Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lectures 16-17, Tuestay 18" Movember 2014
 DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Mathematics for Signals and Systems

Symmetric matrices

- In this lecture we will be interested in symmetric matrices.
- Consider a matrix $A=A^{T}$.
- The eigenvalues are real.
- The eigenvectors can be chosen to be perpendicular. If we also choose them to have a magnitude of 1, then the eigenvectors can be chosen to form an orthonormal set of vectors.
- For a random matrix with independent eigenvectors we have $A=S \Lambda S^{-1}$.
- For a symmetric matrix with orthonormal eigenvectors we have

$$
A=Q \Lambda Q^{-1}=Q \Lambda Q^{T} \text { (symmetric) }
$$

Mathematics for Signals and Systems

Symmetric matrices

- Consider $A x=\lambda x$.
- If we take complex conjugate in both sides we get

$$
(A x)^{*}=(\lambda x)^{*} \Rightarrow A^{*} x^{*}=\lambda^{*} x^{*}
$$

- If A is real then $A x^{*}=\lambda^{*} x^{*}$. Therefore, if λ is an eigenvalue of A with corresponding eigenvector x then λ^{*} is an eigenvalue of A with corresponding eigenvector x^{*}.

Mathematics for Signals and Systems

Symmetric matrices

- Problem: Why are the eigenvalues of a symmetric matrix real?

We proved that if A is real then $A x^{*}=\lambda^{*} x^{*}$.
If we take transpose in both sides we get

$$
x^{* T} A^{T}=\lambda^{*} x^{* T} \Rightarrow x^{* T} A=\lambda^{*} x^{* T}
$$

We now multiply both sides from the right with x and we get

$$
x^{* T} A x=\lambda^{*} x^{* T} x
$$

We take now $A x=\lambda x$. We now multiply both sides from the left with $x^{* T}$ and we get

$$
x^{* T} A x=\lambda x^{* T} x \text {. }
$$

From the above we see that $\lambda x^{* T} x=\lambda^{*} x^{* T} x$ and since $x^{* T} x \neq 0$, we see that $\lambda=\lambda^{*}$.

Mathematics for Signals and Systems

Complex matrices: Which complex matrices are "good"? (meaning real eigenvalues and orthogonal eigenvectors)

- Consider $A x=\lambda x$ with A possibly complex.
- If we take complex conjugate in both sides we get

$$
(A x)^{*}=(\lambda x)^{*} \Rightarrow A^{*} x^{*}=\lambda^{*} x^{*}
$$

- If we take transpose in both sides we get

$$
x^{* T} A^{* T}=\lambda^{*} x^{* T}
$$

We now multiply both sides from the right with x we get

$$
x^{* T} A^{* T} x=\lambda^{*} x^{* T} x
$$

We take now $A x=\lambda x$. We now multiply both sides from the left with $x^{* T}$ and we get

$$
x^{* T} A x=\lambda x^{* T} x .
$$

From the above we see that if $A^{* T}=A$ then $\lambda x^{* T} x=\lambda^{*} x^{* T} x$ and since $x^{* T} x \neq 0$, we see that $\lambda=\lambda^{*}$.

Mathematics for Signals and Systems

Eigenvalue sign

- We proved that the eigenvalues of a symmetric matrix are real.
- It can be proven that the signs of the pivots are the same as the signs of the eigenvalues.
- Just to remind you:

Product of pivots=Product of eigenvalues=Determinant

Imperial College

Mathematics for Signals and Systems

Positive definite matrices

- These are matrices with all their eigenvalues real and positive!
- Therefore, the pivots are positive and the determinant is positive.
- Positive determinant doesn't guarantee positive definiteness. All subdeterminants have to be positive.
- Example: Consider the matrix

$$
A=\left[\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right]
$$

Pivots are 5 and 11/5. This comes directly from the fact that the product of pivots equals the determinant.
Eigenvalues are obtained from:

$$
\begin{aligned}
& (5-\lambda)(3-\lambda)-4=0 \Rightarrow \lambda^{2}-8 \lambda+11=0 \\
& \lambda_{1,2}=\frac{8 \pm \sqrt{64-44}}{2}=\frac{8 \pm \sqrt{20}}{2}=4 \pm \sqrt{5}
\end{aligned}
$$

Imperial College

Mathematics for Signals and Systems

Complex vectors and matrices

- Consider a complex column vector $z=\left[\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{n}\end{array}\right]^{T}$.
- It's length is $z^{* T} z=\sum_{i=1}^{n}\left|z_{i}\right|^{2}$.
- When we both transpose and conjugate we can use the symbol $z^{H}=z^{* T}$ (Hermitian).
- Inner product of 2 complex vectors is $y^{* T} x=y^{H} x$.
- For complex matrices the symmetry is defined as $A^{* T}=A$. These are called Hermitian matrices.
- They have real eigenvalues and perpendicular unit eigenvectors. If these are complex we check their length using $q_{i}{ }^{* T} q_{i}$ and also $Q^{* T} Q=I$.
- Example: Consider the matrix

$$
A=\left[\begin{array}{cc}
2 & 3+i \\
3-i & 5
\end{array}\right]
$$

Mathematics for Signals and Systems

The Fourier matrix

- The $n \times n$ Fourier matrix is defined as:

$$
F_{n}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & w & w^{2} & \ldots & w^{(n-1)} \\
1 & w^{2} & w^{4} & \ldots & w^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{(n-1)} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{array}\right]
$$

- In this matrix we will number the first row and column with 0 .
- We define $w=e^{i \frac{i \pi}{n}}$. For w is preferable to use polar representation.
- $F_{n}(i, j)=w^{i j}$.
- We must stress out that it is better to use the notation w_{n} instead of w.
- I have avoided this notation to make things look simpler.

Imperial College

London

Mathematics for Signals and Systems

The Fourier matrix

- The parameter $w=e^{i \frac{i \pi}{n}}$ lies on the unit circle shown below. The case depicted below refers to $n=8$ where the points $w^{m}, m=0, \ldots, 7$ of the second row (row 1) of the Fourier matrix are shown.

- We must stress out that the Fourier matrix is totally constructed out of numbers of the form $w_{n}{ }^{k}$.

Mathematics for Signals and Systems

The Fourier matrix for $n=4$

- The parameter $w_{4}=e^{i \frac{2 \pi}{4}}=e^{i \frac{\pi}{2}}=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)=i$.
- The quantities inside Fourier matrix are $1, i, i^{2}, i^{3}, i^{4}, i^{6}, i^{9}$.

$$
F_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & i^{2} & i^{4} & i^{6} \\
1 & i^{3} & i^{6} & i^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

- The columns of this matrix are orthogonal.
- Remember that the inner product of 2 complex vectors is $y^{* T} x=y^{H} x$!

Imperial College
 London

Mathematics for Signals and Systems

The Fourier matrix for $n=4$

- I can show that the columns are orthogonal but they are not orthonormal.
- I can fix this by dividing the Fourier matrix with the length of the rows (columns). In this case it is 2 . Therefore, I can write:

$$
F_{4}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & i^{2} & i^{4} & i^{6} \\
1 & i^{3} & i^{6} & i^{9}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

- We know that $F_{4}{ }^{H} F_{4}=I$.

Imperial College

London

Mathematics for Signals and Systems

The Fast Fourier Transform

- We can prove that there is a connection between $F_{2 n}$ and F_{n}.
- This is expected from the fact that $w_{2 n}{ }^{2}=w_{n}$. It can be shown that:

[$F_{2 n}$]: yields to $(2 n)^{2}$ multiplications
$\left[\begin{array}{cc}F_{n} & \mathbf{0} \\ \mathbf{0} & F_{n}\end{array}\right]+$ influence of D_{n} : yield to $2 \times(n)^{2}+n$ multiplications!!! (I_{n} and $P_{2 n}$ don't contribute to multiplications)

Mathematics for Signals and Systems

The Fast Fourier Transform

- In the previous analysis the matrix D_{n} is defined as:

$$
D_{n}=\left[\begin{array}{lllll}
1 & & & & \\
& w & & & \\
& & w^{2} & & \\
& & & \ddots & \\
& & & & w^{n-1}
\end{array}\right]
$$

- We start with $(2 n)^{2}$ multiplications and manage to reduce them to $2 \times(n)^{2}+n$ multiplications!!

Imperial College

Mathematics for Signals and Systems

The Fast Fourier Transform

- The next step is to break the F_{n} down. As you see, I use the above idea recursively!

$$
\begin{aligned}
& {\left[F_{2 n}\right]=\left[\begin{array}{cc}
I_{n} & D_{n} \\
I_{n} & -D_{n}
\end{array}\right]\left[\begin{array}{cc}
F_{n} & \mathbf{0} \\
\mathbf{0} & F_{n}
\end{array}\right] P_{2 n}=} \\
& =\left[\begin{array}{cc}
I_{n} & D_{n} \\
I_{n} & -D_{n}
\end{array}\right]\left[\begin{array}{ccc}
I_{n / 2} & D_{n / 2} & \mathbf{0} \\
I_{n / 2} & -D_{n / 2} & \mathbf{0} \\
\mathbf{0} & \begin{array}{c}
I_{n / 2} \\
I_{n / 2} \\
I_{n / 2}
\end{array} & -D_{n / 2}
\end{array}\right]\left[\begin{array}{cccc}
F_{n / 2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & F_{n / 2} & \mathbf{0} \\
\mathbf{0} & F_{n / 2} & \mathbf{0} \\
& & \mathbf{0} & F_{n / 2}
\end{array}\right]
\end{aligned}
$$

- We started with $(2 n)^{2}$ multiplications and manage to reduce them to $2 \times(n)^{2}+n$ multiplications!!
- Now the n^{2} multiplications are reduced to $2 \times(n / 2)^{2}+n / 2$ multiplications!!

Imperial College

Mathematics for Signals and Systems

The Fast Fourier Transform

- I can carry on this recursive procedure until I reach 1×1 Fourier matrices.
- I will have a large number of matrices piling up.
- It can be proven that if we start with a matrix of size n^{2} the total number of multiplications is reduced to

$$
\frac{1}{2} n \log _{2}(n)
$$

- Consider $n=1024=2^{10}$. In that case $n^{2}>1,000,000$.
- $\frac{1}{2} 1024 \log _{2}(1024)=5 \times 1024$.
- We reduced the multiplications from 1024×1024 to 5×1024, i.e., by a factor of 200 !
- The Fast Fourier Transform is one of the most important algorithms in modern scientific computing!

Mathematics for Signals and Systems

Positive Definite Matrix

- We are talking about symmetric matrices.
- We have various tests. We take the 2×2 case $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
"Eigenvalues are positive $\lambda_{1}>0, \lambda_{2}>0$
" All determinates of leading ("north west") sub-matrices are positive

$$
a>0, a c-b^{2}>0
$$

"Pivots are positive $a>0, \frac{a c-b^{2}}{a}>0$
» Quadratic form is positive $x^{T} A x>0, x$ is any vector!

Imperial College

Mathematics for Signals and Systems

Positive Definite Matrix

- Example: Take the matrix $\left[\begin{array}{ll}2 & 6 \\ 6 & x\end{array}\right]$
» Which sufficiently large values of x makes the matrix positive definite? The answer is $x>18$. In that case we obtain the matrix $\left[\begin{array}{cc}2 & 6 \\ 6 & 18\end{array}\right]$.
» For $x=18$ the matrix is positive semi-definite. The eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=20$. One of its eigenvalues is zero.
" It has only one pivot since the matrix is singular. The pivots are 2 and 0 . The pivot test doesn't quite pass!
" Its quadratic form is $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ 6 & 18\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1}^{2}+12 x_{1} x_{2}+18 x_{2}^{2}$.
This is equal to $a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}>0$. In our case the matrix marginally failed the test.

Mathematics for Signals and Systems

Graph of Quadratic Form

- Quadratic form $f\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$: Let's look at the graph.

- For the positive definite case we have:
" First derivatives are zero. This condition is not enough!
$»$ Second derivatives' matrix is positive definite $\left[\begin{array}{ll}f_{x_{1} x_{1}} & f_{x_{1} x_{2}} \\ f_{x_{2} x_{1}} & f_{x_{2} x_{2}}\end{array}\right], f_{x_{1} x_{1}} f_{x_{2} x_{2}}-2 f_{x_{1} x_{2}}>0$.
" Positive for a number turns into positive-definite for a matrix!

Mathematics for Signals and Systems

Graph of Quadratic Form

- Example: $\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right]$, $\operatorname{trace}(A)=22=\lambda_{1}+\lambda_{2}, \operatorname{det}(A)=4=\lambda_{1} \lambda_{2}$
- $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}$ $f\left(x_{1}, x_{1}\right)=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}=2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}$

- A horizontal intersection could be $f\left(x_{1}, x_{1}\right)=1$. It is an ellipse.
- Its quadratic form is $2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}=1$.

Mathematics for Signals and Systems

Graph of Quadratic Form

- Example: $\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right], \operatorname{trace}(A)=22=\lambda_{1}+\lambda_{2}, \operatorname{det}(A)=4=\lambda_{1} \lambda_{2}$
- $f\left(x_{1}, x_{1}\right)=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}=2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}$
- Note that computing the square form is effectively elimination

$$
A=\left[\begin{array}{cc}
2 & 6 \\
6 & 20
\end{array}\right] \xrightarrow[(2)-3(1)]{ }\left[\begin{array}{ll}
2 & 6 \\
0 & 2
\end{array}\right]=u \text { and } L=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

- The pivots and the multipliers appear in the quadratic form when we compute the square
- Pivots are the square multipliers so positive pivots imply sum of squares and hence positive definiteness

Imperial College

Mathematics for Signals and Systems

Graph of Quadratic Form

- Example: Consider the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
- The leading ("north west!) determinants are 2,3,4.
- The pivots are $2,3 / 2,4 / 3$.
- The quadratic form is $\boldsymbol{x}^{T} A \boldsymbol{x}=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$.
- The eigenvalues of A are $\lambda_{1}=2-\sqrt{2}, \lambda_{2}=2, \lambda_{3}=2+\sqrt{2}$
- The matrix A is positive definite when $x^{T} A x>0$. This matrix is p.d!
- The intersection of the 4 dimensional "parabola" $\boldsymbol{x}^{T} A \boldsymbol{x}=1$ is an
$>$ Ellipsoid with "principal" axes in the direction of eigenvectors.
> The length of the axes is determined by the eigenvalues.

Mathematics for Signals and Systems

Remember Graphs and Networks

- Summarizing all the equation

$>$ Potential differences $e=A x$
$>$ Ohm's Law $y=C e$
$>$ Kirchoff's Current Law $A^{T} y=0$
- The above equations can be written in a single basic equation $A^{T} C A x=0$

