertible.
e) $\operatorname{det}(5 A)=5^{3} \operatorname{det}(A)=1250$
$\operatorname{det}\left(3 A^{-1}\right)=\frac{3^{3}}{\operatorname{det}(A)}=\frac{27}{10}$
$\operatorname{det}\left(3 A^{3}\right)=3^{3}[\operatorname{det}(A)]^{3}=27 \times 1000=2700$
$\operatorname{det}\left[2\left(A^{T}\right)^{-1}\right]=2^{3} \operatorname{det}\left[\left(A^{T}\right)^{-1}\right]=2^{3} \frac{1}{\operatorname{det}\left(A^{T}\right)}=\frac{2^{3}}{\operatorname{det}(A)}=\frac{8}{10}$
$\operatorname{det}(B)=-\operatorname{det}(A)=-10$ since B is obtained by transposing A and making a single row swap.
[4]
f) We select the first orthogonal direction to be $A=a=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $\|A\|=\sqrt{6}$. Therefore,
$q_{1}=\frac{A}{\|A\|}=\left[\begin{array}{c}1 / \sqrt{6} \\ -1 / \sqrt{6} \\ 2 / \sqrt{6}\end{array}\right]$. The second direction is:
$B=b-\frac{A A^{T}}{A^{T} A} b=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]=\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]-\frac{1}{6}\left[\begin{array}{ccc}1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4\end{array}\right]\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]=$
$\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}-8 \\ 8 \\ -16\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}-4 \\ 4 \\ 4\end{array}\right]$
$\|B\|=\frac{1}{6} \sqrt{3 \times 16}=\frac{4 \sqrt{3}}{6}$
$q_{2}=\frac{B}{\|B\|}=\frac{6}{4 \sqrt{3}} \frac{1}{6}\left[\begin{array}{c}-4 \\ 4 \\ 4\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
$\frac{B B^{T}}{B^{T} B}=\frac{1}{3}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& \frac{B B^{T}}{B^{T} B} c=\frac{1}{3}\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
-3 \\
3 \\
3
\end{array}\right] \\
& \frac{A A^{T}}{A^{T} A}=\frac{1}{6}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right] \\
& \frac{A A^{T}}{A^{T} A} c=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
-9 \\
9 \\
-18
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-3 \\
3 \\
-6
\end{array}\right] \\
& \frac{B B^{T}}{B^{T} B} c+\frac{A A^{T}}{A^{T} A} c=\frac{1}{2}\left[\begin{array}{c}
-5 \\
5 \\
-4
\end{array}\right] \\
& c-\frac{B B^{T}}{B^{T} B} c-\frac{A A^{T}}{A^{T} A} c=\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-5 \\
5 \\
-4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
0
\end{array}\right] \\
& \|c\|=\frac{1}{2} \sqrt{2} \\
& \text { Therefore, } Q=\left[\begin{array}{l}
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{3}} \\
q_{3}=\frac{1}{\|c\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 \\
1 \\
0
\end{array}\right] \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

$q_{1}^{T} a=\sqrt{6}, q_{1}^{T} b=-\frac{8}{\sqrt{6}}, q_{1}^{T} c=-\frac{9}{\sqrt{6}}, q_{2}^{T} b=\frac{2}{\sqrt{3}}, q_{2}^{T} c=\frac{3}{\sqrt{3}}, q_{3}^{T} c=\frac{1}{\sqrt{2}}$
$R=\left[\begin{array}{ccc}\sqrt{6} & \frac{-8}{\sqrt{6}} & \frac{-9}{\sqrt{6}} \\ 0 & \frac{2}{\sqrt{3}} & \frac{3}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{2}}\end{array}\right]$
The solution of the system $F x=b$ is given now through the system $R x=Q^{T} b$
2. a)
(i) The sequential steps of elimination give the following intermediate matrices:
$A=\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 2 & 1 & -2 & 0 & 3 & 4 \\ 1 & 0 & -1 & -2 & 0 & 1 \\ 3 & 2 & -3 & 2 & 6 & 7\end{array}\right]$ and then $\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 2 & 1 & -2 & 0 & 3 & 4 \\ 1 & 0 & -1 & -2 & 0 & 1 \\ 0 & -1 & 0 & -4 & -3 & -2\end{array}\right]$,
$\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 2 & 1 & -2 & 0 & 3 & 4 \\ 0 & -1 & 0 & -4 & -3 & -2 \\ 0 & -1 & 0 & -4 & -3 & -2\end{array}\right],\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 2 & 1 & -2 & 0 & 3 & 4 \\ 0 & -1 & 0 & -4 & -3 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 0 & -1 & 0 & -4 & -3 & -2 \\ 0 & -1 & 0 & -4 & -3 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ and finally $R=\left[\begin{array}{cccccc}1 & 1 & -1 & 2 & 3 & 3 \\ 0 & -1 & 0 & -4 & -3 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
We know that $E A=R$ with
$E=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & =1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ -2 & 0 & -1 & 1\end{array}\right]$.
The row space has dimension 2. A basis of the row space can be formed by the first two rows of R.
(ii) The nullspace has dimension $6-2=4$. We choose the free variables to be the ones which correspond to columns 3 to 6 . We then find the four special solutions. These consist a basis of the nullspace. They are: $\left[\begin{array}{cccccc}1 & 0 & 1 & 0 & 0 & 0\end{array}\right]^{T}$, $\left[\begin{array}{llllll}2 & -4 & 0 & 1 & 0 & 0\end{array}\right]^{T}$, $\left[\begin{array}{llllll}0 & -3 & 0 & 0 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{llllll}-1 & -2 & 0 & 0 & 0 & 1\end{array}\right]^{T}$
(iii) The column space has the same dimension as the row space, i.e., 2 . We can choose any two independent columns for example the first two, to form a basis for the column space.
(iv) $E A=R$ and the last two rows of R are zero and therefore, the last 2 rows of E form a basis of the left nullspace which has dimension is 2 .
b)
(i) FALSE since the maximum number of independent vectors in R^{n} is n.
(ii) TRUE the zero vector is dependent to all vectors.
(iii) TRUE since if two vectors in T were dependent then two vectors in S would be dependent.
(iv) TRUE obvious
(v) FALSE if the rows are more than the columns and columns are independent the system might not have a solution.
c)
(i) We have a set of equations

$$
\begin{aligned}
& C-2 D=0 \\
& C-D=0 \\
& C=1 \\
& C+D=1
\end{aligned}
$$

and therefore the system is

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

The system doesn't have a solution since the solutions that is obtained from 2 of the equations doesn't satisfy the rest.
(ii) Instead of solving the system $\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ we solve the system
$\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{cc}4 & -2 \\ -2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right] \Rightarrow$
$\left[\begin{array}{l}C \\ D\end{array}\right]=\frac{1}{20}\left[\begin{array}{ll}6 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right] \Rightarrow C=\frac{7}{10}, D=\frac{4}{5}$
The straight line is $7 / 10+4 t / 5$.
(iii) The error vector is

$$
e=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{7}{10} \\
\frac{4}{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{10} \\
\frac{1}{10} \\
\frac{3}{10} \\
\frac{1}{2}
\end{array}\right]
$$

3. a) For $\lambda=0$ the characteristic polynomial is 7 . Therefore, 0 is not a root of the characteristic polynomial in which case the matrix is invertible.
b) In that case $S=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $\Lambda=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right] S^{-1}=-\left[\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$

Therefore, $A=S \Lambda S^{-1}=\left[\begin{array}{cc}-7 & 10 \\ -5 & 8\end{array}\right], A^{3}=S \Lambda^{3} S^{-1}=\left[\begin{array}{ll}-43 & 70 \\ -35 & 62\end{array}\right]$,

$$
A^{3}\left[\begin{array}{l}
4 \tag{2}\\
3
\end{array}\right]=\left[\begin{array}{ll}
-43 & 70 \\
-35 & 62
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
38 \\
46
\end{array}\right]
$$

c) Consider the matrix A : The eigenvalues are $4,4,2,2$ and therefore the matrix has repeated eigenvalues. It might or might not be diagonalizable. The eigenvectors are which are independent. Therefore, the matrix is diagonalizable.
d)
(i) For matrix A we have

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{cc}
x+3 y+3 z=x & 3 y+3 z=0 \\
-3 x-5 y-3 z=y \Rightarrow-3 x-6 y-3 z=0 \Rightarrow \\
3 x+3 y+z=z & 3 x+3 y=0
\end{array}} \\
& y+z=0 \Rightarrow z=-y \\
& x+y=0 \Rightarrow x=-y=z
\end{aligned}
$$

An eigenvector can be $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$
$\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=-2\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \begin{array}{cc}x+3 y+3 z=-2 x & 3 x+3 y+3 z=0 \\ -3 x-5 y-3 z=-2 y \Rightarrow & -3 x-3 y-3 z=0 \\ 3 x+3 y+z=-2 z & 3 x+3 y+3 z=0\end{array} \Rightarrow$
$x+y+z=0 \Rightarrow z=-x-y$
The eigenvectors are $\left[\begin{array}{lll}x & y & -x-y\end{array}\right]^{T}=x\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{T}+y\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]^{T}$
(ii) For matrix B we have
$\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \begin{array}{cc}2 x+4 y+3 z=x & x+4 y+3 z=0 \\ -4 x-6 y-3 z=y \Rightarrow-4 x-7 y-3 z=0 \\ 3 x+3 y+z=z & 3 x+3 y=0\end{array} \Rightarrow$
$y+z=0 \Rightarrow z=-y$
$x+y=0 \Rightarrow x=-y=z$
An eigenvector can be $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=-2\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{cc}
2 x+4 y+3 z=-2 x & 4 x+4 y+3 z=0 \\
-4 x-6 y-3 z=-2 y \Rightarrow-4 x-4 y-3 z=0 \Rightarrow \\
3 x+3 y+z=-2 z & 3 x+3 y+3 z=0
\end{array}} \\
& \begin{array}{c}
x+y+z=0 \\
4 x+4 y+3 z=0 \Rightarrow \quad x+y=0
\end{array} \quad z=0
\end{aligned}
$$

An eigenvector can be $\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{T}$
(iii) A is diagonalizable because it has 3 independent eigenvectors but B is not.

$$
\text { (iv) } \Lambda=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2}\\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] S=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right] S^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -1 \\
1 & 2 & 1
\end{array}\right] \text { and } A=S \Lambda S^{-1}
$$

