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The column vectors g4, ..., q,, are orthogonal if g;T - qj = 0fori=+j.

In order for a set of n vectors to satisfy the above, their dimension m must be at
least n, i.e., m = n. This is because the maximum number of m — dimensional
vectors that can be orthogonal is m.

If their lengths are all 1, then the vectors are called orthonormal.
0 when i#j (orthogonalvectors)

qT.q.:{
U {1 when i=j (unitvectors: ||g;|]| = 1)

| assign to a matrix with n orthonormal m —dimensional columns the special letter
Qmxn-
Now | will drop the subscript because no one uses it.

| wish to deal first with the case where Q is strictly non-square (it is rectangular),
and therefore, m > n.

The matrix Q is called semi-orthogonal.
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Problem:

Consider a semi-orthogonal matrix Q with real entries, where the number of rows
m exceeds the number of columns n and the columns are orthonormal vectors.

Prove that QTQ = I,y,.

Solution:
_Q1T_
T

Q"Q =% ([a1 a2 - qn] = Lycn.
q,7

= We see that QT is only an inverse from the left.

= This is because there isn’t a matrix Q' for which QQ’ = I,,,«.,- This would imply
that we could find m independent vectors of dimension n, with m > n. This is
not possible.
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In linear algebra, a semi-orthogonal matrix is a non-square matrix with real
entries where: if the number of rows exceeds the number of columns, then the
columns are orthonormal vectors; but if the number of columns exceeds the
number of rows, then the rows are orthonormal vectors.

Equivalently, a rectangular matrix of dimension m X n is semi-orthogonal if
QTQ — Ian1 m > n or QQT = Ime, n > m

The above formula yields the terms left-invertible or right-invertible matrix.

In the above cases, the left or right inverse is the transpose of the matrix. For that
reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a
unitary matrix is the one with an inverse being its transpose.)
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Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension m xn, m > n
|Qx]|| = [|x]|| for every n — dimensional vector x.

Solution:

1Qx11? = (Qx)"(Qx) = x"Q"Qx = x"Ix = x"x = |Qx||* = |lx[I* = [|Qx]| = [lx||.
Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension m X n,

m <n, ||QTx]|| = ||x|| for every m — dimensional vector x.

Solution:

1Q"xII? = (@"x)"(Q"x) =x"QQ"x = x"Ix =x"x = |Q"x|I* = [Ix]I* = [|IQ" x|l =
[1x]].
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Problem 1:

Extend the relationship Q7 Q = I,,,.,, for the case when Q is a square matrix of
dimension n X n and has orthogonal columns.

Solution:
QTQ =14, = Q1 = Q. The inverse is the transpose.

Problem 2:
Prove that QQT = I, ,,,.

Solution:
Since Q is a full rank matrix we can find Q' such that QQ' = I,,,,. This gives:

Q'QQ" = Q" lyxn @ Iixn Q' =Q" > Q' =0Q"

Therefore, we see that Q7 is the two-sided inverse of Q.
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 Rotation matrix;

o-|

cos siné
—sinf@ cosé

cos@ —siné
sin@ cos6@

] and QT = Q1=

Problem
= Show that the columns of Q are orthogonal (straightforward).
= Show that the columns of Q are unit vectors (straightforward).

= Explain the effect that the rotation matrix has on vectors j = [(1)] andi = [(1)]
when it multiplies them from the left.
= The matrix causes rotation of the vectors.
J
—sinf A
cos @

0 - |
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Examples of elementary orthogonal matrices: Permutation

* Permutation matrices:

0O 1 O 0 1
Q=0 0 1landQ = ] . QT = Q7! in both cases.
1 0 O 10

Problem
= Show that the columns of Q are orthogonal (straightforward).
= Show that the columns of Q are unit vectors (straightforward).

X
= Explain the effect that the permutation matrices have on a random vector [y]
Z

or [;C,] when they multiply the vector from the left.

» The matrices cause re-ordering of the elements of these vectors.
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Examples of elementary orthogonal matrices
Householder Reflection

« Householder Reflection matrices
Q = I — 2uu’ with u any vector that satisfies the condition ||u]|, = 1 (unit vector).
Qf =1" — QuuD)T =1 -2uu’ =0Q
QTQ=0Q%*=1

Problem

= Foru; =[1 o0]Tandu, =[1/4/2 —1/\/§]T find Q; =1 — 2uw;T, i =1,2.
X

= Explain the effect that matrix Q; has on the vector ly] when it multiplies the

vector from the left.

= Explain the effect that matrix @, has on the vector [y] when it multiplies the

vector from the left.

'U'UT

Ivll?

* Ageneralized definitionis Q =1 — 2 with v any column vector.
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The Gram-Schmidt process

« The goal here is to start with three independent vector a, b, c and construct three
orthogonal vectors 4, B, C and finally three orthonormal vectors.

q1 = A/llAll, g2 = B/IIBIl, g3 = C/I[CI|
* We begin by choosing A = a. This first direction is accepted.

* The next direction B must be perpendicular to A. Start with b and subtract its
projection along A. This leaves the perpendicular part, which is the orthogonal
vector B (what we knew before as error!), defined as:

AT
B=b———>
AT A
Problem: Show that A and B are orthogonal. Subtract
Problem: Show that if a and b are independent then B is not zero. :’:;j;"g““
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The Gram-Schmidt process

» The third direction starts with c. This is not a combination of A and B.
* Most likely c is not perpendicular to A and B .

» Therefore, subtract its components in those two directions to get C:
AAT BBT
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The Gram-Schmidt process: Generalization

In general we subtract from every new vector its projections in the
directions already set.

If we had a fourth vector d, we would subtract three projections onto 4, B, C to get
D.

We make the resulting vectors orthonormal.
This is done by dividing the vectors with their magnitudes.
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The factorization A = QR (QR decomposition)

Assume matrix A whose columns are a, b, c.
Assume matrix Q whose columns are q4, g, q; defined previously.

We are looking for a matrix R such that A = QR. Since Q is an orthogonal matrix
we have that R = QT A.

CI1T Q1Ta CI1Tb CI1TC
R=Q"4=|q,"|la b cl=|g"a ¢ b ¢ c
CI3T Q3Ta CI3Tb CI3TC

We know that from the method that was used to construct q; we have
g;Ta=0, g3Ta=0, g3'hb=0
and therefore,
¢."a qi'b q'c
R=| 0 g,'b gq,’c
0 0 g3'c
QR decomposition can facilitate the solution of the system Ax = b, since

Ax = b = QRx = b = Rx = QTb. The later system is easy to solve due to the
upper triangular form of R.

So far you have learnt two types of decompositions: the LU and the QR.
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The Determinant is a crucial number associated with square matrices only.

It is denoted by det(A) = |A|. These are two different symbols we use for
determinants.

If a matrix 4 is invertible, that means det(4) # 0.
Furthermore, det(4) # 0 means that matrix 4 is invertible.

a

C
formula is explicitly associated with the solution of the system Ax = b where A is

a 2 X 2 matrix.

For a 2 X 2 matrix [ Z] the determinant is defined as |Ccl Z| = ad — bc. This
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1. det(/) = 1. This is easy to show in the case of a 2 x 2 matrix using the formula of
the previous slide.

2. If we exchange two rows of a matrix the sign of the determinant reverses.
Therefore:

« |f we perform an even number of row exchanges the determinant remains the
same.

+ |f we perform an odd number of row exchanges the determinant changes sign.
« Hence, the determinant of a permutation matrix is 1 or —1.

1 0] _ 0 1;_
|0 1 =1 and 1 O|_ 1 as expected.
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3a. If arow is multiplied with a scalar, the determinant is multiplied with that scalar

3b.

too, i.e., |tca t£| = t|°cl Z :
B
Note that det(4 + B) # det(4) + det(B)

| observe linearity only for a single row.

Two equal rows leads to det = 0.
= As mentioned, if | exchange rows the sign of the determinant changes.

= |n that case the matrix is the same and therefore, the determinant should
remain the same.

= Therefore, the determinant must be zero.
= This is also expected from the fact that the matrix is not invertible.
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a b |:|a b|_|_|a b|:|a b|_l|a b:|a b
c—la d-1b c d —la —Ib c d a b c d
Therefore, the determinant after elimination remains the same.

A row of zeros leads to det = 0. This can verified as follows for any matrix:
0 0|:|O-a 0-b|:0|a b|:0
c d c d c d

Consider an upper triangular matrix (* is a random element)

d1 * e X
(:) d:z T( == dle dn
o 0 .. d,

| can easily show the above using the following steps:

» | transform the upper triangular matrix to a diagonal one using elimination.
» | use property 3a n times.

= | end up with the determinant [}~ d;det(I) = [[}%, d;.

= Same comments are valid for a lower triangular matrix.
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8. det(A) = 0 when A is singular. This is because if A is singular | get a row of
zeros by elimination.

Using the same concept | can say that if 4 is invertible then det(4) # 0.
In general | have A - U — D, det(4) = d,d, ...d,, =product of pivots.

9. det(4B) = det(4) det(B)

det(4™1) = Jet(A)
det(4?) = [det(A4)]?
det(2A4) = 2™det(A) where A:n X n

10. det(AT) = det(4).

* In order to show that, we use the LU decomposition of A and the above
properties. A = LU and therefore AT= UTLT. Determinant is always product
of pivots.

= This property can also be proved by the use of induction.
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Determinantof a 2 x 2 matrix

a b

The goal is to find the determinant of a 2 X 2 matrix |C J

| using the properties
described previously.

We knowthat|(1) (1) =1 and |(1) (1) = —1.

e
04[2 O+ Plso=ad|l O+bel0 1= aa-be

o al*lo al=1c o+ 5 gl+le o+l al=

| can realize the above analysis for 3 X 3 matrices.

| break the determinant of a 2 x 2 random matrix into 4 determinants of simpler
matrices.

In the case of a 3 X 3 matrix | break it into 27 determinants.
And so on.
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Determinant of any matrix

For the case of a 2 X 2 matrix |CCL Z| we got:

a b| _ 0 a 0 0 b 0 b|_ a 0 0 b

e al=le ol lo al*le ol +lo al=0+[5 al+lc ol+0
The determinants which survive have strictly one entry from each row and
each column.

The above is a universal conclusion.
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Determinant of any matrix

a;; @12 Qi3
For the case of a 3 X 3 matrix [d21 Q22 az3| we got:
az1 dzz 0433

a1 a12 a13 al]_ 0 0 aiq O O
Az1 Q2 G231 =10 05Y) Of[+]0 0 Azl + -+ =
a3z; dazz 0As3 0 0 as3 0 az; O

A110A2033 — A110d33 A3 +

As mentioned the determinants which survive have strictly one entry from each
row and each column.
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Determinant of any matrix

For the case of a 2 X 2 matrix the determinant has 2 survived terms.

For the case of a 3 x 3 matrix the determinant has 6 survived terms.

For the case of a 4 X 4 matrix the determinant has 24 survived terms.

For the case of a n X n matrix the determinant has n! survived terms.

» The elements from the first row can be chosen in n different ways.

» The elements from the second row can be chosen in (n — 1) different ways.
» and soon...

Problem
Find the determinant of the following matrix:
0 0 1 1]
0 1 1 0
1 1 0 0
1 0 0 1
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* For the case of a n X n matrix the determinant has n! terms.

det(4) = z Ta142pA3¢ - Anz

n'terms

> a,b,c, ..., z are different columns.

> In the above summation, half of the terms have a plus and half of them have a
minus sign.
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For the case of a n X n matrix, cofactors consist of a method which helps us to
connect a determinant to determinants of smaller matrices.

det(4) = z Ta142pA3¢ - Anz

n'terms

For a 3 x 3 matrix we have det(4) = a;;(a,,a33 — a3 az,) + -

a,,033 — A3 A3 1S the determinant of a 2 X 2 matrix which is a sub-matrix of the
original matrix.
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The cofactor of element a;; is defined as follows:
Cij = idet[(n — 1) X (n — 1) matrix Al-j]
> A;jisthe (n — 1) x (n — 1) that is obtained from the original matrix if row i and
column j are eliminated.
» We keep the + if (i +j) is even.
> We keep the — if (i +j) is odd.

Cofactor formula along row 1:
det(4) = a;1Cyq + a12C12 + -+ a1 Cip

Generalization:
= Cofactor formula along row i: det(A) = a;1Ci; + a;,Cip + -+ a;y, Cip,
= Cofactor formula along column j: det(4) = a;;Cy; + az;Cyj + - + ap;j Cyj

Cofactor formula along any row or column can be used for the final estimation of
the determinant.
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Estimation of the inverse 4~ using cofactors

For a 2 X 2 matrix it is quite easy to show that

la b __ 1 rd —b]
c d ad —bcl—c a
Big formula for A~1
1
-1 _ T
4 det(A)C

ACT = det(A) - I
Cij is the cofactor of a;; which is a sum of products of (n — 1) entries.
In general

a1 - An] |G - G
[’ ] : = det(4) - I

An1 - Auul |Gy . Cpp
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Solve Ax = b when A IS square and invertible

The solution of the system Ax = b when A is square and invertible can be now
obtained from

1
=A"1p = CTh
X det(A)
Cramer’s rule:
= First element of vector x is x; = B Then x, = 252 554 50 on.
det(4) det(4)

= What are these matrices B;?
B; =[b: last(n — 1) columns of A]

» B, is obtained by A if we replace the first column with b. B; is obtained by A if
we replace the ith column with b.

» |n practice we must find (n + 1) determinants.
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The determinant IS the volume of a hox

Consider A to be a matrix of size 3 x 3.

Observe the three-dimensional box (parallelepiped) formed from the three rows
or columns of A.

It can be proven that abs(]A|) =volume of the box.

Z
(as1, a3z, ass)

volume of box
=|determinant|

(a1, ai2,ars) i (@21, a22,a23)
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det(4) =volume of a hox

Take A = I. Then the box mentioned previously is the unit cube and its volume
s 1.

Problem:
Consider an orthogonal square matrix Q. Prove that det(Q) = 1 or —1.

Solution:
QTQ =1 > det(QTQ) = det(QT) det(Q) = det(l) = 1
But det(Q") =det(Q) = 101> = 1= Q| = %1

The above results verifies also the fact that the determinant of a 3 x 3 matrix is
the volume of the cube that is formed by the rows of the matrix. This is because
if you consider A = Q with Q being an orthogonal matrix, the related box is a
rotated version of the unit cube in the 3D space. Its volume is again 1.

Take Q and double one of its vectors. The cube’s volume doubles (you have two
cubes sitting on top of each other.) The determinant doubles as well (property

3a).



