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Semi-orthogonal matrices with more rows than columns 

• The column vectors 𝑞1, … , 𝑞𝑛 are orthogonal if 𝑞𝑖
𝑇 ∙ 𝑞𝑗 = 0 for 𝑖 ≠ 𝑗. 

• In order for a set of 𝑛 vectors to satisfy the above, their dimension 𝑚 must be at 

least 𝑛, i.e., 𝑚 ≥ 𝑛. This is because the maximum number of 𝑚 − dimensional 

vectors that can be orthogonal is 𝑚.  

• If their lengths are all 1, then the vectors are called orthonormal. 

𝑞𝑖
𝑇 ∙ 𝑞𝑗 =  

0 when 𝑖 ≠ 𝑗 (𝐨𝐫𝐭𝐡𝐨𝐠𝐨𝐧𝐚𝐥 vectors)

1 when 𝑖 = 𝑗 (𝐮𝐧𝐢𝐭 vectors: 𝑞𝑖 = 1)
 

• I assign to a matrix with 𝑛 orthonormal 𝑚 −dimensional columns the special letter 

𝑄𝑚×𝑛. 

• Now I will drop the subscript because no one uses it. 

• I wish to deal first with the case where 𝑄 is strictly non-square (it is rectangular), 

and therefore,  𝑚 > 𝑛. 

• The matrix 𝑄 is called semi-orthogonal. 



Semi-orthogonal matrices with more rows than columns 

Problem: 

Consider a semi-orthogonal matrix 𝑄 with real entries, where the number of rows 

𝑚 exceeds the number of columns 𝑛 and the columns are orthonormal vectors. 

Prove that 𝑄𝑇𝑄 = 𝐼𝑛×𝑛.  

 

Solution: 

𝑄𝑇𝑄 =

𝑞1
𝑇

𝑞2
𝑇

⋮
𝑞𝑛
𝑇

𝑞1 𝑞2 … 𝑞𝑛 = 𝐼𝑛×𝑛. 

 

 We see that 𝑄𝑇 is only an inverse from the left. 

 This is because there isn’t a matrix 𝑄′ for which 𝑄𝑄′ = 𝐼𝑚×𝑚. This would imply 

that we could find 𝑚 independent vectors of dimension 𝑛, with 𝑚 > 𝑛. This is 

not possible. 

 

 



Semi-orthogonal matrices: Generalization 

• In linear algebra, a semi-orthogonal matrix is a non-square matrix with real 

entries where: if the number of rows exceeds the number of columns, then the 

columns are orthonormal vectors; but if the number of columns exceeds the 

number of rows, then the rows are orthonormal vectors. 

 

• Equivalently, a rectangular matrix of dimension 𝑚 × 𝑛 is semi-orthogonal if  

𝑄𝑇𝑄 = 𝐼𝑛×𝑛, 𝑚 > 𝑛 or 𝑄𝑄𝑇 = 𝐼𝑚×𝑚, 𝑛 > 𝑚 

 

• The above formula yields the terms left-invertible or right-invertible matrix. 

 

• In the above cases, the left or right inverse is the transpose of the matrix. For that 

reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a 

unitary matrix is the one with an inverse being its transpose.) 
 

 



Semi-orthogonal matrices: Generalization 

 

Problem 1: 

Show that for left-invertible, semi-orthogonal matrices of dimension 𝑚 × 𝑛, 𝑚 > 𝑛  
𝑄𝑥 = 𝑥  for every 𝑛 − dimensional vector 𝑥. 

 

Solution: 

𝑄𝑥 2 = 𝑄𝑥 𝑇 𝑄𝑥 = 𝑥𝑇𝑄𝑇𝑄𝑥 = 𝑥𝑇𝐼𝑥 = 𝑥𝑇𝑥 ⇒ 𝑄𝑥 2 = 𝑥 2 ⇒ 𝑄𝑥 = 𝑥 . 

 

Problem 2: 

Show that for right-invertible, semi-orthogonal matrices of dimension 𝑚 × 𝑛, 
𝑚 < 𝑛,  𝑄𝑇𝑥 = 𝑥  for every 𝑚 − dimensional vector 𝑥. 
 

Solution: 

𝑄𝑇𝑥 2 = 𝑄𝑇𝑥 𝑇 𝑄𝑇𝑥 = 𝑥𝑇𝑄𝑄𝑇𝑥 = 𝑥𝑇𝐼𝑥 = 𝑥𝑇𝑥 ⇒ 𝑄𝑇𝑥 2 = 𝑥 2 ⇒ 𝑄𝑇𝑥 =
𝑥 . 

 



Orthogonal matrices 

Problem 1:  

Extend the relationship 𝑄𝑇𝑄 = 𝐼𝑛×𝑛 for the case when 𝑄 is a square matrix of 

dimension 𝑛 × 𝑛 and has orthogonal columns. 
 

Solution:  

𝑄𝑇𝑄 = 𝐼𝑛×𝑛 ⇒ 𝑄
−1 = 𝑄𝑇. The inverse is the transpose. 

 

Problem 2: 

Prove that 𝑄𝑄𝑇 = 𝐼𝑛×𝑛. 
 

Solution: 

Since 𝑄 is a full rank matrix we can find 𝑄′ such that 𝑄𝑄′ = 𝐼𝑛×𝑛. This gives: 

𝑄𝑇𝑄𝑄′ = 𝑄𝑇𝐼𝑛×𝑛  ⇒ 𝐼𝑛×𝑛 𝑄
′ = 𝑄𝑇 ⇒ 𝑄′ = 𝑄𝑇 

Therefore, we see that 𝑄𝑇 is the two-sided inverse of 𝑄. 

 



Examples of elementary orthogonal matrices Rotation 

• Rotation matrix: 

𝑄 =
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 and 𝑄𝑇 = 𝑄−1=
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 

 

Problem 

 Show that the columns of 𝑄 are orthogonal (straightforward). 

 Show that the columns of 𝑄 are unit vectors (straightforward). 

 Explain the effect that the rotation matrix has on vectors 𝑗 =
0
1

 and 𝑖 =
1
0

, 

when it multiplies them from the left. 

 The matrix causes rotation of the vectors.                 



• Permutation matrices: 

𝑄 =
0 1 0
0 0 1
1 0 0

 and 𝑄 =
0 1
1 0
 . 𝑄𝑇 = 𝑄−1 in both cases. 

 

Problem 

 Show that the columns of 𝑄 are orthogonal (straightforward). 

 Show that the columns of 𝑄 are unit vectors (straightforward). 

 Explain the effect that the permutation matrices have on a random vector 

𝑥
𝑦
𝑧

 

or 
𝑥
𝑦  when they multiply the vector from the left. 

 The matrices cause re-ordering of the elements of these vectors.               

Examples of elementary orthogonal matrices: Permutation 



• Householder Reflection matrices 

𝑄 = 𝐼 − 2𝑢𝑢𝑇 with 𝑢 any vector that satisfies the condition 𝑢 2 = 1 (unit vector). 

𝑄𝑇 = 𝐼𝑇 − 2𝑢𝑢𝑇 𝑇 = 𝐼 − 2𝑢𝑢𝑇 = 𝑄 

𝑄𝑇𝑄 = 𝑄2 = 𝐼 

 

Problem 

 For 𝑢1 = 1 0
𝑇 and 𝑢2 = 1/ 2 −1/ 2

𝑇
 find 𝑄𝑖 = 𝐼 − 2𝑢𝑖𝑢𝑖

𝑇, 𝑖 = 1,2. 

 Explain the effect that matrix 𝑄1 has on the vector 
𝑥
𝑦  when it multiplies the 

vector from the left. 

 Explain the effect that matrix 𝑄2 has on the vector 
𝑥
𝑦  when it multiplies the 

vector from the left. 

 

• A generalized definition is 𝑄 = 𝐼 − 2
𝑣𝑣𝑇

𝑣 2
 with 𝑣 any column vector. 

Examples of elementary orthogonal matrices 

Householder Reflection 



• The goal here is to start with three independent vector 𝑎, 𝑏, 𝑐 and construct three 

orthogonal vectors 𝐴, 𝐵, 𝐶 and finally three orthonormal vectors. 

𝑞1 = 𝐴/ 𝐴 , 𝑞2 = 𝐵/ 𝐵 , 𝑞3 = 𝐶/ 𝐶  

• We begin by choosing 𝐴 = 𝑎. This first direction is accepted. 

• The next direction 𝐵 must be perpendicular to 𝐴. Start with 𝑏 and subtract its 

projection along 𝐴. This leaves the perpendicular part, which is the orthogonal 

vector 𝐵 (what we knew before as error!), defined as: 

𝐵 = 𝑏 −
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏 

 

Problem: Show that 𝐴 and 𝐵 are orthogonal. 

Problem: Show that if 𝑎 and 𝑏 are independent then 𝐵 is not zero. 

The Gram-Schmidt process 



• The third direction starts with 𝑐. This is not a combination of 𝐴 and 𝐵. 

• Most likely 𝑐 is not perpendicular to 𝐴 and 𝐵 . 

• Therefore, subtract its components in those two directions to get 𝐶: 

𝐶 = 𝑐 −
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑐 −
𝐵𝐵𝑇

𝐵𝑇𝐵
𝑐 

 

 

 

The Gram-Schmidt process 



• In general we subtract from every new vector its projections in the 

directions already set. 

• If we had a fourth vector 𝑑, we would subtract three projections onto 𝐴, 𝐵, 𝐶 to get 

𝐷. 

• We make the resulting vectors orthonormal. 

• This is done by dividing the vectors with their magnitudes. 

 

 

 

 

The Gram-Schmidt process: Generalization 



• Assume matrix 𝐴 whose columns are 𝑎, 𝑏, 𝑐. 

• Assume matrix 𝑄 whose columns are 𝑞1, 𝑞2, 𝑞3 defined previously. 

• We are looking for a matrix 𝑅 such that 𝐴 = 𝑄𝑅. Since 𝑄 is an orthogonal matrix 

we have that 𝑅 = 𝑄𝑇𝐴. 

𝑅 = 𝑄𝑇𝐴 =

𝑞1
𝑇

𝑞2
𝑇

𝑞3
𝑇

𝑎 𝑏 𝑐 =

𝑞1
𝑇𝑎 𝑞1

𝑇𝑏 𝑞1
𝑇𝑐

𝑞2
𝑇𝑎 𝑞2

𝑇𝑏 𝑞2
𝑇𝑐

𝑞3
𝑇𝑎 𝑞3

𝑇𝑏 𝑞3
𝑇𝑐

 

• We know that from the method that was used to construct 𝑞𝑖 we have  

𝑞2
𝑇𝑎 = 0,  𝑞3

𝑇𝑎 = 0,  𝑞3
𝑇𝑏 = 0 

and therefore, 

𝑅 =

𝑞1
𝑇𝑎 𝑞1

𝑇𝑏 𝑞1
𝑇𝑐

0 𝑞2
𝑇𝑏 𝑞2

𝑇𝑐

0 0 𝑞3
𝑇𝑐

 

• 𝑄𝑅 decomposition can facilitate the solution of the system 𝐴𝑥 = 𝑏, since 

𝐴𝑥 = 𝑏 ⇒ 𝑄𝑅𝑥 = 𝑏 ⇒ 𝑅𝑥 = 𝑄𝑇𝑏. The later system is easy to solve due to the 

upper triangular form of 𝑅. 

• So far you have learnt two types of decompositions: the 𝑳𝑼 and the 𝑸𝑹. 

 

The factorization 𝐴 = 𝑄𝑅 (𝑄𝑅 decomposition) 



• The Determinant is a crucial number associated with square matrices only. 

 

• It is denoted by det 𝐴  = 𝐴 . These are two different symbols we use for 

determinants. 

 

• If a matrix 𝐴 is invertible, that means det 𝐴 ≠ 0. 

 

• Furthermore, det 𝐴 ≠ 0  means that matrix 𝐴 is invertible.  

 

• For a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑

 the determinant is defined as 
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐. This 

formula is explicitly associated with the solution of the system 𝐴𝑥 = 𝑏 where 𝐴 is 

a 2 × 2 matrix. 

 

Determinants 



1.  det 𝐼 = 1. This is easy to show in the case of a 2 × 2 matrix using the formula of 

the previous slide. 

 

2. If we exchange two rows of a matrix the sign of the determinant reverses. 

Therefore: 

• If we perform an even number of row exchanges the determinant remains the 

same. 

• If we perform an odd number of row exchanges the determinant changes sign. 

• Hence, the determinant of a permutation matrix is 1 or −1. 

1 0
0 1

= 1 and 
0 1
1 0

= −1 as expected. 

 

 

Properties of determinants 



3a. If a row is multiplied with a scalar, the determinant is multiplied with that scalar 

too, i.e., 
𝑡𝑎 𝑡𝑏
𝑐 𝑑

= 𝑡
𝑎 𝑏
𝑐 𝑑

. 

 

3b.  
𝑎 + 𝑎′ 𝑏 + 𝑏′

𝑐 𝑑
=
𝑎 𝑏
𝑐 𝑑

+
𝑎′ 𝑏′

𝑐 𝑑
 

Note that  det 𝐴 + 𝐵 ≠ det 𝐴 + det 𝐵   

I observe linearity only for a single row. 

 

4. Two equal rows leads to 𝑑𝑒𝑡 = 0. 

 As mentioned, if I exchange rows the sign of the determinant changes. 

 In that case the matrix is the same and therefore, the determinant should 

remain the same. 

 Therefore, the determinant must be zero. 

 This is also expected from the fact that the matrix is not invertible. 

  

Properties of determinants 



 

5. 
𝑎 𝑏
𝑐 − 𝑙𝑎 𝑑 − 𝑙𝑏

=
𝑎 𝑏
𝑐 𝑑

+
𝑎 𝑏
−𝑙𝑎 −𝑙𝑏

=
𝑎 𝑏
𝑐 𝑑

− 𝑙
𝑎 𝑏
𝑎 𝑏

=
𝑎 𝑏
𝑐 𝑑

 

Therefore, the determinant after elimination remains the same. 
 

6. A row of zeros leads to 𝑑𝑒𝑡 = 0. This can verified as follows for any matrix: 
0 0
𝑐 𝑑

=
0 ∙ 𝑎 0 ∙ 𝑏
𝑐 𝑑

= 0
𝑎 𝑏
𝑐 𝑑

= 0 
 

7. Consider an upper triangular matrix (∗ is a random element) 
𝑑1 ∗ … ∗

0 𝑑2 … ∗

⋮
0
⋮
0
⋱
…
⋮
𝑑𝑛

= 𝑑1𝑑2…𝑑𝑛 

I can easily show the above using the following steps: 

 I transform the upper triangular matrix to a diagonal one using elimination. 

 I use property 3a 𝑛 times. 

 I end up with the determinant  𝑑𝑖det (𝐼)
𝑛
𝑖=1 =  𝑑𝑖

𝑛
𝑖=1 . 

 Same comments are valid for a lower triangular matrix. 

 

Properties of determinants 



 

8. det 𝐴 = 0 when 𝐴 is singular.  This is because if 𝐴 is singular I get a row of 

zeros by elimination. 

Using the same concept I can say that if 𝐴 is invertible then det 𝐴 ≠ 0. 

In general I have 𝐴 → 𝑈 → 𝐷, det 𝐴 = 𝑑1𝑑2…𝑑𝑛 =product of pivots. 
 

9. det 𝐴𝐵 = det 𝐴 det 𝐵  

det 𝐴−1 =
1

det 𝐴
 

det 𝐴2 = [det(𝐴)]2 

det 2𝐴 = 2𝑛det(𝐴) where 𝐴: 𝑛 × 𝑛 
 

10.  det 𝐴𝑇 = det 𝐴 . 

 In order to show that, we use the 𝐿𝑈 decomposition of 𝐴 and the above 

properties. 𝐴 = 𝐿𝑈 and therefore  𝐴𝑇= 𝑈𝑇𝐿𝑇. Determinant is always product 

of pivots. 

 This property can also be proved by the use of induction. 

 

Properties of determinants 



Determinant of a 2 × 2 matrix 

• The goal is to find the determinant of a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑

 using the properties 

described previously. 

• We know that 
1 0
0 1

= 1 and 
0 1
1 0

= −1. 

•
𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 𝑑

+ 
0 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0
+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+
0 𝑏
0 𝑑

= 

0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+ 0 = 𝑎𝑑

1 0
0 1

+ 𝑏𝑐
0 1
1 0

= 𝑎𝑑 − 𝑏𝑐 

• I can realize the above analysis for 3 × 3 matrices. 

• I break the determinant of a 2 × 2 random matrix into 4 determinants of simpler 

matrices. 

• In the case of a 3 × 3 matrix I break it into 27 determinants. 

• And so on. 



Determinant of any matrix 

 

• For the case of a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑
 we got: 

 

𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0
+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+
0 𝑏
0 𝑑

= 0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+ 0 

 

• The determinants which survive have strictly one entry from each row and 

each column. 
 

• The above is a universal conclusion. 



Determinant of any matrix 

 

• For the case of a 3 × 3 matrix 
𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

 we got: 

 
𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

=

𝑎11 0 0

0
0

𝑎22 0
0 𝑎33

+

𝑎11 0 0

0
0

0 𝑎23
𝑎32 0

+⋯ = 

𝑎11𝑎22𝑎33 − 𝑎11𝑎23 𝑎32 +⋯ 

 

• As mentioned the determinants which survive have strictly one entry from each 

row and each column. 



Determinant of any matrix 

 

• For the case of a 2 × 2 matrix the determinant has 2 survived terms. 

• For the case of a 3 × 3 matrix the determinant has 6 survived terms. 

• For the case of a 4 × 4 matrix the determinant has 24 survived terms. 

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! survived terms. 

 The elements from the first row can be chosen in 𝑛 different ways. 

 The elements from the second row can be chosen in (𝑛 − 1) different ways. 

 and so on… 

 

Problem 

Find the determinant of the following matrix: 
0 0
0 1

1 1
1 0

1 1
1 0

0 0
0 1

 

 

 

 



Big Formula for the determinant 

 

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! terms. 
 

det 𝐴 =  ±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧
𝑛!terms

 

 

 𝑎, 𝑏, 𝑐, … , 𝑧 are different columns. 

 In the above summation, half of the terms have a plus and half of them have a 

minus sign. 

 

 

 

 



Big Formula for the determinant 

 

• For the case of a 𝑛 × 𝑛 matrix, cofactors consist of a method which helps us to 

connect a determinant to determinants of smaller matrices. 

det 𝐴 =  ±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧
𝑛!terms

 

 

• For a 3 × 3 matrix we have det 𝐴 = 𝑎11(𝑎22𝑎33 − 𝑎23 𝑎32) + ⋯ 

• 𝑎22𝑎33 − 𝑎23 𝑎32 is the determinant of a 2 × 2 matrix which is a sub-matrix of the 

original matrix. 

 

 



Cofactors 

• The cofactor of element 𝑎𝑖𝑗 is defined as follows: 

𝐶𝑖𝑗 = ±det 𝑛 − 1 × 𝑛 − 1  matrix 𝐴𝑖𝑗  

 𝐴𝑖𝑗 is the 𝑛 − 1 × 𝑛 − 1  that is obtained from the original matrix if row 𝑖 and 

column 𝑗 are eliminated. 

 We keep the + if (𝑖 + 𝑗) is even. 

 We keep the − if (𝑖 + 𝑗) is odd. 
 

• Cofactor formula along row 1: 

det 𝐴 = 𝑎11𝐶11 + 𝑎12𝐶12 +⋯+ 𝑎1𝑛 𝐶1𝑛 
 

• Generalization: 

 Cofactor formula along row 𝑖: det 𝐴 = 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 +⋯+ 𝑎𝑖𝑛 𝐶𝑖𝑛 

 Cofactor formula along column 𝑗: det 𝐴 = 𝑎1𝑗𝐶1𝑗 + 𝑎2𝑗𝐶2𝑗 +⋯+ 𝑎𝑛𝑗 𝐶𝑛𝑗 
 

• Cofactor formula along any row or column can be used for the final estimation of 

the determinant. 

 

 



Estimation of the inverse 𝐴−1 using cofactors 

• For a 2 × 2 matrix it is quite easy to show that  

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

 

• Big formula for 𝐴−1 

𝐴−1 =
1

det(𝐴)
𝐶𝑇 

𝐴𝐶𝑇 = det(𝐴) ⋅ 𝐼 

• 𝐶𝑖𝑗 is the cofactor of 𝑎𝑖𝑗 which is a sum of products of 𝑛 − 1  entries. 

• In general 
𝑎11 … 𝑎1𝑛
⋮ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

𝐶11 … 𝐶𝑛1
⋮ ⋮
𝐶1𝑛 … 𝐶𝑛𝑛

= det(𝐴) ⋅ 𝐼 

 



Solve 𝐴𝑥 = 𝑏 when 𝐴 is square and invertible 

 

• The solution of the system 𝐴𝑥 = 𝑏 when 𝐴 is square and invertible can be now 

obtained from 

𝑥 = 𝐴−1𝑏 =
1

det(𝐴)
𝐶𝑇𝑏 

• Cramer’s rule: 

 First element of vector 𝑥 is 𝑥1 =
det(𝐵1)

det(𝐴)
. Then 𝑥2 =

det(𝐵2)

det(𝐴)
 and so on. 

 What are these matrices 𝐵𝑖? 

𝐵1 = 𝑏 ⋮ last 𝑛 − 1  columns of 𝐴  

 𝐵1 is obtained by 𝐴 if we replace the first column with 𝑏. 𝐵𝑖 is obtained by 𝐴 if 
we replace the 𝑖th column with 𝑏. 

 In practice we must find (𝑛 + 1) determinants. 

 

 

 

 



The determinant is the volume of a box 

• Consider 𝐴 to be a matrix of size 3 × 3. 

• Observe the three-dimensional box (parallelepiped) formed from the three rows 

or columns of 𝐴. 

• It can be proven that abs( 𝐴 ) ≡volume of the box. 

 

 

 

 



det 𝐴 ≡volume of a box 

• Take 𝐴 = 𝐼. Then the box mentioned previously is the unit cube and its volume 

is 1. 
 

Problem: 

Consider an orthogonal square matrix 𝑄. Prove that det 𝑄 = 1 or −1. 
 

Solution: 

𝑄𝑇𝑄 = 𝐼 ⇒ det 𝑄𝑇𝑄 = det 𝑄𝑇 det 𝑄 = det (𝐼) = 1 

But det 𝑄𝑇 =det 𝑄 ⇒ 𝑄 2 = 1 ⇒ 𝑄 = ±1 
 

• The above results verifies also the fact that the determinant of a 3 × 3 matrix is 

the volume of the cube that is formed by the rows of the matrix. This is because 

if you consider 𝐴 = 𝑄 with 𝑄 being an orthogonal matrix, the related box is a 

rotated version of the unit cube in the 3D space. Its volume is again 1. 
 

• Take 𝑄 and double one of its vectors. The cube’s volume doubles (you have two 

cubes sitting on top of each other.) The determinant doubles as well (property 

3a). 

 

 

 

 

 


