Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lectures 16-17, Tuestay 15T Movember 2016
 DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Mathematics for Signals and Systems

In this set of lectures we will talk about two applications:

- Discrete Fourier Transforms
- An application of linear system theory: graphs and networks

The Discrete Fourier Transform [DFT] matrix

- The $n \times n$ Fourier matrix is defined as:

$$
F_{n}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & w & w^{2} & \ldots & w^{(n-1)} \\
1 & w^{2} & w^{4} & \ldots & w^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{(n-1)} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{array}\right]
$$

- In this matrix we will number the first row and column with 0 .
- We define $w=e^{-\mathbf{i} \frac{2 \pi}{n}}$. For w is preferable to use polar representation.
- $F_{n}(i, j)=w^{i j}$.
- We must stress out that it is better to use the notation w_{n} instead of w.
- I have, in general, avoided this notation to make things look simpler but occasionally I used it.

The Discrete Fourier Transform [DFT] matrix cont.

- The parameter $w=e^{-\mathrm{i} \frac{2 \pi}{n}}$ lies on the unit circle shown below. The case depicted below refers to $n=8$ where the points $w^{m}=e^{-\mathrm{i} \frac{2 \pi m}{8}}, m=0, \ldots, 7$ of the second row (row 1) of the Fourier matrix are shown.

- We must stress out that the Fourier matrix is totally constructed out of numbers of the form $w_{n}{ }^{k}$.

Imperial College

London

The Discrete Fourier Transform [DFT] matrix for n=4

- The parameter $w_{4}=e^{-\mathbf{i} \frac{2 \pi}{4}}=e^{-\mathbf{i} \frac{\pi}{2}}=\cos \left(-\frac{\pi}{2}\right)+\mathbf{i} \sin \left(-\frac{\pi}{2}\right)=-\mathbf{i}$.
- The quantities inside Fourier matrix are $1, \mathbf{i}, \mathbf{i}^{2}, \mathbf{i}^{3}, \mathbf{i}^{4}, \mathbf{i}^{6}, \mathbf{i}^{9}$.
-,i^{2}

$$
F_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -\mathbf{i} & (-\mathbf{i})^{2} & (-\mathbf{i})^{3} \\
1 & (-\mathbf{i})^{2} & (-\mathbf{i})^{4} & (-\mathbf{i})^{6} \\
1 & (-\mathbf{i})^{3} & (-\mathbf{i})^{6} & (-\mathbf{i})^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -\mathbf{i} & (-\mathbf{i})^{2} & (-\mathbf{i})^{3} \\
1 & (-\mathbf{i})^{2} & (-\mathbf{i})^{0} & (-\mathbf{i})^{2} \\
1 & (-\mathbf{i})^{3} & (-\mathbf{i})^{2} & (-\mathbf{i})^{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -\mathbf{i} & -1 & \mathbf{i} \\
1 & -1 & 1 & -1 \\
1 & \mathbf{i} & -1 & -\mathbf{i}
\end{array}\right]
$$

- The columns of this matrix are orthogonal.
- Remember that the inner product of 2 complex vectors is $y^{* T} x=y^{H} x$.

The Discrete Fourier Transform [DFT] matrix for n=4 cont.

- I can show that the columns are orthogonal but they are not orthonormal.
- I can fix this by dividing the Fourier matrix with the length of the rows (columns). In the case of $n=4$ it is 2 . Therefore, I can write:

$$
F_{4}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -\mathbf{i} & -1 & \mathbf{i} \\
1 & -1 & 1 & -1 \\
1 & \mathbf{i} & -1 & -\mathbf{i}
\end{array}\right]
$$

- We can easily show that $F_{4}{ }^{H} F_{4}=I$.

The Fast Fourier Transform [FFT]

- It can be proven that there is a connection between $F_{2 n}$ and F_{n}.
- This is expected from the fact that $w_{2 n}{ }^{2}=e^{-\mathrm{i} \frac{4 \pi}{2 n}}=e^{-\mathrm{i} \frac{2 \pi}{n}}=w_{n}$. It can be shown that:
- When $\left[F_{2 n}\right]$ is multiplied by a column vector in order to obtain the Fourier Transform of the signal, we require $(2 n)^{2}$ multiplications.
- When $\left[F_{2 n}\right]$ is decomposed as above, $P_{2 n}$ does not contribute to multiplications, $\left[\begin{array}{cc}F_{n} & \mathbf{0}_{n} \\ \mathbf{0}_{n} & F_{n}\end{array}\right]$ requires $2 \times(n)^{2}$ multiplications and $\left[\begin{array}{cc}I_{n} & D_{n} \\ I_{n} & -D_{n}\end{array}\right]$ requires n multiplications.
- In total $2 \times(n)^{2}+n<(2 n)^{2}$.

The Fast Fourier Transform [FFT] cont.

- In the previous analysis the matrix D_{n} is defined as:

$$
D_{n}=\left[\begin{array}{lllll}
1 & & & & \\
& w & & & \\
& & w^{2} & & \\
& & & \ddots & \\
& & & & w^{n-1}
\end{array}\right]
$$

- We start requiring $(2 n)^{2}$ multiplications and manage to reduce them to $2 \times(n)^{2}+n$ multiplications.

The Fast Fourier Transform [FFT] cont.

- The next step is to break the F_{n} down. We use the above idea recursively.

$$
\begin{aligned}
& {\left[F_{2 n}\right]=\left[\begin{array}{cc}
I_{n} & D_{n} \\
I_{n} & -D_{n}
\end{array}\right]\left[\begin{array}{cc}
F_{n} & \mathbf{o}_{n} \\
\mathbf{0}_{n} & F_{n}
\end{array}\right] P_{2 n}=} \\
& =\left[\begin{array}{cc}
I_{n} & D_{n} \\
I_{n} & -D_{n}
\end{array}\right]\left[\begin{array}{ccc}
I_{n / 2} & D_{n / 2} & \mathbf{0}_{n} \\
I_{n / 2} & -D_{n / 2} & I_{n / 2} \\
\mathbf{0}_{n} & D_{n / 2} \\
& I_{n / 2} & -D_{n / 2}
\end{array}\right]\left[\begin{array}{ccc}
F_{n / 2} & \mathbf{0}_{n / 2} & \mathbf{0}_{n} \\
\mathbf{0}_{n / 2} & F_{n / 2} & \\
\left.\begin{array}{ccc}
\mathbf{0}_{n} & F_{n / 2} & \mathbf{0}_{n / 2} \\
& \mathbf{0}_{n / 2} & F_{n / 2}
\end{array}\right]\left[\begin{array}{ll}
P_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & P_{n}
\end{array}\right] P_{2 n}
\end{array}\right.
\end{aligned}
$$

- We started with $(2 n)^{2}$ multiplications and manage to reduce them to $2 \times(n)^{2}+n$ multiplication.
- Now the n^{2} multiplications are reduced to $2 \times(n / 2)^{2}+n / 2$ multiplications.

The Fast Fourier Transform [FFT] cont.

- We can carry on this recursive procedure until we reach 1×1 Fourier matrices.
- We will have a large number of matrices piling up.
- It can be proven that if we start with a matrix of size $n \times n$ the total number of multiplications is reduced to

$$
\frac{1}{2} n \log _{2}(n)
$$

- Consider $n=1024=2^{10}$. In that case $n^{2}>1,000,000$.
- $\frac{1}{2} 1024 \log _{2}(1024)=5 \times 1024$.
- We reduced the multiplications from 1024×1024 to 5×1024, i.e., by a factor of 200.
- The Fast Fourier Transform is one of the most important algorithms in modern scientific computing.

Imperial College

Directed graphs and networks: The incidence matrix

- A graph is a mathematical model which consists of a set of nodes and edges denoted as:
Graph=\{nodes, edges\}

- Graphs are used in various applications.
- A graph can be represented by a matrix called incidence matrix.

$$
A=\left[\begin{array}{rccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

- Each row corresponds to an edge. Row numbers are edge numbers.
- Each column corresponds to a node. Column numbers are node numbers.
- The element $A_{i j}=1$ if an arrow points towards node j accross edge i.
- The element $A_{i j}=-1$ if an arrow leaves node j accross edge i.

Types of graphs

- A graph where every pair of nodes is connected with an edge is a complete graph. It has the maximum number of edges $m=\frac{1}{2} n(n-1)$ where m is the number of edges and n is the number of nodes.

- A graph without closed loops is a tree. It has the minimum number of edges $m=$ $n-1$.

Imperial College

Directed graphs and networks: The incidence matrix.

- The graph given previously is neither a complete graph nor a tree.

- Let us focus again on the incidence matrix.

$$
A=\left[\begin{array}{rccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

- Observe that Row 3 = Row 1 + Row 2 .
- We also observe that edges 1,2 and 3 form a closed loop.
- We can make the statement that closed loops correspond to dependent rows.
- Independent rows come from trees.
- $\operatorname{rank}(A)=3$. Independent rows are $1,2,4$ or $1,2,5$ or $1,4,5$ or $2,4,5$.
- Furthermore, $\operatorname{rank}(A)=3$ tells us that after 3 edges we start forming loops.

Graphs and networks. Potential dififerences Ax

- Let us find the null space of the matrix that corresponds to the graph of interest:

$$
A x=\mathbf{0} \Rightarrow\left[\begin{array}{rccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
x_{3}-x_{1} \\
x_{4}-x_{1} \\
x_{4}-x_{3}
\end{array}\right]=\mathbf{0}
$$

- In a real life circuit $A x$ is a vector of potential or voltage differences.
- If the graph represents and electronic circuit, the elements of vector x may represent potentials at nodes (e.g. voltages).
- $x_{i}-x_{j}$ represents the difference in potential across certain edges.
- We see that a solution of the above system is $x=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$.
- The null space is formed by vectors $c\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ and $\operatorname{dim}(N(A))=1$.
- The solution to the above system is obtained subject to a scalar c.
- Since $n=4$ and and $\operatorname{dim}(N(A))=1$, we see again that $\operatorname{rank}(A)=3$.
- By fixing the potential at node one to 0 we remove the first column and we solve for the remaining potentials. In Electrical Engineering this is translated as node 1 been "grounded".

Graphs and networks: Kirchoofi's Current Law [KCL]

- Let us consider the equation

$$
A^{T} y=0 \Rightarrow\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\mathbf{0}
$$

- The vector y represents currents across the edges (or it could represent a force).
- The equation $A^{T} y=0$ represents Kirchoff's Current Law (KCL): KCL: Current that flows in is equal to current that flows out at each node.
- Note that there is a matrix C that connects currents and potential differences at the edges, and represent Ohm's law: $y=C e$. We will talk about this later.

Graphs and networks: Kirchoff's Current Law [KCLI cont.

- The equation $A^{T} y=0$ is Kirchoff's Current Law.

$$
\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\mathbf{0}
$$

- The first equation refers to node one and indicates that the net current flow is zero. Similarly we get:

$$
\begin{aligned}
& -y_{1}-y_{3}-y_{4}=0 \\
& y_{1}-y_{2}=0 \\
& y_{2}+y_{3}-y_{5}=0 \\
& y_{4}+y_{5}=0
\end{aligned}
$$

Imperial College

Graphs and networks: Kirchofif's Current Law cont.

- The three solution vectors below, that satisfy Kirchoff's Current Law, represent total current running across the three possible loops.

$$
\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

- We can see that the third solution (current running across the big external loop 3) is not independent from the first two solutions.
- The null space of A^{T} is, therefore, two dimensional, which is the same as the number of small loops. This is expectable also from the fact that:

$$
\operatorname{dim}\left(N\left(A^{T}\right)\right)=m-r=5-3=2
$$

Imperial College

Graphs and networks: row space of incidence matrix

- Consider the columns space of A^{T} which is the row space of A.

$$
A^{T}=\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \quad 2 \underbrace{4}_{2}
$$

- The pivot columns of A^{T} are located on the first, second and the fourth columns. These are associated with edges that form a graph without loops. As mentioned this graph is called a tree.
- The following relationships hold:
- $\operatorname{dim}\left(N\left(A^{T}\right)\right)=m-r \Rightarrow$ \#small loops = \#edges $-(\#$ nodes -1$)$
- \#nodes - \#edges + \#small loops = 1. This relationship is known as Euler's formula.

Real networks: Ohm's Law

- In real life networks we have: current=c \cdot potential differences.
- c is the so called conductance.
- It tells us how easily flow gets through an edge (high for metal, low for plastic etc.)
- Current through an edge is a function of the conductance across this edge only and the potential difference across the edge.
- Therefore, each edge is associated with a conductance.
- This yields $y=C e$, with C being a diagonal matrix.
- The relationship $y=C e$, is the so called Ohm's Law.

Summary

- In real life networks we have:
- Potential differences: $e=A x$
- Ohm's Law: $y=C e$
- Kirchoff's Current Law: $A^{T} y=\mathbf{0}$
- The above three equations can be merged in a single equation as follows:

$$
A^{T} y=\mathbf{0} \Rightarrow A^{T} C e=\mathbf{0} \Rightarrow A^{T} C A x=\mathbf{0}
$$

