Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lectures 7 - 8, Tuesulay $25^{\text {min }}$ Octoher 2016

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Mathematics for Signals and Systems

In this set of lectures we will talk about:

- An application of Least Squares method
- Semi-orthogonal matrices
- Rotation, Permutation and Householder Reflection matrices
- Gram-Schmidt Orthogonalisation
- QR Decomposition

Imperial College

London

Application: Least squares method. Fitting hy a line.

Problem:

I am given the three points shown with stars in the figure below. I want to fit them on the "best" possible straight line.

- The given points are $(1,1),(2,2),(3,2)$.
- The required line is described by an equation of the form $b=C+D t$, with C and D unknowns.
- The three given points must satisfy the line equation:

$$
\begin{gathered}
C+D=1 \\
C+2 D=2 \\
C+3 D=2
\end{gathered}
$$

Imperial College

Application: Least squares method. Fitting by a line cont.

Problem:

The previous problem is translated to solving the system

$$
A x=b=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] .
$$

The system is not solvable because $b \notin C(A)$ (show that).

Solution:

Solve $A \hat{x}=p$ instead, where p is the projection of b onto $C(A)$.
For a random b we write $b-p=e \Rightarrow b=p+e$.
p is in the column space of A and e is perpendicular to the column space of A.
As already mentioned, projection eliminates e and keeps p.

Imperial College

Solution of the specific example

- As proven, the proposed approach $A \hat{x}=p$ yields the same solution which can be obtained if we look for an \hat{x} that minimizes the function:

$$
\|A \hat{x}-b\|^{2}=\|e\|^{2}
$$

- The above function is the square of the magnitude of the error vector.
- Apart from Least Squares Minimizations, this method is also called Linear Regression.
- For the particular problem we have:

$$
A^{T} A=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right] \quad A^{T} b=\left[\begin{array}{c}
5 \\
11
\end{array}\right]
$$

- We can use the inverse $\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}7 / 3 & -1 \\ -1 & 1 / 2\end{array}\right]$.
- Or we can solve directly the equations

$$
\begin{aligned}
& 3 C+6 D=5 \\
& 6 C+14 D=11
\end{aligned}
$$

- Final solution is $D=\frac{1}{2}, C=\frac{2}{3}$. The "best" line is $b=\frac{2}{3}+\frac{1}{2} t$ shown in the previous figure in red.

Solution of the specific example

- As mentioned, an alternative approach is to find the unknowns that minimize the error function:

$$
(C+D-1)^{2}+(C+2 D-2)^{2}+(C+3 D-2)^{2}
$$

- We must take the partial derivatives with respect to the two unknowns and set them to zero.
- By implementing the above we get the same solution as previously.
- The vector p is obtained by:

$$
\begin{aligned}
& p_{1}=C+D=\frac{1}{2}+\frac{2}{3}=\frac{7}{6} \\
& p_{2}=C+2 D=\frac{2}{3}+1=\frac{5}{3} \\
& p_{3}=C+3 D=\frac{2}{3}+\frac{3}{2}=\frac{13}{6}
\end{aligned}
$$

Solution of the specific example

$$
\begin{aligned}
& e_{1}=b_{1}-p_{1}=1-\frac{7}{6}=-\frac{1}{6} \\
& e_{2}=b_{2}-p_{2}=2-\frac{5}{3}=\frac{1}{3} \\
& e_{3}=b_{3}-p_{3}=2-\frac{13}{6}=-\frac{1}{6} \\
& p^{T} \cdot e=\left[\begin{array}{lll}
\frac{7}{6} & \frac{5}{3} & \frac{13}{6}
\end{array}\right] \cdot\left[\begin{array}{c}
-\frac{1}{6} \\
\frac{1}{3} \\
-\frac{1}{6}
\end{array}\right]=-\frac{7}{36}+\frac{20}{36}-\frac{13}{36}=0
\end{aligned}
$$

p and e are perpendicular to each other as expected.

The matrix $\boldsymbol{A}^{T} \boldsymbol{A}$

Problem:

We mentioned previously that if a matrix A of dimension $m \times n$ has independent columns $a_{1}, a_{2}, \ldots, a_{n}$ then $A^{T} A$ is invertible. The proof of this statement is given below.

Solution:

- I must prove that $A^{T} A x=\mathbf{0}$ implies $x=\mathbf{0}$ where x is a column vector $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$. I assume that $A^{T} A x=\mathbf{0}$.
- The above implies $x^{T} A^{T} A x=0 \Rightarrow(A x)^{T} A x=0$.
- I define $A x=y$ and therefore $y^{T} y=0 \Rightarrow\|y\|^{2}=0$.
- We know that $y^{T} y=\|y\|^{2}$ is the sum of the squares of the elements of a vector.
- Note that for complex vectors $\|y\|^{2}$ is defined as $y^{*^{T}} y$.
- Therefore, $\|y\|^{2}=0$ implies that $y=\mathbf{0}$.
- In the above case $y=A x=\mathbf{0}$ implies $\sum_{i=1}^{n} x_{i} a_{i}=\mathbf{0}$. This condition holds only if $x=\mathbf{0}$ if A has independent columns.

The matrix $\boldsymbol{A} A^{T}$

Problem:

If A has independent rows then $A A^{T}$ is invertible. The proof of this follows in a similar fashion as in the previous slide.

Solution:

- I must prove that $A A^{T} x=\mathbf{0}$ implies $x=\mathbf{0}$ where x is a column vector. I assume that $A A^{T} x=\mathbf{0}$.
- The above implies $x^{T} A A^{T} x=0 \Rightarrow\left(A^{T} x\right)^{T} A^{T} x=0$.
- I define $A^{T} x=y$ and therefore $y^{T} y=0 \Rightarrow\|y\|^{2}=0$.
- $\|y\|^{2}=0$ implies that $y=\mathbf{0}$.
- In the above case $y=A^{T} x=\mathbf{0}$ implies that $x=\mathbf{0}$ if A^{T} has independent columns (see previous slide) or, equivalently, if A has independent rows.

Orthogonal and Orthonormal vectors revision

- Lets recall that:
- The column vectors q_{1}, \ldots, q_{n} are orthogonal if $q_{i}^{T} \cdot q_{j}=0$ for $i \neq j$.
- If their lengths are all 1 , then the vectors are called orthonormal.

$$
q_{i}{ }^{T} \cdot q_{j}=\left\{\begin{array}{lc}
0 & \text { when } i \neq j \quad \text { (orthogonal vectors) } \\
1 & \text { when } \left.i=j \quad \text { (unit vectors: }\left\|q_{i}\right\|=1\right)
\end{array}\right.
$$

- In order for a set of n vectors to satisfy the above, their dimension m must be at least n, i.e., $m \geq n$. This is because the maximum number of m-dimensional vectors that can be orthogonal is m.

Imperial College

Semi-orthogonal matrices with more rows than columns

- I assign to a matrix with n orthonormal m-dimensional columns q_{i} the special letter Q.
- I wish to deal first with the case where Q is strictly non-square (it is rectangular), and therefore, $m>n$.
- The matrix Q is called semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix Q with real entries, of dimension $m \times n, m>n$. The columns are orthonormal vectors. Prove that $Q^{T} Q=I_{n \times n}$.

Solution:

$Q^{T} Q=\left[\begin{array}{c}q_{1}{ }^{T} \\ q_{2}{ }^{T} \\ \vdots \\ q_{n}{ }^{T}\end{array}\right]\left[\begin{array}{llll}q_{1} & q_{2} & \ldots & q_{n}\end{array}\right]=I_{n \times n}$.

- We see that Q^{T} is an inverse from the left.
- This is because there isn't a matrix Q^{\prime} for which $Q Q^{\prime}=I_{m \times m}$. This would imply that we could find m independent vectors of dimension n, with $m>n$. This is not

Imperial College

Semi-orthogonal matrices with more columns than rows

- I again assign to a matrix with m orthonormal n-dimensional rows r_{i} the special letter Q.
- I wish to deal with the case where Q is strictly non-square (it is rectangular), and therefore, $m<n$.
- Obviously the matrix Q is defined now is also semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix Q with real entries, of dimension $m \times n, m<$ n. The columns are orthonormal vectors. Prove that $Q Q^{T}=I_{m \times m}$.

Solution:

$Q Q^{T}=\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{n}\end{array}\right]\left[\begin{array}{llll}r_{1}{ }^{T} & r_{2}{ }^{T} & \ldots & r_{n}{ }^{T}\end{array}\right]=I_{m \times m}$.

- We see now that Q^{T} is an inverse from the right.

Semi-orthogonal matrices: Generalization

- In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of rows exceeds the number of columns, then the columns are orthonormal vectors; but if the number of columns exceeds the number of rows, then the rows are orthonormal vectors.
- Equivalently, a rectangular matrix of dimension $m \times n$ is semi-orthogonal if

$$
Q^{T} Q=I_{n \times n}, m>n \text { or } Q Q^{T}=I_{m \times m}, n>m
$$

- The above formula yields the terms left-invertible or right-invertible matrix.
- In the above cases, the left or right inverse is the transpose of the matrix. For that reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a unitary matrix is the one with an inverse being its transpose.)

Semi-orthogonal matrices: Generalization

Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension $m \times n, m>n$ $\|Q x\|=\|x\|$ for every n - dimensional vector x.

Solution:

$\|Q x\|^{2}=(Q x)^{T}(Q x)=x^{T} Q^{T} Q x=x^{T} I x=x^{T} x \Rightarrow\|Q x\|^{2}=\|x\|^{2} \Rightarrow\|Q x\|=\|x\|$.

Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension $m \times n, m<$ $n,\left\|Q^{T} x\right\|=\|x\|$ for every m - dimensional vector x.

Solution:

$\left\|Q^{T} x\right\|^{2}=\left(Q^{T} x\right)^{T}\left(Q^{T} x\right)=x^{T} Q Q^{T} x=x^{T} I x=x^{T} x \Rightarrow\left\|Q^{T} x\right\|^{2}=\|x\|^{2} \Rightarrow\left\|Q^{T} x\right\|=$ $\|x\|$.

Orthogonal matrices

Problem 1:

Extend the relationship $Q^{T} Q=I_{n \times n}$ for the case when Q is a square matrix of dimension $n \times n$ and has orthogonal columns.

Solution:

$Q^{T} Q=I_{n \times n} \Rightarrow Q^{-1}=Q^{T}$. The inverse is the transpose.

Problem 2:

Prove that $Q Q^{T}=I_{n \times n}$.

Solution:

Since Q is a full rank matrix we can find Q^{\prime} such that $Q Q^{\prime}=I_{n \times n}$. This gives:

$$
Q^{T} Q Q^{\prime}=Q^{T} I_{n \times n} \Rightarrow I_{n \times n} Q^{\prime}=Q^{T} \Rightarrow Q^{\prime}=Q^{T}
$$

Therefore, we see that Q^{T} is the two-sided inverse of Q.

Examples of elementary orthogonal matrices. Rotation matrices.

- The rotation matrix of size 2×2 is defined as:
$Q=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and $Q^{T}=Q^{-1}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

Problems:

- The columns (and rows) of Q are orthogonal (straightforward to prove).
- The columns (and rows) of Q are vectors of magnitude 1 (also straightforward).
- Explain the effect that the rotation matrix has on vectors $j=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $i=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, when it multiplies them from the left.
- The matrix causes rotation of the vectors.

Examples of elementary orthogonal matrices Permutation Matrices

- Permutation matrices reorder the rows of identity matrices. Examples are:
$Q=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $Q=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \cdot Q^{T}=Q^{-1}$ in both cases.

Problems:

- The columns of Q are orthogonal (straightforward).
- The columns of Q are unit vectors (straightforward).
- Explain the effect that the permutation matrices have on a random vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ or $\left[\begin{array}{l}x \\ y\end{array}\right]$ when they multiply the vector from the left.
- Obviously the matrices cause re-ordering of the elements of these vectors.

Examples of elementary orthogonal matrices Householder Reflection Matrices

- Householder reflection matrices are defined as:
$Q=I-2 u u^{T}$ with u any vector that satisfies the condition $u^{T} u=1$ (unit vector).
$Q^{T}=I^{T}-\left(2 u u^{T}\right)^{T}=I-2 u u^{T}=Q$
$Q^{T} Q=Q^{2}=\left(I-2 u u^{T}\right)\left(I-2 u u^{T}\right)=I-4 u u^{T}+4 u u^{T} u u^{T}$ and $u^{T} u=1$ and therefore, $Q^{T} Q=Q^{2}=I-4 u u^{T}+4 u u^{T}=I$

Problems:

- For $u_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $u_{2}=\left[\begin{array}{ll}1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]^{T}$ find $Q_{i}=I-2 u_{i} u_{i}^{T}, i=1,2$.
- Explain the effect that matrix Q_{1} has on the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ when it multiplies the vector from the left.
- Explain the effect that matrix Q_{2} has on the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ when it multiplies the vector from the left.
- A generalized definition is $Q=I-2 \frac{v v^{T}}{\|v\|^{2}}$ with v any column vector.

The Gram-Schmidt process

- The goal here is to start with three independent vectors a, b, c and construct three orthogonal vectors A, B, C and finally three orthonormal vectors.

$$
q_{1}=A /\|A\|, q_{2}=B /\|B\|, q_{3}=C /\|C\|
$$

- We begin by choosing $A=a$. This first direction is accepted.
- The next direction B must be perpendicular to A. We start with b and subtract its projection along A. This leaves the part of b which we call vector B (what we knew before as the error of projection), defined as:

$$
B=b-\frac{A A^{T}}{A^{T} A} b
$$

The Gram-Schmidt process

Problem:

Show that A and B are orthogonal. Note that $A=a$.
Solution:
$A^{T} B=A^{T} b-A^{T} \frac{A A^{T}}{A^{T} A} b=A^{T} b-\frac{A^{T} A A^{T}}{A^{T} A} b=A^{T} b-A^{T} b=0$
The inner product between A and B is 0 and therefore, A and B are orthogonal.

Problem:

Show that if a and b are independent then B is not zero.

$$
B=b-\frac{A A^{T}}{A^{T} A} b
$$

Solution:

The vector $\frac{A A^{T}}{A^{T} A} b$ is the projection of vector b onto vector a. In order for B to be zero the projection of vector b onto vector a must be equal to b itself. This happens only when a and b are dependent.

The Gram-Schmidt process

- The third direction starts with c. This is not a combination of A and B.
- Most likely c is not already perpendicular to A and B.
- Therefore, we subtract the projections of c along A and B to get C :

$$
C=c-\frac{A A^{T}}{A^{T} A} c-\frac{B B^{T}}{B^{T} B} c
$$

- In general we subtract from every new vector its projections in the directions already set.
- If we had a fourth vector d, we would subtract three projections onto A, B, C to get D.
- We make the resulting vectors orthonormal.
- This is done by dividing the vectors with their magnitudes.

$$
\left\{\begin{array}{l}
q_{3}=\frac{C}{\|C\|} \\
\text { Unit vectors } \\
q_{q_{1}}=\frac{A}{\|A\|}
\end{array} q_{2}=\frac{B}{\|B\|}\right.
$$

Imperial College

The factorization $A=Q R$ known as $Q R$ decomposition

- Assume matrix A whose columns are a, b, c.
- Assume matrix Q whose columns are q_{1}, q_{2}, q_{3} defined previously.
- We are looking for a matrix R such that $A=Q R$. Since Q is an orthogonal matrix we have that $R=Q^{T} A$.

$$
R=Q^{T} A=\left[\begin{array}{l}
q_{1}{ }^{T} \\
q_{2}{ }^{T} \\
q_{3}{ }^{T}
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{lll}
q_{1}{ }^{T} a & q_{1}{ }^{T} b & q_{1}{ }^{T} c \\
q_{2}{ }^{T} a & q_{2}{ }^{T} b & q_{2}{ }^{T} c \\
q_{3}{ }^{T} a & q_{3}{ }^{T} b & q_{3}{ }^{T} c
\end{array}\right]
$$

- We know that from the method that was used to construct q_{i} we have

$$
q_{2}{ }^{T} a=0, q_{3}{ }^{T} a=0, q_{3}{ }^{T} b=0 \text { (see Appendix) }
$$

and therefore,

$$
R=\left[\begin{array}{ccc}
q_{1}{ }^{T} a & q_{1}{ }^{T} b & q_{1}{ }^{T} c \\
0 & q_{2}{ }^{T} b & q_{2}{ }^{T} c \\
0 & 0 & q_{3}{ }^{T} c
\end{array}\right]
$$

- $Q R$ decomposition can facilitate the solution of the system $A x=b$, since $A x=$ $b \Rightarrow Q R x=b \Rightarrow R x=Q^{T} b$. The later system is easy to solve due to the upper triangular form of R.
- So far you have learnt two types of decompositions: the $L U$ and the $Q R$.

Generalization of QR decomposition

- Any matrix A of dimension $m \times n$ with independent columns can be factored into $Q R$.
- The $m \times n$ matrix Q has orthonormal columns.
- The square matrix R is upper triangular with positive diagonal.
- $A^{T} A=R^{T} Q^{T} Q R=R^{T} R$
- With the use of QR decomposition the least squares solution of the system of equations $A x=b$ becomes:

$$
A^{T} A \hat{x}=A^{T} b \Rightarrow R^{T} R \hat{x}=R^{T} Q^{T} b \Rightarrow R \hat{x}=Q^{T} b
$$

- The system of equations $R \hat{x}=Q^{T} b$ can be easily solved with back-substitution.

Appendix QR

- $q_{2}{ }^{T} a=0$. The proof of this is straightforward.
- $q_{3}{ }^{T} a=0$. In order to prove this we can prove that $C^{T} a=0$.

$$
\begin{aligned}
& C^{T}=c^{T}-c^{T} \frac{A A^{T}}{A^{T} A}-c^{T} \frac{B B^{T}}{B^{T} B} \Rightarrow C^{T} a=c^{T} a-c^{T} \frac{A A^{T}}{A^{T} A} a-c^{T} \frac{B B^{T}}{B^{T} B} a \Rightarrow \\
& C^{T} a=c^{T} a-c^{T} \frac{A A^{T}}{A^{T} A} a=0 \text { since } A=a .
\end{aligned}
$$

- $q_{3}{ }^{T} b=0$. In order to prove this we can prove that $C^{T} b=0$.

$$
\begin{aligned}
& C^{T}=c^{T}-c^{T} \frac{A A^{T}}{A^{T} A}-c^{T} \frac{B B^{T}}{B^{T} B} \Rightarrow C^{T} b=c^{T} b-c^{T} \frac{A A^{T}}{A^{T} A} b-c^{T} \frac{B B^{T}}{B^{T} B} b \Rightarrow \\
& C^{T} b=c^{T} b+c^{T}(B-b)-c^{T} \frac{B B^{T}}{B^{T} B} b \Rightarrow C^{T} b=c^{T} B-c^{T} \frac{B B^{T}}{B^{T} B} b . \\
& \frac{B B^{T}}{B^{T} B} b=\frac{B B^{T}}{B^{T} B}\left(B+\frac{A A^{T}}{A^{T} A} b\right)=\frac{B B^{T}}{B^{T} B} B+\frac{B B^{T} A A^{T}}{B^{T} B A^{T} A} b \text { but } B^{T} A=0 . \text { Therefore } \frac{B B^{T}}{B^{T} B} b=B .
\end{aligned}
$$

Thus, $C^{T} b=c^{T} B-c^{T} \frac{B B^{T}}{B^{T} B} b=c^{T} B-c^{T} B=0$.

