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Symmetric matrices 
 

• In this lecture we will be interested in symmetric matrices. 

• Consider a matrix 𝐴 = 𝐴𝑇 . 

• The eigenvalues are real. 

• The eigenvectors can be chosen to be perpendicular. If we also 

choose them to have a magnitude of 1, then the eigenvectors can be 

chosen to form an orthonormal set of vectors. 

• For a random matrix with independent eigenvectors we have 

𝐴 = 𝑆Λ𝑆−1. 

• For a symmetric matrix with orthonormal eigenvectors we have 

𝐴 = 𝑄Λ𝑄−1= 𝑄Λ𝑄𝑇 (symmetric) 
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Symmetric matrices 
 

• Consider 𝐴𝑥 = 𝜆𝑥. 

• If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

• If 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. Therefore, if 𝜆 is an eigenvalue of 𝐴 with 

corresponding eigenvector 𝑥 then 𝜆∗ is an eigenvalue of 𝐴 with 

corresponding eigenvector 𝑥∗. 
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Symmetric matrices 
 

• Problem: Why are the eigenvalues of a symmetric matrix real? 

We proved that if 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. 

If we take transpose in both sides we get  

𝑥∗𝑇𝐴𝑇 = 𝜆∗𝑥∗𝑇 ⇒ 𝑥∗𝑇𝐴 = 𝜆∗𝑥∗𝑇 

We now multiply both sides from the right with 𝑥 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆∗𝑥∗𝑇𝑥 

We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 

𝑥∗𝑇 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

From the above we see that 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 𝑥∗𝑇𝑥 ≠ 0, we 

see that 𝜆 = 𝜆∗. 
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Complex matrices: Which complex matrices are “good”? 
(meaning real eigenvalues and orthogonal eigenvectors) 
 

• Consider 𝐴𝑥 = 𝜆𝑥 with 𝐴 possibly complex. 

• If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

• If we take transpose in both sides we get  

𝑥∗𝑇𝐴∗𝑇 = 𝜆∗𝑥∗𝑇 

We now multiply both sides from the right with 𝑥 we get 

𝑥∗𝑇𝐴∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 

We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 𝑥∗𝑇 

and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

From the above we see that if 𝐴∗𝑇 = 𝐴  then 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 

𝑥∗𝑇𝑥 ≠ 0, we see that 𝜆 = 𝜆∗. 
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Eigenvalue sign 
 

• We proved that the eigenvalues of a symmetric matrix are real. 

• It can be proven that the signs of the pivots are the same as the signs of 

the eigenvalues. 

• Just to remind you: 

Product of pivots=Product of eigenvalues=Determinant 
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Positive definite matrices 
 

• These are matrices with all their eigenvalues real and positive! 

• Therefore, the pivots are positive and the determinant is positive. 

• Positive determinant doesn’t guarantee positive definiteness. All sub-

determinants have to be positive. 

• Example: Consider the matrix 

𝐴 =
5 2
2 3

 

Pivots are 5 and 11/5. This comes directly from the fact that the product 

of pivots equals the determinant. 

Eigenvalues are obtained from: 

5 − 𝜆 3 − 𝜆 − 4 = 0 ⇒ 𝜆2 − 8𝜆 + 11 = 0 

𝜆1,2 =
8 ± 64 − 44

2
=
8 ± 20

2
= 4 ± 5 
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Complex vectors and matrices 
 

• Consider a complex column vector 𝑧 = 𝑧1 𝑧2 … 𝑧𝑛 𝑇. 

• It’s length is 𝑧∗𝑇𝑧 =  𝑧𝑖
2𝑛

𝑖=1 . 

• When we both transpose and conjugate we can use the symbol 

𝑧𝐻 = 𝑧∗
𝑇
 (Hermitian). 

• Inner product of 2 complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥. 

• For complex matrices the symmetry is defined as 𝐴∗𝑇 = 𝐴. These are 

called Hermitian matrices. 

• They have real eigenvalues and perpendicular unit eigenvectors. If these 

are complex we check their length using 𝑞𝑖
∗𝑇𝑞𝑖 and also 𝑄∗𝑇𝑄 = 𝐼. 

• Example: Consider the matrix 

𝐴 =
2 3 + 𝑖

3 − 𝑖 5
 



The Fourier matrix 
 

• The 𝑛 × 𝑛 Fourier matrix is defined as: 

 

 

 

 

 

 

• In this matrix we will number the first row and column with 0. 

• We define 𝑤 = 𝑒𝑖
2𝜋

𝑛 . For 𝑤 is preferable to use polar representation. 

• 𝐹𝑛 𝑖, 𝑗 = 𝑤𝑖𝑗. 

• We must stress out that it is better to use the notation 𝑤𝑛 instead of 𝑤. 

• I have avoided this notation to make things look simpler. 
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The Fourier matrix 
 

• The parameter 𝑤 = 𝑒𝑖
2𝜋

𝑛  lies on the unit circle shown below. The case 

depicted below refers to 𝑛 = 8 where the points 𝑤𝑚, 𝑚 = 0,… , 7  of the 

second row (row 1) of the Fourier matrix are shown. 

 

 

 

 

 

 

 

• We must stress out that the Fourier matrix is totally constructed out of 

numbers of the form 𝑤𝑛
𝑘. 
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The Fourier matrix for 𝑛 = 4 
 

• The parameter 𝑤4 = 𝑒
𝑖
2𝜋

4 = 𝑒𝑖
𝜋

2 = cos
𝜋

2
+ 𝑖 sin

𝜋

2
= 𝑖. 

• The quantities inside Fourier matrix are 1, 𝑖, 𝑖2, 𝑖3, 𝑖4, 𝑖6, 𝑖9. 

 

 

 

 

 

 

• The columns of this matrix are orthogonal.  

• Remember that the inner product of 2 complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥! 
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The Fourier matrix for 𝑛 = 4 
 

• I can show that the columns are orthogonal but they are not orthonormal. 

• I can fix this by dividing the Fourier matrix with the length of the rows 

(columns). In this case it is 2. Therefore, I can write: 

 

 

 

 

 

 

• We know that 𝐹4
𝐻𝐹4 = 𝐼. 
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The Fast Fourier Transform 
 

• We can prove that there is a connection between 𝐹2𝑛 and 𝐹𝑛. 

• This is expected from the fact that 𝑤2𝑛
2 = 𝑤𝑛. It can be shown that: 

 

𝐹2𝑛 =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶
𝚶 𝐹𝑛

1
0
0

0
0
0

0
1
0

0 0 ⋯
0 0 ⋯
0 1 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0
0
⋮

1
0
⋮

0
0
⋮

0
1
⋮

0
0
⋮

⋯
⋯
⋮

 

 

𝐹2𝑛 : yields to (2𝑛)2 multiplications 

𝐹𝑛 𝚶
𝚶 𝐹𝑛

+influence of 𝐷𝑛: yield to 2 × (𝑛)2+𝑛 multiplications!!! (𝐼𝑛 and 𝑃2𝑛 

don’t contribute to multiplications) 

 

permutation 

matrix 𝑃2𝑛 

diagonal 

matrix 𝐷𝑛 
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The Fast Fourier Transform 
 

• In the previous analysis the matrix 𝐷𝑛 is defined as:  

 

 

 

 

 

 

 

• We start with (2𝑛)2 multiplications and manage to reduce them to 

2 × (𝑛)2+𝑛 multiplications!! 
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The Fast Fourier Transform 
 

• The next step is to break the 𝐹𝑛 down. As you see, I use the above idea 

recursively!  

 

𝐹2𝑛  =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶
𝚶 𝐹𝑛

𝑃2𝑛 =

=
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝚶

𝚶
𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝐹𝑛/2 𝚶

𝚶 𝐹𝑛/2
𝚶

𝚶
𝐹𝑛/2 𝚶

𝚶 𝐹𝑛/2

𝑃𝑛 𝚶
𝚶 𝑃𝑛

𝑃2𝑛 

• We started with (2𝑛)2 multiplications and manage to reduce them to 

2 × (𝑛)2+𝑛 multiplications!! 

• Now the 𝑛2 multiplications are reduced to 2 × (𝑛/2)2+𝑛/2 

multiplications!! 
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The Fast Fourier Transform 
 

• I can carry on this recursive procedure until I reach 1 × 1 Fourier 

matrices. 

• I will have a large number of matrices piling up. 

• It can be proven that if we start with a matrix of size 𝑛2 the total 

number of multiplications is reduced to  
1

2
𝑛log2(𝑛) 

• Consider 𝑛 = 1024 = 210. In that case 𝑛2 > 1,000,000. 

•
1

2
1024log2 1024 = 5 × 1024. 

• We reduced the multiplications from 1024 × 1024 to 5 × 1024, i.e., by 

a factor of 200! 

• The Fast Fourier Transform is one of the most important algorithms in 

modern scientific computing! 
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Positive Definite Matrix 
 

• We are talking about symmetric matrices. 

• We have various tests. We take the 2 x 2 case 
𝑎 𝑏
𝑏 𝑐

 

» Eigenvalues are positive 𝜆1 > 0, 𝜆2 > 0 

 

» All determinates of leading (“north west”) sub-matrices are positive 

 

𝑎 > 0, 𝑎𝑐 − 𝑏2 > 0 

 

» Pivots are positive 𝑎 > 0, 
𝑎𝑐−𝑏2

𝑎
> 0 

 

» Quadratic form is positive 𝑥𝑇𝐴 𝑥 > 0, 𝑥 is any vector! 
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Positive Definite Matrix 
 

• Example: Take the matrix 
2 6
6 𝑥

 

 

» Which sufficiently large values of 𝑥 makes the matrix positive definite? The 

answer is 𝑥 > 18. In that case we obtain the matrix 
2 6
6 18

. 

 

» For 𝑥 = 18 the matrix is positive semi-definite. The eigenvalues are 𝜆1 = 0 

and 𝜆2 = 20. One of its eigenvalues is zero. 
 

» It has only one pivot since the matrix is singular. The pivots are 2 and 0. 

The pivot test doesn’t quite pass! 
 

» Its quadratic form is 𝑥1 𝑥2  
2 6
6 18

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 18𝑥2

2. 

This is equal to 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 > 0. 

In our case the matrix marginally failed the test. 
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Graph of Quadratic Form 
 

• Quadratic form 𝑓 𝑥1, 𝑥2 = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 : Let’s look at the graph. 

 

 

 

 

 

 

 

• For the positive definite case we have: 

» First derivatives are zero. This condition is not enough! 

» Second derivatives’ matrix is positive definite 
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

, 𝑓𝑥1𝑥1𝑓𝑥2𝑥2−2𝑓𝑥1𝑥2 > 0. 

» Positive for a number turns into positive-definite for a matrix! 

 

 

𝑥1 

𝑥2 

Not Positive Definite Positive Definite 

𝑥1 

𝑥2 

minimum 



Graph of Quadratic Form 
 

• Example: 
2 6
6 20

, 𝑡𝑟𝑎𝑐𝑒 𝐴 = 22 = 𝜆1+𝜆2, 𝑑𝑒𝑡 𝐴 = 4 = 𝜆1𝜆2 
 

• 𝑥1 𝑥2  
2 6
6 20

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 

𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 2 𝑥1 + 3𝑥2
2 + 2𝑥2

2 

 

 

 

 

 

 

• A horizontal intersection could be 𝑓 𝑥1, 𝑥1 = 1. It is an ellipse. 

• Its quadratic form is 2 𝑥1 + 3𝑥2
2 + 2𝑥2

2 = 1. 

 

 

 

 

 

 

 

 

 

• For the positive definite case we have 

» First derivatives are zero 

» Matrix of second derivatives is positive 
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𝑥1 

𝑥2 

minimum 
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Graph of Quadratic Form 
 

• Example: 
2 6
6 20

, 𝑡𝑟𝑎𝑐𝑒 𝐴 = 22 = 𝜆1+𝜆2, 𝑑𝑒𝑡 𝐴 = 4 = 𝜆1𝜆2 

 

•  𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 𝟐 𝑥1 + 𝟑𝑥2
2 + 𝟐𝑥2

2 

 

• Note that computing the square form is effectively elimination 

𝐴 =
2 6
6 20 2 −3(1)

𝟐 6
0 𝟐

= 𝑢 and 𝐿 =
1 0
𝟑 1

 

 

• The pivots and the multipliers appear in the quadratic form when we 

compute the square 

• Pivots are the square multipliers so positive pivots imply sum of squares 

and hence positive definiteness 
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Graph of Quadratic Form 
 

• Example: Consider the matrix 𝐴 =
2 −1 0
−1 2 −1
0 −1 2

 

• The leading (“north west!) determinants are 2,3,4. 

• The pivots are 2, 3/2, 4/3. 

• The quadratic form is 𝒙𝑇𝐴 𝒙 = 2𝑥1
2 + 2𝑥2

2 + 2𝑥3
2 − 2𝑥1𝑥2 − 2𝑥2𝑥3. 

• The eigenvalues of A are 𝜆1 = 2 − 2, 𝜆2 = 2, 𝜆3 = 2 + 2 

• The matrix A is positive definite when 𝒙𝑇𝐴 𝒙 > 0. This matrix is p.d! 

• The intersection of the 4 dimensional “parabola” 𝒙𝑇𝐴 𝒙 = 1 is an 

  Ellipsoid with “principal” axes in the direction of eigenvectors. 

 The length of the axes is determined by the eigenvalues. 
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Remember Graphs and Networks 
 

• Summarizing all the equation 

 

  Potential differences 𝑒 = 𝐴𝑥 

 Ohm’s Law 𝑦 = 𝐶𝑒 

 Kirchoff’s Current Law 𝐴𝑇𝑦 = 0 

 

• The above equations can be written in a single basic equation 𝐴𝑇𝐶𝐴𝑥 = 0 
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𝑦5 


