Imperial College London

Maths for Signals and Systems Linear Algebra in Engineering

Lectures 16-17, Tuesday 18th November 2014

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Symmetric matrices

- In this lecture we will be interested in symmetric matrices.
- Consider a matrix $A = A^T$.
- The eigenvalues are real.
- The eigenvectors <u>can be chosen to be</u> perpendicular. If we also choose them to have a magnitude of 1, then the eigenvectors can be chosen to form an orthonormal set of vectors.
- For a random matrix with independent eigenvectors we have $A = S\Lambda S^{-1}$.
- For a symmetric matrix with orthonormal eigenvectors we have

 $A = Q\Lambda Q^{-1} = Q\Lambda Q^T$ (symmetric)

Symmetric matrices

- Consider $Ax = \lambda x$.
- If we take complex conjugate in both sides we get $(Ax)^* = (\lambda x)^* \Rightarrow A^* x^* = \lambda^* x^*$
- If *A* is real then $Ax^* = \lambda^* x^*$. Therefore, if λ is an eigenvalue of *A* with corresponding eigenvector *x* then λ^* is an eigenvalue of *A* with corresponding eigenvector x^* .

Symmetric matrices

Problem: Why are the eigenvalues of a symmetric matrix real?
 We proved that if *A* is real then *Ax*^{*} = λ^{*} *x*^{*}.
 If we take transpose in both sides we get

$$x^{*^{T}}A^{T} = \lambda^{*}x^{*^{T}} \Rightarrow x^{*^{T}}A = \lambda^{*}x^{*^{T}}$$

We now multiply both sides from the right with x and we get

$$x^{*^T}Ax = \lambda^* x^{*^T}x$$

We take now $Ax = \lambda x$. We now multiply both sides from the left with $x^{*^{T}}$ and we get

$$x^{*^T}Ax = \lambda x^{*^T}x.$$

From the above we see that $\lambda x^{*^T} x = \lambda^* x^{*^T} x$ and since $x^{*^T} x \neq 0$, we see that $\lambda = \lambda^*$.

Complex matrices: Which complex matrices are "good"? (meaning real eigenvalues and orthogonal eigenvectors)

- Consider $Ax = \lambda x$ with A possibly complex.
- If we take complex conjugate in both sides we get $(Ax)^* = (\lambda x)^* \Rightarrow A^* x^* = \lambda^* x^*$
- If we take transpose in both sides we get T^T

$$x^{*^T}A^{*^T} = \lambda^* x^{*^T}$$

We now multiply both sides from the right with x we get

$$x^{*^T}A^{*^T}x = \lambda^* x^{*^T}x$$

We take now $Ax = \lambda x$. We now multiply both sides from the left with x^{*T} and we get

$$x^{*^T}Ax = \lambda x^{*^T}x.$$

From the above we see that if $A^{*T} = A$ then $\lambda x^{*T} x = \lambda^* x^{*T} x$ and since $x^{*T} x \neq 0$, we see that $\lambda = \lambda^*$.

Eigenvalue sign

- We proved that the eigenvalues of a symmetric matrix are real.
- It can be proven that the signs of the pivots are the same as the signs of the eigenvalues.
- Just to remind you:

Product of pivots=Product of eigenvalues=Determinant

Positive definite matrices

- These are matrices with all their eigenvalues real and positive!
- Therefore, the pivots are positive and the determinant is positive.
- Positive determinant doesn't guarantee positive definiteness. All subdeterminants have to be positive.
- **Example:** Consider the matrix

$$A = \begin{bmatrix} 5 & 2\\ 2 & 3 \end{bmatrix}$$

Pivots are 5 and 11/5. This comes directly from the fact that the product of pivots equals the determinant.

Eigenvalues are obtained from:

$$(5 - \lambda)(3 - \lambda) - 4 = 0 \Rightarrow \lambda^2 - 8\lambda + 11 = 0$$
$$\lambda_{1,2} = \frac{8 \pm \sqrt{64 - 44}}{2} = \frac{8 \pm \sqrt{20}}{2} = 4 \pm \sqrt{5}$$

Complex vectors and matrices

- Consider a complex column vector $z = [z_1 \ z_2 \ \cdots \ z_n]^T$.
- It's length is $z^{*T}z = \sum_{i=1}^{n} |z_i|^2$.
- When we both transpose and conjugate we can use the symbol $z^{H} = {z^{*}}^{T}$ (Hermitian).
- Inner product of 2 complex vectors is $y^{*T}x = y^{H}x$.
- For complex matrices the symmetry is defined as $A^{*^T} = A$. These are called Hermitian matrices.
- They have real eigenvalues and perpendicular unit eigenvectors. If these are complex we check their length using $q_i^{*T}q_i$ and also $Q^{*T}Q = I$.
- **Example:** Consider the matrix

$$A = \begin{bmatrix} 2 & 3+i \\ 3-i & 5 \end{bmatrix}$$

The Fourier matrix

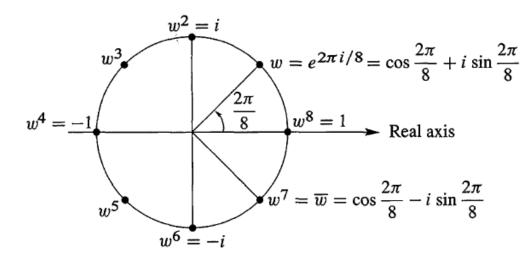
• The $n \times n$ Fourier matrix is defined as:

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & \dots & w^{(n-1)} \\ 1 & w^{2} & w^{4} & \dots & w^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w^{(n-1)} & w^{2(n-1)} & \dots & w^{(n-1)(n-1)} \end{bmatrix}$$

- In this matrix we will number the first row and column with 0.
- We define $w = e^{i\frac{2\pi}{n}}$. For w is preferable to use polar representation.
- $F_n(i,j) = w^{ij}$.
- We must stress out that it is better to use the notation w_n instead of w.
- I have avoided this notation to make things look simpler.

The Fourier matrix

• The parameter $w = e^{i\frac{2\pi}{n}}$ lies on the unit circle shown below. The case depicted below refers to n = 8 where the points $w^m, m = 0, ..., 7$ of the second row (row 1) of the Fourier matrix are shown.



• We must stress out that the Fourier matrix is totally constructed out of numbers of the form w_n^k .

The Fourier matrix for n = 4

- The parameter $w_4 = e^{i\frac{2\pi}{4}} = e^{i\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i.$
- The quantities inside Fourier matrix are $1, i, i^2, i^3, i^4, i^6, i^9$.

$$F_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^{2} & i^{3} \\ 1 & i^{2} & i^{4} & i^{6} \\ 1 & i^{3} & i^{6} & i^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

- The columns of this matrix are orthogonal.
- Remember that the inner product of 2 complex vectors is $y^{*T}x = y^{H}x!$

The Fourier matrix for n = 4

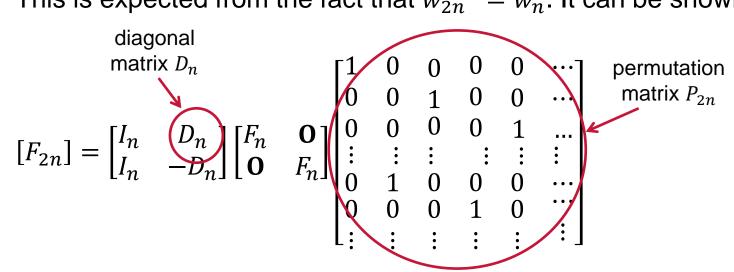
- I can show that the columns are orthogonal but they are not orthonormal.
- I can fix this by dividing the Fourier matrix with the length of the rows (columns). In this case it is 2. Therefore, I can write:

$$F_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

• We know that $F_4^H F_4 = I$.

The Fast Fourier Transform

- We can prove that there is a connection between F_{2n} and F_n .
- This is expected from the fact that $w_{2n}^2 = w_n$. It can be shown that:

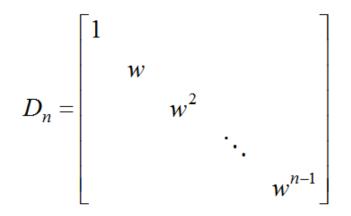


 $[F_{2n}]$: yields to $(2n)^2$ multiplications

 $\begin{bmatrix} F_n & \mathbf{0} \\ \mathbf{0} & F_n \end{bmatrix}$ +influence of D_n : yield to $2 \times (n)^2 + n$ multiplications!!! (I_n and P_{2n} don't contribute to multiplications)

The Fast Fourier Transform

• In the previous analysis the matrix D_n is defined as:



• We start with $(2n)^2$ multiplications and manage to reduce them to $2 \times (n)^2 + n$ multiplications!!

The Fast Fourier Transform

• The next step is to break the F_n down. As you see, I use the above idea recursively!

$$\begin{bmatrix} F_{2n} \end{bmatrix} = \begin{bmatrix} I_n & D_n \\ I_n & -D_n \end{bmatrix} \begin{bmatrix} F_n & \mathbf{0} \\ \mathbf{0} & F_n \end{bmatrix} P_{2n} = \begin{bmatrix} I_n & D_n \\ I_{n/2} & D_{n/2} & \mathbf{0} \\ I_{n/2} & -D_{n/2} & \mathbf{0} \\ \mathbf{0} & I_{n/2} & D_{n/2} \\ \mathbf{0} & I_{n/2} & -D_{n/2} \end{bmatrix} \begin{bmatrix} F_{n/2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & F_{n/2} & \mathbf{0} \\ \mathbf{0} & F_{n/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & F_{n/2} \end{bmatrix} \begin{bmatrix} P_n & \mathbf{0} \\ \mathbf{0} & P_n \end{bmatrix} P_{2n}$$

- We started with $(2n)^2$ multiplications and manage to reduce them to $2 \times (n)^2 + n$ multiplications!!
- Now the n^2 multiplications are reduced to $2 \times (n/2)^2 + n/2$ multiplications!!

The Fast Fourier Transform

- I can carry on this recursive procedure until I reach 1×1 Fourier matrices.
- I will have a large number of matrices piling up.
- It can be proven that if we start with a matrix of size n^2 the total number of multiplications is reduced to

$$\frac{1}{2}n\log_2(n)$$

• Consider $n = 1024 = 2^{10}$. In that case $n^2 > 1,000,000$.

•
$$\frac{1}{2}$$
1024log₂(1024) = 5 × 1024.

- We reduced the multiplications from 1024×1024 to 5×1024 , i.e., by a factor of 200!
- The Fast Fourier Transform is one of the most important algorithms in modern scientific computing!

Positive Definite Matrix

- We are talking about symmetric matrices.
- We have various tests. We take the 2 x 2 case $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$
 - » Eigenvalues are positive $\lambda_1 > 0, \lambda_2 > 0$

» All determinates of leading ("north west") sub-matrices are positive

$$a > 0$$
, $ac - b^2 > 0$

» Pivots are positive a > 0, $\frac{ac-b^2}{a} > 0$

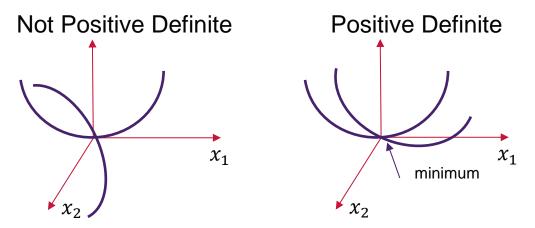
» Quadratic form is positive $x^T A x > 0$, x is any vector!

Positive Definite Matrix

- Example: Take the matrix $\begin{bmatrix} 2 & 6 \\ 6 & x \end{bmatrix}$
 - » Which sufficiently large values of *x* makes the matrix positive definite? The answer is x > 18. In that case we obtain the matrix $\begin{bmatrix} 2 & 6 \\ 6 & 18 \end{bmatrix}$.
 - » For x = 18 the matrix is positive semi-definite. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 20$. One of its eigenvalues is zero.
 - » It has only one pivot since the matrix is singular. The pivots are 2 and 0.
 The pivot test doesn't quite pass!
 - » Its quadratic form is $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 + 12x_1x_2 + 18x_2^2$. This is equal to $ax_1^2 + 2bx_1x_2 + cx_2^2 > 0$. In our case the matrix marginally failed the test.

Graph of Quadratic Form

• Quadratic form $f(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$: Let's look at the graph.



- For the positive definite case we have:
 - » First derivatives are zero. This condition is not enough!
 - » Second derivatives' matrix is positive definite $\begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}$, $f_{x_1x_1}f_{x_2x_2}$ -2 $f_{x_1x_2}$ > 0.
 - » Positive for a number turns into positive-definite for a matrix!

Graph of Quadratic Form

- Example: $\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$, $trace(A) = 22 = \lambda_1 + \lambda_2$, $det(A) = 4 = \lambda_1 \lambda_2$
- $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 + 12x_1x_2 + 20x_2^2$ $f(x_1, x_1) = 2x_1^2 + 12x_1x_2 + 20x_2^2 = 2(x_1 + 3x_2)^2 + 2x_2^2$
- A horizontal intersection could be $f(x_1, x_1) = 1$. It is an ellipse.
- Its quadratic form is $2(x_1 + 3x_2)^2 + 2x_2^2 = 1$.

Graph of Quadratic Form

• Example: $\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$, $trace(A) = 22 = \lambda_1 + \lambda_2$, $det(A) = 4 = \lambda_1 \lambda_2$

•
$$f(x_1, x_1) = 2x_1^2 + 12x_1x_2 + 20x_2^2 = \mathbf{2}(x_1 + \mathbf{3}x_2)^2 + \mathbf{2}x_2^2$$

• Note that computing the square form is effectively elimination

$$A = \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \xrightarrow[(2)-3(1)]{2} \begin{bmatrix} 2 & 6 \\ 0 & 2 \end{bmatrix} = u \text{ and } L = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

- The pivots and the multipliers appear in the quadratic form when we compute the square
- Pivots are the square multipliers so positive pivots imply sum of squares and hence positive definiteness

Graph of Quadratic Form

• Example: Consider the matrix
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- The leading ("north west!) determinants are 2,3,4.
- The pivots are 2, 3/2, 4/3.
- The quadratic form is $\mathbf{x}^T A \mathbf{x} = 2x_1^2 + 2x_2^2 + 2x_3^2 2x_1x_2 2x_2x_3$.
- The eigenvalues of A are $\lambda_1 = 2 \sqrt{2}$, $\lambda_2 = 2$, $\lambda_3 = 2 + \sqrt{2}$
- The matrix A is positive definite when $x^T A x > 0$. This matrix is p.d!
- The intersection of the 4 dimensional "parabola" $x^T A x = 1$ is an
 - Ellipsoid with "principal" axes in the direction of eigenvectors.

 \succ The length of the axes is determined by the eigenvalues.

Remember Graphs and Networks

- Summarizing all the equation
 - > Potential differences e = Ax
 - > Ohm's Law y = Ce
 - $\blacktriangleright \quad \text{Kirchoff's Current Law } A^T y = 0$

