Maths for Signals and Systems Linear Algebra in Engineering

Lectures 8-9, Friday 30th October 2015

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Semi-orthogonal matrices with more rows than columns

- The column vectors $q_1, ..., q_n$ are **orthogonal** if $q_i^T \cdot q_j = 0$ for $i \neq j$.
- In order for a set of n vectors to satisfy the above, their dimension m must be at least n, i.e., m ≥ n. This is because the maximum number of m – dimensional vectors that can be orthogonal is m.
- If their lengths are all 1, then the vectors are called **orthonormal**.

$$q_i^T \cdot q_j = \begin{cases} 0 & \text{when } i \neq j \quad (\text{orthogonal vectors}) \\ 1 & \text{when } i = j \quad (\text{unit vectors: } ||q_i|| = 1) \end{cases}$$

- I assign to a matrix with n orthonormal m dimensional columns the special letter Q_{m×n}.
- Now I will drop the subscript because no one uses it.
- I wish to deal first with the case where Q is strictly non-square (it is rectangular), and therefore, m > n.
- The matrix *Q* is called **semi-orthogonal**.

Semi-orthogonal matrices with more rows than columns

Problem:

Consider a semi-orthogonal matrix Q with real entries, where the number of rows m exceeds the number of columns n and the columns are orthonormal vectors. Prove that $Q^T Q = I_{n \times n}$.

Solution:

$$Q^{T}Q = \begin{bmatrix} q_{1}^{T} \\ q_{2}^{T} \\ \vdots \\ q_{n}^{T} \end{bmatrix} [q_{1} \quad q_{2} \quad \cdots \quad q_{n}] = I_{n \times n}.$$

- We see that Q^T is only an **inverse from the left**.
- This is because there isn't a matrix Q' for which $QQ' = I_{m \times m}$. This would imply that we could find m independent vectors of dimension n, with m > n. This is not possible.

Semi-orthogonal matrices: Generalization

- In linear algebra, a **semi-orthogonal matrix** is a non-square matrix with real entries where: if the number of rows exceeds the number of columns, then the columns are orthonormal vectors; but if the number of columns exceeds the number of rows, then the rows are orthonormal vectors.
- Equivalently, a rectangular matrix of dimension $m \times n$ is semi-orthogonal if $Q^T Q = I_{n \times n}, m > n$ or $QQ^T = I_{m \times m}, n > m$
- The above formula yields the terms left-invertible or right-invertible matrix.
- In the above cases, the left or right inverse is the transpose of the matrix. For that reason, a rectangular orthogonal matrix is called **semi-unitary**. (To remind you: a **unitary** matrix is the one with an inverse being its transpose.)

Semi-orthogonal matrices: Generalization

Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension $m \times n$, m > n||Qx|| = ||x|| for every n – dimensional vector x.

Solution:

 $\|Qx\|^{2} = (Qx)^{T}(Qx) = x^{T}Q^{T}Qx = x^{T}Ix = x^{T}x \Rightarrow \|Qx\|^{2} = \|x\|^{2} \Rightarrow \|Qx\| = \|x\|.$

Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension $m \times n$, m < n, $||Q^T x|| = ||x||$ for every m – dimensional vector x.

Solution:

 $||Q^{T}x||^{2} = (Q^{T}x)^{T}(Q^{T}x) = x^{T}QQ^{T}x = x^{T}Ix = x^{T}x \Rightarrow ||Q^{T}x||^{2} = ||x||^{2} \Rightarrow ||Q^{T}x|| = ||x||.$

Orthogonal matrices

Problem 1:

Extend the relationship $Q^T Q = I_{n \times n}$ for the case when Q is a square matrix of dimension $n \times n$ and has orthogonal columns.

Solution:

 $Q^T Q = I_{n \times n} \Rightarrow Q^{-1} = Q^T$. The inverse is the transpose.

Problem 2:

Prove that $QQ^T = I_{n \times n}$.

Solution:

Since *Q* is a full rank matrix we can find *Q'* such that $QQ' = I_{n \times n}$. This gives: $Q^T QQ' = Q^T I_{n \times n} \Rightarrow I_{n \times n} Q' = Q^T \Rightarrow Q' = Q^T$

Therefore, we see that Q^T is the **two-sided inverse** of Q.

Examples of elementary orthogonal matrices Rotation

Rotation matrix:

$$Q = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \text{ and } Q^T = Q^{-1} = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$$

Problem

- Show that the columns of Q are orthogonal (straightforward).
- Show that the columns of *Q* are unit vectors (straightforward).
- Explain the effect that the rotation matrix has on vectors $j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, when it multiplies them from the left.
- The matrix causes rotation of the vectors.

Examples of elementary orthogonal matrices: Permutation

Permutation matrices:

$$Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot Q^T = Q^{-1} \text{ in both cases.}$$

Problem

- Show that the columns of *Q* are orthogonal (straightforward).
- Show that the columns of *Q* are unit vectors (straightforward).
- Explain the effect that the permutation matrices have on a random vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ or $\begin{bmatrix} x \\ y \end{bmatrix}$ when they multiply the vector from the left.
- The matrices cause re-ordering of the elements of these vectors.

Examples of elementary orthogonal matrices Householder Reflection

Householder Reflection matrices

 $Q = I - 2uu^T$ with u any vector that satisfies the condition $||u||_2 = 1$ (unit vector). $Q^T = I^T - (2uu^T)^T = I - 2uu^T = Q$ $Q^TQ = Q^2 = I$

Problem

- For $u_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $u_2 = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}^T$ find $Q_i = I 2u_i u_i^T$, i = 1, 2.
- Explain the effect that matrix Q_1 has on the vector $\begin{bmatrix} x \\ y \end{bmatrix}$ when it multiplies the vector from the left.
- Explain the effect that matrix Q_2 has on the vector $\begin{bmatrix} x \\ y \end{bmatrix}$ when it multiplies the vector from the left.
- A generalized definition is $Q = I 2 \frac{vv^T}{\|v\|^2}$ with v any column vector.

The Gram-Schmidt process

• The goal here is to start with three independent vector *a*, *b*, *c* and construct three orthogonal vectors *A*, *B*, *C* and finally three orthonormal vectors.

$$q_1 = A/||A||, q_2 = B/||B||, q_3 = C/||C||$$

• We begin by choosing A = a. This first direction is accepted.

Imperial College

Iondon

• The next direction *B* must be perpendicular to *A*. Start with *b* and subtract its projection along *A*. This leaves the perpendicular part, which is the orthogonal vector *B* (what we knew before as error!), defined as:

$$B = b - \frac{AA^T}{A^T A}b$$

Problem: Show that A and B are orthogonal.SubtractProblem: Show that if a and b are independent then B is not zero.projectionto get B

to get B $p \neq b$ $p \neq b$ A = a b

The Gram-Schmidt process

- The third direction starts with *c*. This is not a combination of *A* and *B*.
- Most likely *c* is not perpendicular to *A* and *B*.
- Therefore, subtract its components in those two directions to get C:

$$C = c - \frac{AA^T}{A^T A}c - \frac{BB^T}{B^T B}c$$

The Gram-Schmidt process: Generalization

- In general we subtract from every new vector its projections in the directions already set.
- If we had a fourth vector d, we would subtract three projections onto A, B, C to get D.
- We make the resulting vectors orthonormal.
- This is done by dividing the vectors with their magnitudes.

$$q_{3} = \frac{C}{\|C\|}$$
Unit vectors
$$q_{2} = \frac{B}{\|B\|}$$

$$q_{1} = \frac{A}{\|A\|}$$

The factorization A = QR (*QR* **decomposition**)

- Assume matrix *A* whose columns are *a*, *b*, *c*.
- Assume matrix Q whose columns are q_1, q_2, q_3 defined previously.
- We are looking for a matrix R such that A = QR. Since Q is an orthogonal matrix we have that $R = Q^T A$.

$$R = Q^{T}A = \begin{bmatrix} q_{1}^{T} \\ q_{2}^{T} \\ q_{3}^{T} \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} q_{1}^{T}a & q_{1}^{T}b & q_{1}^{T}c \\ q_{2}^{T}a & q_{2}^{T}b & q_{2}^{T}c \\ q_{3}^{T}a & q_{3}^{T}b & q_{3}^{T}c \end{bmatrix}$$

• We know that from the method that was used to construct q_i we have

$$q_2^T a = 0, \ q_3^T a = 0, \ q_3^T b = 0$$

and therefore,

$$R = \begin{bmatrix} q_1^{\ T}a & q_1^{\ T}b & q_1^{\ T}c \\ 0 & q_2^{\ T}b & q_2^{\ T}c \\ 0 & 0 & q_3^{\ T}c \end{bmatrix}$$

- *QR* decomposition can facilitate the solution of the system Ax = b, since $Ax = b \Rightarrow QRx = b \Rightarrow Rx = Q^Tb$. The later system is easy to solve due to the upper triangular form of *R*.
- So far you have learnt two types of decompositions: the LU and the QR.

Determinants

- The **Determinant** is a crucial number associated with square matrices only.
- It is denoted by det(A) = |A|. These are two different symbols we use for determinants.
- If a matrix A is invertible, that means $det(A) \neq 0$.
- Furthermore, $det(A) \neq 0$ means that matrix A is invertible.
- For a 2 × 2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ the determinant is defined as $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$. This formula is explicitly associated with the solution of the system Ax = b where A is a 2 × 2 matrix.

Properties of determinants

- 1. det(I) = 1. This is easy to show in the case of a 2 × 2 matrix using the formula of the previous slide.
- 2. If we exchange two rows of a matrix the sign of the determinant reverses. Therefore:
 - If we perform an even number of row exchanges the determinant remains the same.
 - If we perform an odd number of row exchanges the determinant changes sign.
 - Hence, the determinant of a **permutation** matrix is 1 or -1.

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$
 and $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1$ as expected.

Properties of determinants

3a. If a row is multiplied with a scalar, the determinant is multiplied with that scalar too, i.e., $\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

3b. $\begin{vmatrix} a + a' & b + b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$ Note that $\det(A + B) \neq \det(A) + \det(B)$ I observe linearity only for a single row.

- 4. Two equal rows leads to det = 0.
 - As mentioned, if I exchange rows the sign of the determinant changes.
 - In that case the matrix is the same and therefore, the determinant should remain the same.
 - Therefore, the determinant must be zero.
 - This is also expected from the fact that the matrix is not invertible.

Properties of determinants

- 5. $\begin{vmatrix} a & b \\ c la & d lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a & b \\ -la & -lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} l \begin{vmatrix} a & b \\ a & b \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ Therefore, the determinant after elimination remains the same.
- 6. A row of zeros leads to det = 0. This can verified as follows for any matrix: $\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = \begin{vmatrix} 0 \cdot a & 0 \cdot b \\ c & d \end{vmatrix} = 0 \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$
- 7. Consider an upper triangular matrix (* is a random element)

$$\begin{vmatrix} d_1 & * & \dots & * \\ 0 & d_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{vmatrix} = d_1 d_2 \dots d_n$$

I can easily show the above using the following steps:

- I transform the upper triangular matrix to a diagonal one using elimination.
- I use property 3a n times.
- I end up with the determinant $\prod_{i=1}^{n} d_i \det(I) = \prod_{i=1}^{n} d_i$.
- Same comments are valid for a lower triangular matrix.

Properties of determinants

- 8. det(A) = 0 when A is singular. This is because if A is singular I get a row of zeros by elimination.
 Using the same concept I can say that if A is invertible then det(A) ≠ 0.
 In general I have A → U → D, det(A) = d₁d₂ ... d_n =product of pivots.
- 9. det(AB) = det(A) det(B) $det(A^{-1}) = \frac{1}{det(A)}$ $det(A^{2}) = [det(A)]^{2}$ $det(2A) = 2^{n}det(A) \text{ where } A: n \times n$
- 10. $det(A^T) = det(A)$.
 - In order to show that, we use the LU decomposition of A and the above properties. A = LU and therefore $A^T = U^T L^T$. Determinant is always product of pivots.
 - This property can also be proved by the use of **induction**.

Determinant of a 2×2 **matrix**

- The goal is to find the determinant of a 2 × 2 matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ using the properties described previously.
- We know that $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$ and $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1$. • $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = ad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + bc \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = ad - bc$
- I can realize the above analysis for 3×3 matrices.
- I break the determinant of a 2 × 2 random matrix into 4 determinants of simpler matrices.
- In the case of a 3×3 matrix I break it into 27 determinants.
- And so on.

Determinant of any matrix

• For the case of a 2 × 2 matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ we got:

 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = 0 + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + 0$

- The determinants which survive have strictly one entry from each row and each column.
- The above is a universal conclusion.

Determinant of any matrix

• For the case of a 3 × 3 matrix
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 we got:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & a_{32} & 0 \end{vmatrix} + \dots = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + \dots$$

• As mentioned the determinants which survive have strictly one entry from each row and each column.

Determinant of any matrix

- For the case of a 2×2 matrix the determinant has 2 survived terms.
- For the case of a 3×3 matrix the determinant has 6 survived terms.
- For the case of a 4×4 matrix the determinant has 24 survived terms.
- For the case of a $n \times n$ matrix the determinant has n! survived terms.
 - > The elements from the first row can be chosen in n different ways.
 - > The elements from the second row can be chosen in (n-1) different ways.
 - ➤ and so on...

Problem

Find the determinant of the following matrix:

[0	0	1	1]
0	1	1	0
1	1	0	0
[1	0	0	1

Big Formula for the determinant

• For the case of a $n \times n$ matrix the determinant has n! terms.

$$\det(A) = \sum_{n! \text{terms}} \pm a_{1a} a_{2b} a_{3c} \dots a_{nz}$$

- \succ a, b, c, ..., z are different columns.
- In the above summation, half of the terms have a plus and half of them have a minus sign.

Big Formula for the determinant

• For the case of a *n* × *n* matrix, **cofactors** consist of a method which helps us to connect a determinant to determinants of smaller matrices.

$$\det(A) = \sum_{n:\text{terms}} \pm a_{1a} a_{2b} a_{3c} \dots a_{nz}$$

- For a 3 × 3 matrix we have $det(A) = a_{11}(a_{22}a_{33} a_{23}a_{32}) + \cdots$
- $a_{22}a_{33} a_{23}a_{32}$ is the determinant of a 2 × 2 matrix which is a sub-matrix of the original matrix.

Cofactors

• The **cofactor** of element a_{ij} is defined as follows:

$$C_{ij} = \pm \det[(n-1) \times (n-1) \operatorname{matrix} A_{ij}]$$

- > A_{ij} is the $(n 1) \times (n 1)$ that is obtained from the original matrix if row *i* and column *j* are eliminated.
- > We keep the + if (i + j) is even.
- ➤ We keep the -if(i+j) is odd.
- Cofactor formula along row 1: $det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$
- Generalization:
 - Cofactor formula along row *i*: $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$
 - Cofactor formula along column *j*: det(*A*) = $a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$
- Cofactor formula along any row or column can be used for the final estimation of the determinant.

Estimation of the inverse A^{-1} **using cofactors**

• For a 2×2 matrix it is quite easy to show that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Big formula for A^{-1}

$$A^{-1} = \frac{1}{\det(A)} C^{T}$$
$$AC^{T} = \det(A) \cdot I$$

- C_{ij} is the cofactor of a_{ij} which is a sum of products of (n-1) entries.
- In general

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} = \det(A) \cdot I$$

Solve Ax = b when A is square and invertible

• The solution of the system Ax = b when A is square and invertible can be now obtained from

$$x = A^{-1}b = \frac{1}{\det(A)}C^Tb$$

- Cramer's rule:
 - First element of vector x is $x_1 = \frac{\det(B_1)}{\det(A)}$. Then $x_2 = \frac{\det(B_2)}{\det(A)}$ and so on.
 - What are these matrices B_i ? $B_1 = [b : last (n - 1) columns of A]$
 - B₁ is obtained by A if we replace the first column with b. B_i is obtained by A if we replace the *i*th column with b.
 - In practice we must find (n + 1) determinants.

The determinant is the volume of a box

- Consider *A* to be a matrix of size 3×3 .
- Observe the three-dimensional box (parallelepiped) formed from the three rows or columns of *A*.
- It can be proven that $abs(|A|) \equiv volume of the box.$

$det(A) \equiv$ volume of a box

• Take *A* = *I*. Then the box mentioned previously is the unit cube and its volume is 1.

Problem:

Consider an orthogonal square matrix Q. Prove that det(Q) = 1 or -1.

Solution:

 $Q^T Q = I \Rightarrow \det(Q^T Q) = \det(Q^T) \det(Q) = \det(I) = 1$ But $\det(Q^T) = \det(Q) \Rightarrow |Q|^2 = 1 \Rightarrow |Q| = \pm 1$

- The above results verifies also the fact that the determinant of a 3×3 matrix is the volume of the cube that is formed by the rows of the matrix. This is because if you consider A = Q with Q being an orthogonal matrix, the related box is a rotated version of the unit cube in the 3D space. Its volume is again 1.
- Take Q and double one of its vectors. The cube's volume doubles (you have two cubes sitting on top of each other.) The determinant doubles as well (property 3a).