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Maths for Signals and Systems Exam 2014-Solutions 

 

1. a) (i) I  is the identity matrix, O  are zero matrices and F  is a matrix that is related to the 

special solutions of the system. 

The dimensions of the individual matrices are given in the subscripts
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(ii) Due to the special column rearrangement of R  the special solution vectors contain the 

pivot variables in their first r  elements and the free variables in their the last rn  
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(iii) We assume that the echelon form is obtained without any permutations. In case of a 

43  matrix, the maximum rank is 3. In that case we are given that the dimension of 

the null space is 1. Since the rows of the matrix are 4-dimensional, we know 

immediately that the dimension of the row space is 3. Therefore, the rank of the matrix 

is 3. In that case the echelon matrix must be of the form 
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space is obtaine by looking for random vectors x , for which 00  ERxAx . This 

implies 00  ERxAx   the  0Rx , since the matrix E  is a square, full rank 

matrix.  
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(iv) We know that REA  where  
ij

ijEE  is the product of all elimination matrices used 

in the procedure. If the rank of matrix A  is r  then the last rm  rows of R  are zero 

rows. Therefore, from the equation REA  we see that each of the last rm  rows of 

E  multiplied with A  from the left gives a zero row vector. This verifies the fact that 

the last rm  rows of E belong to the left null space, since they satisfy the relationship 
TT Ax 0 . Due to the method that we use to construct E , it can be shown easily that 

E  is a full rank matrix (rank is m ) and therefore its last rm  rows are independent. 

Since these rows belong to the left null space and knowing that the left null space has 

dimension rm , we can say that the last rm  rows of E  form a basis of the left null 

space. 
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b) (i) The echelon form has two pivots. Therefore, the rank of the matrix is 2. The rows are 4-

dimensional and therefore, we have 2 free variables. We solve the system 
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 for 0,1  wz  and 1,0  wz . 

For 0,1  wz  we have 303  xx  and 10  yzy . 

For 1,0  wz  we have 404  xx  and 0y . 

Therefore, the special solutions are 
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 and they form a basis for the 

nullspace. 

The row space does not change with elimination and therefore, any two independent 

rows of the echelon matrix, for example rows 1 and 2, form a basis for the row space. 

(ii) 5(row1)+4(row2) 

(iii) A  has rank 2 and 
TA  is 4 by 3 so its null space has dimension 3-2=1. 

 

c) (i) The pivots of 
1A  are equal to 1/(pivots of A ) because )/(det1det 1 AA  . 

(ii) Multiply row 1 by 
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(iii) The determinant is +1. Exchange the first n  columns with the last n . This produces a 

factor 
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2. a)  (i) 
TT AAAAP 1)(   

(ii) AAT
 is symmetric and therefore 

1)( AAT
 is symmetric. (To prove this we use the 

property 
11 )()(   TT AA .) 

PAAAAAAAAAAAAP TTTTTTTTTTT   111 )(])[()(])([  

PAAAAAAAAAAAAAAAAP TTTTTTTT   ]))(()([])(][)([ 11112
 

If A  is square and invertible its column space is the entire n-dimensional space and 

therefore the projection of b onto A  should be b . In that case IAAAAP TT   11 )( . 

(iii) If b  is perpendicular to the column space of A  then 0)( 11   bAAAAPb TT
. 

(iv) Pbbe  , 0 PbAbApAbAeA TTTTT
 

 

 

b) (i) The projection matrix P  is of the form 
TT AAAAP 1)(   with A  being the column 

vector  T321  . Therefore, it projects onto the column space of A  which is the 

line  Tc 321  . 
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(ii) The error is 
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(iii) Since P  projects onto a line, its three eigenvalues are 0,0,1. Since P  is symmetric, it 

has a full set of (orthogonal) eigenvectors, and is then diagonalizable. 

 

c) (i) We have a set of equations 
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and therefore the system is 
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The system doesn’t have a solution since the solutions that is obtained from 2 of the 

equations doesn’t satisfy the rest. 

 

 

(ii) The projection matrix is  
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and the projection vector is 
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Approximate solution is 10/6C  and 10/3D . Straight line is 10/310/6 t . 

(iii) error vector is 
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3. a) (i) By solving the system 0Ax , it is straightforward to see that the null space has 

dimension 1 and its basis is the vector 
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(ii) Matrix B  is singular. All rows are identical and therefore the row space is of dimension 

1. Therefore, 3 out of 4 eigenvalues of B  must be 0. The remaining non-zero 

eigenvalue can be found from the trace of B  and it is equal to 4. Therefore, the 

eigenvalues of B  are 4,0,0,0. 

(iii) BIAAT 
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If x  is an eigenvector of B  with eigenvalue  , then 

xAxAxxBIxxBxxxBx T )4()4()4(44    

Therefore, the eigenvalues of AAT  are obtained from the eigenvalues of B , by 

reversing the sign and adding 4. Thus, the eigenvalues of AAT  are 0,4,4,4. 

 

(iv) The non-zero singular values of matrix A , are the square roots of the eigenvalues of 

AAT . Therefore, these are 2,2,2. The matrix AAT  is diagonalized through the formula 
TT VVAA   where TVUA  . The matrix V  has the eigenvectors of AAT  in its 

columns.  

The eigenvector of AAT  that corresponds to 0 is of the form  Txxxx  with 

magnitude 
24x . If we look for an orthonormal eigenvector then 
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Therefore, a column of V  is 
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b) We select the first orthogonal direction to be 
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