Maths for Signals and Systems Exam 2014-Solutions

1. a) (i) I is the identity matrix, O are zero matrices and F is a matrix that is related to the special solutions of the system.
The dimensions of the individual matrices are given in the subscripts $R=\left[\begin{array}{cc}I_{r \times r} & F_{r \times(n-r)} \\ \mathrm{O}_{(m-r) \times r} & \mathrm{O}_{(m-r) \times(n-r)}\end{array}\right]$ The subscripts in the individual matrices reveal their corresponding sizes.
(ii) Due to the special column rearrangement of R the special solution vectors contain the pivot variables in their first r elements and the free variables in their the last $n-r$ elements. As already mentioned above, each special solution has one free variable equal to 1 and the other free variables are all zero. Therefore, the null space matrix N is given by $N=\left[\begin{array}{c}X_{r \times(n-r)} \\ I_{(n-r) \times(n-r)}\end{array}\right]$ where $X_{r \times(n-r)}$ is an unknown matrix of size $r \times(n-r)$. Knowing that $R N=\mathrm{O}$ we get:

$$
\begin{aligned}
& R N=\left[\begin{array}{cc}
I_{r \times r} & F_{r \times(n-r)} \\
\mathrm{O}_{(m-r) \times r} & \mathrm{O}_{(m-r) \times(n-r)}
\end{array}\right]\left[\begin{array}{c}
X_{r \times(n-r)} \\
I_{r \times(n-r)}
\end{array}\right] \\
& =\left[\begin{array}{c}
I_{r \times r} \times X_{r \times(n-r)}+F_{r \times(n-r)} \times I_{r \times(n-r)} \\
\mathrm{O}_{(m-r) \times(n-r)}
\end{array}\right]=\left[\begin{array}{c}
X_{r \times(n-r)}+F_{r \times(n-r)} \\
\mathrm{O}_{(m-r) \times(n-r)}
\end{array}\right] \\
& X_{r \times(n-r)}+F_{r \times(n-r)}=\mathrm{O}_{r \times(n-r)} \Rightarrow X_{r \times(n-r)}=-F_{r \times(n-r)} \\
& \text { Therefore, } N=\left[\begin{array}{c}
-F_{r \times(n-r)} \\
I_{(n-r) \times(n-r)}
\end{array}\right] .
\end{aligned}
$$

(iii) We assume that the echelon form is obtained without any permutations. In case of a 3×4 matrix, the maximum rank is 3 . In that case we are given that the dimension of the null space is 1 . Since the rows of the matrix are 4-dimensional, we know immediately that the dimension of the row space is 3 . Therefore, the rank of the matrix is 3. In that case the echelon matrix must be of the form $R=\left[\begin{array}{llll}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c\end{array}\right]$. The null space is obtaine by looking for random vectors x, for which $A x=0 \Rightarrow E R x=0$. This implies $A x=0 \Rightarrow E R x=0$ the $R x=0$, since the matrix E is a square, full rank matrix.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c
\end{array}\right]\left[\begin{array}{l}
4 \\
2 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
4+2 a=0 \Rightarrow a=-2 \\
2+2 b=0 \Rightarrow b=-1 \\
2 c=0 \Rightarrow c=0
\end{gathered} \Rightarrow R=\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(iv) We know that $E A=R$ where $E=\prod_{i j} E_{i j}$ is the product of all elimination matrices used in the procedure. If the rank of matrix A is r then the last $m-r$ rows of R are zero rows. Therefore, from the equation $E A=R$ we see that each of the last $m-r$ rows of E multiplied with A from the left gives a zero row vector. This verifies the fact that the last $m-r$ rows of E belong to the left null space, since they satisfy the relationship $x^{T} A=0^{T}$. Due to the method that we use to construct E, it can be shown easily that E is a full rank matrix (rank is m) and therefore its last $m-r$ rows are independent. Since these rows belong to the left null space and knowing that the left null space has dimension $m-r$, we can say that the last $m-r$ rows of E form a basis of the left null space.
b) (i) The echelon form has two pivots. Therefore, the rank of the matrix is 2 . The rows are 4dimensional and therefore, we have 2 free variables. We solve the system $\left[\begin{array}{llll}1 & 0 & 3 & 4 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]=0$ for $z=1, w=0$ and $z=0, w=1$.
For $z=1, w=0$ we have $x+3=0 \Rightarrow x=-3$ and $y+z=0 \Rightarrow y=-1$.
For $z=0, w=1$ we have $x+4=0 \Rightarrow x=-4$ and $y=0$.
Therefore, the special solutions are $\left[\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ 1\end{array}\right]$ and they form a basis for the nullspace.
The row space does not change with elimination and therefore, any two independent rows of the echelon matrix, for example rows 1 and 2 , form a basis for the row space.
(ii) 5 (row1)+4(row2)
(iii) A has rank 2 and A^{T} is 4 by 3 so its null space has dimension 3-2=1.
c) (i) The pivots of A^{-1} are equal to $1 /($ pivots of $A)$ because $\operatorname{det} A^{-1}=1 /(\operatorname{det} A)$.
(ii) Multiply row 1 by A^{-1} and add to row 2 to obtain $\left[\begin{array}{cc}A & I \\ \mathrm{O} & A^{-1}\end{array}\right]$
(iii) The determinant is +1 . Exchange the first n columns with the last n. This produces a factor $(-1)^{n}$ and leaves $\left[\begin{array}{cc}I & A \\ \mathrm{O} & -I\end{array}\right]$ which is triangular with determinant $(-1)^{n}$. Then $(-1)^{n}(-1)^{n}=+1$.
2. a) (i) $P=A\left(A^{T} A\right)^{-1} A^{T}$
(ii) $A^{T} A$ is symmetric and therefore $\left(A^{T} A\right)^{-1}$ is symmetric. (To prove this we use the property $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.)
$P^{T}=\left[A\left(A^{T} A\right)^{-1} A^{T}\right]^{T}=\left(A^{T}\right)^{T}\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=P$
$P^{2}=\left[A\left(A^{T} A\right)^{-1} A^{T}\right]\left[A\left(A^{T} A\right)^{-1} A^{T}\right]=\left[A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T}\right]=P$
If A is square and invertible its column space is the entire n -dimensional space and therefore the projection of b onto A should be b. In that case $P=A A^{-1}\left(A^{T}\right)^{-1} A^{T}=I$.
(iii) If b is perpendicular to the column space of A then $P b=A A^{-1}\left(A^{T}\right)^{-1} A^{T} b=0$.
(iv) $e=b-P b, A^{T} e=A^{T} b-A^{T} p=A^{T} b-A^{T} P b=0$
b) (i) The projection matrix P is of the form $P=A\left(A^{T} A\right)^{-1} A^{T}$ with A being the column vector $\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]^{T}$. Therefore, it projects onto the column space of A which is the line $c\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]^{T}$.
(ii) The error is $e=b-P b=\frac{1}{7}\left[\begin{array}{c}-6 \\ 9 \\ 4\end{array}\right]$ and the distance is $\|e\|=\frac{\sqrt{133}}{7}$.
(iii) Since P projects onto a line, its three eigenvalues are $0,0,1$. Since P is symmetric, it has a full set of (orthogonal) eigenvectors, and is then diagonalizable.
c) (i) We have a set of equations

$$
\begin{aligned}
& C-2 D=0 \\
& C-D=0 \\
& C=1 \\
& C+D=1 \\
& C+2 D=1
\end{aligned}
$$

and therefore the system is

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

The system doesn't have a solution since the solutions that is obtained from 2 of the equations doesn't satisfy the rest.
(ii) The projection matrix is
$\left[\begin{array}{ccccc}3 / 5 & 2 / 5 & 1 / 5 & 0 & -1 / 5 \\ 2 / 5 & 3 / 10 & 1 / 5 & 1 / 10 & 0 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 0 & 1 / 10 & 1 / 5 & 3 / 10 & 2 / 5 \\ -1 / 5 & 0 & 1 / 5 & 2 / 5 & 3 / 5\end{array}\right]$
and the projection vector is

$$
\left[\begin{array}{c}
0 \\
3 / 10 \\
3 / 5 \\
9 / 10 \\
6 / 5
\end{array}\right]
$$

Approximate solution is $C=6 / 10$ and $D=3 / 10$. Straight line is $6 / 10+3 t / 10$.
(iii) error vector is

$$
e=b-p=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
0 \\
3 / 10 \\
3 / 5 \\
9 / 10 \\
6 / 5
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 / 10 \\
2 / 5 \\
1 / 10 \\
-1 / 5
\end{array}\right]
$$

3. a) (i) By solving the system $A x=0$, it is straightforward to see that the null space has dimension 1 and its basis is the vector $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
(ii) Matrix B is singular. All rows are identical and therefore the row space is of dimension 1. Therefore, 3 out of 4 eigenvalues of B must be 0 . The remaining non-zero eigenvalue can be found from the trace of B and it is equal to 4 . Therefore, the eigenvalues of B are 4,0,0,0.
(iii) $A^{T} A=\left[\begin{array}{cccc}3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3\end{array}\right]=4 I-B$

If x is an eigenvector of B with eigenvalue λ, then
$B x=\lambda x \Rightarrow 4 x-B x=4 x-\lambda x \Rightarrow(4 I-B) x=(4-\lambda) x \Rightarrow A^{T} A x=(4-\lambda) x$
Therefore, the eigenvalues of $A^{T} A$ are obtained from the eigenvalues of B, by reversing the sign and adding 4 . Thus, the eigenvalues of $A^{T} A$ are $0,4,4,4$.
(iv) The non-zero singular values of matrix A, are the square roots of the eigenvalues of $A^{T} A$. Therefore, these are $2,2,2$. The matrix $A^{T} A$ is diagonalized through the formula $A^{T} A=V \Sigma V^{T}$ where $A=U \Sigma V^{T}$. The matrix V has the eigenvectors of $A^{T} A$ in its columns.
The eigenvector of $A^{T} A$ that corresponds to 0 is of the form $\left[\begin{array}{llll}x & x & x & x\end{array}\right]^{T}$ with magnitude $\sqrt{4 x^{2}}$. If we look for an orthonormal eigenvector then $\sqrt{4 x^{2}}=1 \Rightarrow x=\frac{1}{2}$. Therefore, a column of V is $\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]^{T}$.
b) We select the first orthogonal direction to be $A=a=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\|A\|=\sqrt{2}$. Therefore, $q_{1}=\frac{A}{\|A\|}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]$. The second direction is:
$B=b-\frac{A A^{T}}{A^{T} A} b=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=$
$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1\end{array}\right]$
$\|B\|=\sqrt{\frac{1}{4}+1+\frac{1}{4}}=\sqrt{\frac{6}{4}}=\sqrt{\frac{3}{2}}$

$$
\begin{aligned}
& q_{2}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \\
& \frac{B B^{T}}{B^{T} B}=\frac{2}{3}\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 / 2 & -1 / 2 & 1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 1 / 2 \\
-1 / 4 & 1 / 4 & -1 / 2 \\
1 / 2 & -1 / 2 & 1
\end{array}\right] \\
& \frac{B B^{T}}{B^{T} B} c=\frac{2}{3}\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 1 / 2 \\
-1 / 4 & 1 / 4 & -1 / 2 \\
1 / 2 & -1 / 2 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{c}
1 / 4 \\
-1 / 4 \\
1 / 2
\end{array}\right]=\left[\begin{array}{c}
1 / 6 \\
-1 / 6 \\
1 / 3
\end{array}\right] \\
& \frac{A A^{T}}{A^{T} A} c=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right] \\
& \frac{B B^{T}}{B^{T} B} c+\frac{A A^{T}}{A^{T} A} c=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] \\
& c-\frac{B B^{T}}{B^{T} B} c-\frac{A A^{T}}{A^{T} A} c=\left[\begin{array}{c}
0 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right] \\
& \|c\|=\frac{2}{\sqrt{3}} \\
& q_{3}=\frac{c}{\|c\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \\
& \text { Therefore, } Q=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{-1}{\sqrt{6}} \\
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{2}{6} & \frac{1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

$$
q_{1}^{T} a=\sqrt{2}, q_{1}^{T} b=\frac{1}{\sqrt{2}}, q_{1}^{T} c=\frac{1}{\sqrt{2}}, q_{2}^{T} b=\frac{3}{\sqrt{6}}, q_{2}^{T} c=\frac{1}{\sqrt{6}}, q_{3}^{T} c=\frac{2}{\sqrt{3}}
$$

$$
R=\left[\begin{array}{ccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
0 & 0 & \frac{2}{\sqrt{3}}
\end{array}\right]
$$

