Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lectures 8-9, Friday 30th Octoher 2015

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Semi-orthogonal matrices with more rows than columns

- The column vectors q_{1}, \ldots, q_{n} are orthogonal if $q_{i}{ }^{T} \cdot q_{j}=0$ for $i \neq j$.
- In order for a set of n vectors to satisfy the above, their dimension m must be at least n, i.e., $m \geq n$. This is because the maximum number of m - dimensional vectors that can be orthogonal is m.
- If their lengths are all 1 , then the vectors are called orthonormal.

$$
q_{i}^{T} \cdot q_{j}=\left\{\begin{array}{l}
0 \\
\text { when } \quad i \neq j \quad \text { (orthogonal vectors) } \\
1 \quad \text { when } \quad i=j \quad \text { (unit vectors: }\left\|q_{i}\right\|=1 \text {) }
\end{array}\right.
$$

- I assign to a matrix with n orthonormal m-dimensional columns the special letter $Q_{m \times n}$.
- Now I will drop the subscript because no one uses it.
- I wish to deal first with the case where Q is strictly non-square (it is rectangular), and therefore, $m>n$.
- The matrix Q is called semi-orthogonal.

Semi-orthogonal matrices with more rows than columns

Problem:

Consider a semi-orthogonal matrix Q with real entries, where the number of rows m exceeds the number of columns n and the columns are orthonormal vectors.
Prove that $Q^{T} Q=I_{n \times n}$.

Solution:
$Q^{T} Q=\left[\begin{array}{c}q_{1}{ }^{T} \\ q_{2} \\ \vdots \\ \vdots \\ q_{n}{ }^{T}\end{array}\right]\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]=I_{n \times n}$.

- We see that Q^{T} is only an inverse from the left.
- This is because there isn't a matrix Q^{\prime} for which $Q Q^{\prime}=I_{m \times m}$. This would imply that we could find m independent vectors of dimension n, with $m>n$. This is not possible.

Semi-orthogonal matrices: Generalization

- In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of rows exceeds the number of columns, then the columns are orthonormal vectors; but if the number of columns exceeds the number of rows, then the rows are orthonormal vectors.
- Equivalently, a rectangular matrix of dimension $m \times n$ is semi-orthogonal if

$$
Q^{T} Q=I_{n \times n}, m>n \text { or } Q Q^{T}=I_{m \times m}, n>m
$$

- The above formula yields the terms left-invertible or right-invertible matrix.
- In the above cases, the left or right inverse is the transpose of the matrix. For that reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a unitary matrix is the one with an inverse being its transpose.)

Semi-orthogonal matrices: Generalization

Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension $m \times n, m>n$ $\|Q x\|=\|x\|$ for every n - dimensional vector x.

Solution:

$\|Q x\|^{2}=(Q x)^{T}(Q x)=x^{T} Q^{T} Q x=x^{T} I x=x^{T} x \Rightarrow\|Q x\|^{2}=\|x\|^{2} \Rightarrow\|Q x\|=\|x\|$.

Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension $m \times n$, $m<n,\left\|Q^{T} x\right\|=\|x\|$ for every m - dimensional vector x.

Solution:

$\left\|Q^{T} x\right\|^{2}=\left(Q^{T} x\right)^{T}\left(Q^{T} x\right)=x^{T} Q Q^{T} x=x^{T} I x=x^{T} x \Rightarrow\left\|Q^{T} x\right\|^{2}=\|x\|^{2} \Rightarrow\left\|Q^{T} x\right\|=$ $\|x\|$.

Orthogonal matrices

Problem 1:

Extend the relationship $Q^{T} Q=I_{n \times n}$ for the case when Q is a square matrix of dimension $n \times n$ and has orthogonal columns.

Solution:

$Q^{T} Q=I_{n \times n} \Rightarrow Q^{-1}=Q^{T}$. The inverse is the transpose.

Problem 2:

Prove that $Q Q^{T}=I_{n \times n}$.

Solution:

Since Q is a full rank matrix we can find Q^{\prime} such that $Q Q^{\prime}=I_{n \times n}$. This gives:

$$
Q^{T} Q Q^{\prime}=Q^{T} I_{n \times n} \Rightarrow I_{n \times n} Q^{\prime}=Q^{T} \Rightarrow Q^{\prime}=Q^{T}
$$

Therefore, we see that Q^{T} is the two-sided inverse of Q.

Examples of elementary orthogonal matrices Rotation

- Rotation matrix:

$$
Q=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { and } Q^{T}=Q^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Problem

- Show that the columns of Q are orthogonal (straightforward).
- Show that the columns of Q are unit vectors (straightforward).
- Explain the effect that the rotation matrix has on vectors $j=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $i=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, when it multiplies them from the left.
- The matrix causes rotation of the vectors.

$$
Q \boldsymbol{j}=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right] \stackrel{\text { - }}{\boldsymbol{j}} \boldsymbol{\theta} \boldsymbol{i}
$$

Examples of elementary orthogonal matrices: Permutation

- Permutation matrices:
$Q=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $Q=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \cdot Q^{T}=Q^{-1}$ in both cases.

Problem

- Show that the columns of Q are orthogonal (straightforward).
- Show that the columns of Q are unit vectors (straightforward).
- Explain the effect that the permutation matrices have on a random vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ or $\left[\begin{array}{l}x \\ y\end{array}\right]$ when they multiply the vector from the left.
- The matrices cause re-ordering of the elements of these vectors.

Examples of elementary orthogonal matrices Householder Reflection

- Householder Reflection matrices
$Q=I-2 u u^{T}$ with u any vector that satisfies the condition $\|u\|_{2}=1$ (unit vector).
$Q^{T}=I^{T}-\left(2 u u^{T}\right)^{T}=I-2 u u^{T}=Q$
$Q^{T} Q=Q^{2}=I$

Problem

- For $u_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $u_{2}=\left[\begin{array}{ll}1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]^{T}$ find $Q_{i}=I-2 u_{i} u_{i}{ }^{T}, i=1,2$.
- Explain the effect that matrix Q_{1} has on the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ when it multiplies the vector from the left.
- Explain the effect that matrix Q_{2} has on the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ when it multiplies the vector from the left.
- A generalized definition is $Q=I-2 \frac{v v^{T}}{\|v\|^{2}}$ with v any column vector.

The Gram-Schmidt process

- The goal here is to start with three independent vector a, b, c and construct three orthogonal vectors A, B, C and finally three orthonormal vectors.

$$
q_{1}=A /\|A\|, q_{2}=B /\|B\|, q_{3}=C /\|C\|
$$

- We begin by choosing $A=a$. This first direction is accepted.
- The next direction B must be perpendicular to A. Start with b and subtract its projection along A. This leaves the perpendicular part, which is the orthogonal vector B (what we knew before as error!), defined as:

$$
B=b-\frac{A A^{T}}{A^{T} A} b
$$

Problem: Show that A and B are orthogonal.
Problem: Show that if a and b are independent then B is not zero.

The Gram-Schmidt process

- The third direction starts with c. This is not a combination of A and B.
- Most likely c is not perpendicular to A and B.
- Therefore, subtract its components in those two directions to get C :

$$
C=c-\frac{A A^{T}}{A^{T} A} c-\frac{B B^{T}}{B^{T} B} c
$$

The Gram-Schmidt process: Generalization

- In general we subtract from every new vector its projections in the directions already set.
- If we had a fourth vector d, we would subtract three projections onto A, B, C to get D.
- We make the resulting vectors orthonormal.
- This is done by dividing the vectors with their magnitudes.

$$
\left\{\begin{array}{l}
q_{3}=\frac{C}{\|C\|} \\
\text { Unit vectors } \\
q_{1}=\frac{A}{\|A\|} \\
q_{2}=\frac{B}{\|B\|}
\end{array}\right.
$$

The factorization $A=Q R$ ($Q R$ decomposition)

- Assume matrix A whose columns are a, b, c.
- Assume matrix Q whose columns are q_{1}, q_{2}, q_{3} defined previously.
- We are looking for a matrix R such that $A=Q R$. Since Q is an orthogonal matrix we have that $R=Q^{T} A$.

$$
R=Q^{T} A=\left[\begin{array}{l}
q_{1}{ }^{T} \\
q_{2}{ }^{T} \\
q_{3}{ }^{T}
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{lll}
q_{1}{ }^{T} a & q_{1}{ }^{T} b & q_{1}{ }^{T} c \\
q_{2}{ }^{T} a & q_{2}{ }^{T} b & q_{2}{ }^{T} c \\
q_{3}{ }^{T} a & q_{3}{ }^{T} b & q_{3}{ }^{T} c
\end{array}\right]
$$

- We know that from the method that was used to construct q_{i} we have

$$
q_{2}{ }^{T} a=0, q_{3}{ }^{T} a=0, q_{3}{ }^{T} b=0
$$

and therefore,

$$
R=\left[\begin{array}{ccc}
q_{1}{ }^{T} a & q_{1}{ }^{T} b & q_{1}{ }^{T} c \\
0 & q_{2}{ }^{T} b & q_{2}{ }^{T} c \\
0 & 0 & q_{3}{ }^{T} c
\end{array}\right]
$$

- $Q R$ decomposition can facilitate the solution of the system $A x=b$, since $A x=b \Rightarrow Q R x=b \Rightarrow R x=Q^{T} b$. The later system is easy to solve due to the upper triangular form of R.
- So far you have learnt two types of decompositions: the $L U$ and the $Q R$.

Determinants

- The Determinant is a crucial number associated with square matrices only.
- It is denoted by $\operatorname{det}(A)=|A|$. These are two different symbols we use for determinants.
- If a matrix A is invertible, that means $\operatorname{det}(A) \neq 0$.
- Furthermore, $\operatorname{det}(A) \neq 0$ means that matrix A is invertible.
- For a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the determinant is defined as $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$. This formula is explicitly associated with the solution of the system $A x=b$ where A is a 2×2 matrix.

Properties of determinants

1. $\operatorname{det}(I)=1$. This is easy to show in the case of a 2×2 matrix using the formula of the previous slide.
2. If we exchange two rows of a matrix the sign of the determinant reverses.

Therefore:

- If we perform an even number of row exchanges the determinant remains the same.
- If we perform an odd number of row exchanges the determinant changes sign.
- Hence, the determinant of a permutation matrix is 1 or -1 .

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \text { and }\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=-1 \text { as expected. }
$$

Properties of determinants

3a. If a row is multiplied with a scalar, the determinant is multiplied with that scalar too, i.e., $\left|\begin{array}{cc}t a & t b \\ c & d\end{array}\right|=t\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.

3b. $\left|\begin{array}{cc}a+a^{\prime} & b+b^{\prime} \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|+\left|\begin{array}{ll}a^{\prime} & b^{\prime} \\ c & d\end{array}\right|$
Note that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$
I observe linearity only for a single row.
4. Two equal rows leads to det $=0$.

- As mentioned, if I exchange rows the sign of the determinant changes.
- In that case the matrix is the same and therefore, the determinant should remain the same.
- Therefore, the determinant must be zero.
- This is also expected from the fact that the matrix is not invertible.

Properties of determinants

5. $\left|\begin{array}{cc}a & b \\ c-l a & d-l b\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|+\left|\begin{array}{cc}a & b \\ -l a & -l b\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|-l\left|\begin{array}{ll}a & b \\ a & b\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$

Therefore, the determinant after elimination remains the same.
6. A row of zeros leads to det $=0$. This can verified as follows for any matrix:

$$
\left|\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right|=\left|\begin{array}{cc}
0 \cdot a & 0 \cdot b \\
c & d
\end{array}\right|=0\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=0
$$

7. Consider an upper triangular matrix ($*$ is a random element)

$$
\left|\begin{array}{cccc}
d_{1} & * & \ldots & * \\
0 & d_{2} & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right|=d_{1} d_{2} \ldots d_{n}
$$

I can easily show the above using the following steps:

- I transform the upper triangular matrix to a diagonal one using elimination.
- I use property 3a n times.
- I end up with the determinant $\prod_{i=1}^{n} d_{i} \operatorname{det}(I)=\prod_{i=1}^{n} d_{i}$.
- Same comments are valid for a lower triangular matrix.

Properties of determinants

8. $\operatorname{det}(A)=0$ when A is singular. This is because if A is singular I get a row of zeros by elimination.
Using the same concept I can say that if A is invertible then $\operatorname{det}(A) \neq 0$. In general I have $A \rightarrow U \rightarrow D, \operatorname{det}(A)=d_{1} d_{2} \ldots d_{n}=$ product of pivots.
9. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
$\operatorname{det}\left(A^{2}\right)=[\operatorname{det}(A)]^{2}$
$\operatorname{det}(2 A)=2^{n} \operatorname{det}(A)$ where $A: n \times n$
10. $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

- In order to show that, we use the $L U$ decomposition of A and the above properties. $A=L U$ and therefore $A^{T}=U^{T} L^{T}$. Determinant is always product of pivots.
- This property can also be proved by the use of induction.

Determinant of 2×2 matrix

- The goal is to find the determinant of a 2×2 matrix $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ using the properties described previously.
- We know that $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$ and $\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1$.
- $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\ c & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\ c & 0\end{array}\right|+\left|\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & 0\end{array}\right|+\left|\begin{array}{ll}0 & b \\ 0 & d\end{array}\right|=$ $0+\left|\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & 0\end{array}\right|+0=a d\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|+b c\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=a d-b c$
- I can realize the above analysis for 3×3 matrices.
- I break the determinant of a 2×2 random matrix into 4 determinants of simpler matrices.
- In the case of a 3×3 matrix I break it into 27 determinants.
- And so on.

Determinant of any matrix

- For the case of a 2×2 matrix $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ we got:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right|+\left|\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right|=0+\left|\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right|+0
$$

- The determinants which survive have strictly one entry from each row and each column.
- The above is a universal conclusion.

Determinant of any matrix

- For the case of a 3×3 matrix $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ we got:

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right|+\left|\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & 0 & a_{23} \\
0 & a_{32} & 0
\end{array}\right|+\cdots= \\
& a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+\cdots
\end{aligned}
$$

- As mentioned the determinants which survive have strictly one entry from each row and each column.

Determinant of any matrix

- For the case of a 2×2 matrix the determinant has 2 survived terms.
- For the case of a 3×3 matrix the determinant has 6 survived terms.
- For the case of a 4×4 matrix the determinant has 24 survived terms.
- For the case of a $n \times n$ matrix the determinant has n ! survived terms.
$>$ The elements from the first row can be chosen in n different ways.
$>$ The elements from the second row can be chosen in $(n-1)$ different ways.
> and so on...

Problem

Find the determinant of the following matrix:
$\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$

Biy Formula for the determinant

- For the case of a $n \times n$ matrix the determinant has $n!$ terms.

$$
\operatorname{det}(A)=\sum_{n!\text { terms }} \pm a_{1 a} a_{2 b} a_{3 c} \ldots a_{n z}
$$

$>a, b, c, \ldots, z$ are different columns.
> In the above summation, half of the terms have a plus and half of them have a minus sign.

Big Formula for the determinant

- For the case of a $n \times n$ matrix, cofactors consist of a method which helps us to connect a determinant to determinants of smaller matrices.

$$
\operatorname{det}(A)=\sum_{n: \text { terms }} \pm a_{1 a} a_{2 b} a_{3 c} \ldots a_{n z}
$$

- For a 3×3 matrix we have $\operatorname{det}(A)=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)+\cdots$
- $a_{22} a_{33}-a_{23} a_{32}$ is the determinant of a 2×2 matrix which is a sub-matrix of the original matrix.

Cofactors

- The cofactor of element $a_{i j}$ is defined as follows:

$$
C_{i j}= \pm \operatorname{det}\left[(n-1) \times(n-1) \text { matrix } A_{i j}\right]
$$

$>A_{i j}$ is the $(n-1) \times(n-1)$ that is obtained from the original matrix if row i and column j are eliminated.
$>$ We keep the + if $(i+j)$ is even.
$>$ We keep the - if $(i+j)$ is odd.

- Cofactor formula along row 1 :

$$
\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

- Generalization:
- Cofactor formula along row i : $\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}$
- Cofactor formula along column $j: \operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}$
- Cofactor formula along any row or column can be used for the final estimation of the determinant.

Estimation of the inverse A^{-1} using cofactors

- For a 2×2 matrix it is quite easy to show that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- Big formula for A^{-1}

$$
\begin{aligned}
& A^{-1}=\frac{1}{\operatorname{det}(A)} C^{T} \\
& A C^{T}=\operatorname{det}(A) \cdot I
\end{aligned}
$$

- $C_{i j}$ is the cofactor of $a_{i j}$ which is a sum of products of $(n-1)$ entries.
- In general

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{ccc}
C_{11} & \ldots & C_{n 1} \\
\vdots & & \vdots \\
C_{1 n} & \ldots & C_{n n}
\end{array}\right]=\operatorname{det}(A) \cdot I
$$

Solve $A x=b$ when A is square and invertible

- The solution of the system $A x=b$ when A is square and invertible can be now obtained from

$$
x=A^{-1} b=\frac{1}{\operatorname{det}(A)} C^{T} b
$$

- Cramer's rule:
- First element of vector x is $x_{1}=\frac{\operatorname{det}\left(B_{1}\right)}{\operatorname{det}(A)}$. Then $x_{2}=\frac{\operatorname{det}\left(B_{2}\right)}{\operatorname{det}(A)}$ and so on.
- What are these matrices B_{i} ?

$$
B_{1}=[b \vdots \quad \text { last }(n-1) \text { columns of } A]
$$

- B_{1} is obtained by A if we replace the first column with b. B_{i} is obtained by A if we replace the i th column with b.
- In practice we must find $(n+1)$ determinants.

The determinant is the volume of a hox

- Consider A to be a matrix of size 3×3.
- Observe the three-dimensional box (parallelepiped) formed from the three rows or columns of A.
- It can be proven that abs $(|A|) \equiv$ volume of the box.

$\operatorname{det}(A) \equiv$ volume of a hox

- Take $A=I$. Then the box mentioned previously is the unit cube and its volume is 1 .

Problem:

Consider an orthogonal square matrix Q. Prove that $\operatorname{det}(Q)=1$ or -1 .

Solution:

$Q^{T} Q=I \Rightarrow \operatorname{det}\left(Q^{T} Q\right)=\operatorname{det}\left(Q^{T}\right) \operatorname{det}(Q)=\operatorname{det}(I)=1$
But $\operatorname{det}\left(Q^{T}\right)=\operatorname{det}(Q) \Rightarrow|Q|^{2}=1 \Rightarrow|Q|= \pm 1$

- The above results verifies also the fact that the determinant of a 3×3 matrix is the volume of the cube that is formed by the rows of the matrix. This is because if you consider $A=Q$ with Q being an orthogonal matrix, the related box is a rotated version of the unit cube in the 3D space. Its volume is again 1.
- Take Q and double one of its vectors. The cube's volume doubles (you have two cubes sitting on top of each other.) The determinant doubles as well (property 3a).

