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Mathematics for Signals and Systems

In this set of lectures we will talk about two applications:

• Discrete Fourier Transforms

• An application of linear system theory: graphs and networks



• The 𝑛 × 𝑛 Fourier matrix is defined as:

• In this matrix we will number the first row and column with 0.

• We define 𝑤 = 𝑒−𝐢
2𝜋

𝑛 . For 𝑤 is preferable to use polar representation.

• 𝐹𝑛 𝑖, 𝑗 = 𝑤𝑖𝑗.

• We must stress out that it is better to use the notation 𝑤𝑛 instead of 𝑤.

• I have, in general, avoided this notation to make things look simpler but 

occasionally I used it.

The Discrete Fourier Transform (DFT) matrix



• The parameter 𝑤 = 𝑒−𝐢
2𝜋

𝑛 lies on the unit circle shown below. The case depicted 

below refers to 𝑛 = 8 where the points 𝑤𝑚 = 𝑒−𝐢
2𝜋𝑚

8 , 𝑚 = 0,… , 7 of the second 

row (row 1) of the Fourier matrix are shown.

• We must stress out that the Fourier matrix is totally constructed out of 

numbers of the form 𝑤𝑛
𝑘.

The Discrete Fourier Transform (DFT) matrix cont.



The Discrete Fourier Transform (DFT) matrix for n=4

• The parameter 𝑤4 = 𝑒−𝐢
2𝜋

4 = 𝑒−𝐢
𝜋

2 = cos −
𝜋

2
+ 𝐢 sin −

𝜋

2
= −𝐢.

• The quantities inside Fourier matrix are 1, 𝐢, , 𝐢2, 𝐢3, 𝐢4, 𝐢6, 𝐢9.

• , 𝑖2

𝐹4 =

1
1

1
−𝐢

1 1
(−𝐢)2 (−𝐢)3

1 (−𝐢)2 (−𝐢)4 (−𝐢)6

1 (−𝐢)3 (−𝐢)6 (−𝐢)9

=

1
1

1
−𝐢

1 1
(−𝐢)2 (−𝐢)3

1 (−𝐢)2 (−𝐢)0 (−𝐢)2

1 (−𝐢)3 (−𝐢)2 (−𝐢)1

=

1
1

1
−𝐢

1 1
−1 𝐢

1 −1 1 −1
1 𝐢 −1 −𝐢

• The columns of this matrix are orthogonal. 

• Remember that the inner product of 2 complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥.



The Discrete Fourier Transform (DFT) matrix for n=4 cont.

• I can show that the columns are orthogonal but they are not orthonormal.

• I can fix this by dividing the Fourier matrix with the length of the rows (columns). 

In the case of 𝑛 = 4 it is 2. Therefore, I can write:

𝐹4 =
1

2

1
1

1
−𝐢

1 1
−1 𝐢

1 −1 1 −1
1 𝐢 −1 −𝐢

• We can easily show that 𝐹4
𝐻𝐹4 = 𝐼.



The Fast Fourier Transform (FFT)

• It can be proven that there is a connection between 𝐹2𝑛 and 𝐹𝑛.

• This is expected from the fact that 𝑤2𝑛
2 = 𝑒−𝐢

4𝜋

2𝑛 = 𝑒−𝐢
2𝜋

𝑛 = 𝑤𝑛. It can be shown that:

𝐹2𝑛 =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶𝑛

𝚶𝑛 𝐹𝑛

1
0
0

0
0
0

0
1
0

0 0 ⋯
0 0 ⋯
0 1 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0
0
⋮

1
0
⋮

0
0
⋮

0
1
⋮

0
0
⋮

⋯
⋯
⋮

• When 𝐹2𝑛 is multiplied by a column vector in order to obtain the Fourier Transform 

of the signal, we require (2𝑛)2 multiplications.

• When 𝐹2𝑛 is decomposed as above, 𝑃2𝑛 does not contribute to multiplications, 
𝐹𝑛 𝚶𝑛

𝚶𝑛 𝐹𝑛
requires 2 × (𝑛)2 multiplications and  

𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

requires 

𝑛 multiplications.

• In total 2 × (𝑛)2+𝑛 < (2𝑛)2.

permutation 

matrix 𝑃2𝑛

diagonal

matrix 𝐷𝑛



The Fast Fourier Transform (FFT) cont.

• In the previous analysis the matrix 𝐷𝑛 is defined as: 

• We start requiring (2𝑛)2 multiplications and manage to reduce them to 2 × (𝑛)2+𝑛
multiplications.



The Fast Fourier Transform (FFT) cont.

• The next step is to break the 𝐹𝑛 down. We use the above idea recursively.

𝐹2𝑛 =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶𝑛

𝚶𝑛 𝐹𝑛
𝑃2𝑛 =

=
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝚶𝑛

𝚶𝑛

𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝐹𝑛/2 𝚶𝑛/2

𝚶𝑛/2 𝐹𝑛/2
𝚶𝑛

𝚶𝑛

𝐹𝑛/2 𝚶𝑛/2

𝚶𝑛/2 𝐹𝑛/2

𝑃𝑛 𝚶𝑛

𝚶𝑛 𝑃𝑛
𝑃2𝑛

• We started with (2𝑛)2 multiplications and manage to reduce them to 2 × (𝑛)2+𝑛
multiplication.

• Now the 𝑛2 multiplications are reduced to 2 × (𝑛/2)2+𝑛/2 multiplications.



The Fast Fourier Transform (FFT) cont.

• We can carry on this recursive procedure until we reach 1 × 1 Fourier matrices.

• We will have a large number of matrices piling up.

• It can be proven that if we start with a matrix of size 𝑛 × 𝑛 the total number of 

multiplications is reduced to 
1

2
𝑛log2(𝑛)

• Consider 𝑛 = 1024 = 210. In that case 𝑛2 > 1,000,000.

•
1

2
1024log2 1024 = 5 × 1024.

• We reduced the multiplications from 1024 × 1024 to 5 × 1024, i.e., by a factor of 

200.

• The Fast Fourier Transform is one of the most important algorithms in 

modern scientific computing.



Directed graphs and networks: The incidence matrix

• A graph is a mathematical model which consists of a set of nodes and edges

denoted as:

Graph={nodes, edges}

• Graphs are used in various applications.

• A graph can be represented by a matrix called incidence matrix.

𝐴 =

−1 1
0 −1

0 0
1 0

−1 0
−1 0

1 0
0 1

0 0 −1 1
• Each row corresponds to an edge. Row numbers are edge numbers.

• Each column corresponds to a node. Column numbers are node numbers.

• The element 𝐴𝑖𝑗 = 1 if an arrow points towards node 𝑗 accross edge 𝑖.

• The element 𝐴𝑖𝑗 = −1 if an arrow leaves node 𝑗 accross edge 𝑖.

1

2

3

41

2

3

4

5
1



• A graph where every pair of nodes is connected with an edge is a complete graph. 

It has the maximum number of edges 𝑚 =
1

2
𝑛(𝑛 − 1) where 𝑚 is the number of 

edges and 𝑛 is the number of nodes.

• A graph without closed loops is a tree. It has the minimum number of edges 𝑚 =
𝑛 − 1.

Types of graphs



Directed graphs and networks: The incidence matrix.

• The graph given previously is neither a complete graph nor a tree.

• Let us focus again on the incidence matrix.

𝐴 =

−1 1
0 −1

0 0
1 0

−1 0
−1 0

1 0
0 1

0 0 −1 1
• Observe that Row 3 = Row 1 + Row 2.

 We also observe that edges 1, 2 and 3 form a closed loop.

 We can make the statement that closed loops correspond to dependent rows.

 Independent rows come from trees.

 rank 𝐴 = 3. Independent rows are 1, 2, 4 or 1, 2, 5 or 1, 4, 5 or 2, 4, 5.

 Furthermore, rank 𝐴 = 3 tells us that after 3 edges we start forming loops.

1

2

3

41
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5
1



Graphs and networks. Potential differences Ax

• Let us find the null space of the matrix that corresponds to the graph of interest:

𝐴𝑥 = 𝟎 ⇒

−1 1
0 −1

0 0
1 0

−1 0
−1 0

1 0
0 1

0 0 −1 1

𝑥1
𝑥2
𝑥3
𝑥4

=

𝑥2 − 𝑥1
𝑥3 − 𝑥2
𝑥3 − 𝑥1
𝑥4 − 𝑥1
𝑥4 − 𝑥3

= 𝟎

• In a real life circuit 𝐴𝑥 is a vector of potential or voltage differences.

• If the graph represents and electronic circuit, the elements of vector 𝑥 may 

represent potentials at nodes (e.g. voltages).

• 𝑥𝑖 − 𝑥𝑗 represents the difference in potential across certain edges.

• We see that a solution of the above system is 𝑥 = 1 1 1 1 𝑇.

• The null space is formed by vectors 𝑐 1 1 1 1 𝑇 and dim 𝑁 𝐴 = 1 .

• The solution to the above system is obtained subject to a scalar 𝑐.

• Since 𝑛 = 4 and and dim 𝑁 𝐴 = 1, we see again that rank 𝐴 = 3 .

• By fixing the potential at node one to 0 we remove the first column and we solve for 

the remaining potentials. In Electrical Engineering this is translated as node 1 been 

“grounded”.



Graphs and networks: Kirchoff’s Current Law (KCL)

• Let us consider the equation

𝐴𝑇𝑦 = 0 ⇒

−1 0 −1
1 −1 0

−1 0
0 0

0 1 1
0 0 0

0 −1
1 1

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

= 𝟎

• The vector 𝑦 represents currents across the edges (or it could represent a 

force).

• The equation 𝐴𝑇𝑦 = 0 represents Kirchoff’s Current Law (KCL):

KCL: Current that flows in is equal to current that flows out at each node.

• Note that there is a matrix 𝐶 that connects currents and potential differences at 

the edges, and represent Ohm’s law: 𝑦 = 𝐶𝑒. We will talk about this later.



Graphs and networks: Kirchoff’s Current Law (KCL) cont.

• The equation 𝐴𝑇𝑦 = 0 is Kirchoff’s Current Law.

−1 0 −1
1 −1 0

−1 0
0 0

0 1 1
0 0 0

0 −1
1 1

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

= 𝟎

• The first equation refers to node one and indicates that the net current flow is 

zero. Similarly we get:

−𝑦1 −𝑦3 −𝑦4= 0
𝑦1−𝑦2= 0
𝑦2 + 𝑦3−𝑦5= 0
𝑦4 + 𝑦5 = 0
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1



• The three solution vectors below, that satisfy Kirchoff’s Current Law, represent 

total current running across the three possible loops.

1
1
−1
0
0

, 

0
0
1
−1
1

, 

1
1
0
−1
1

• We can see that the third solution (current running across the big external loop 3) 

is not independent from the first two solutions.

• The null space of 𝐴𝑇 is, therefore, two dimensional, which is the same as the 

number of small loops. This is expectable also from the fact that:

dim(𝑁(𝐴𝑇)) = 𝑚 − 𝑟 = 5 − 3 = 2

Graphs and networks: Kirchoff’s Current Law cont.
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Graphs and networks: row space of incidence matrix

• Consider the columns space of 𝐴𝑇 which is the row space of 𝐴.

𝐴𝑇=

−1 0 −1
1 −1 0

−1 0
0 0

0 1 1
0 0 0

0 −1
1 1

• The pivot columns of 𝐴𝑇 are located on the first, second and the fourth columns. 

These are associated with edges that form a graph without loops. As mentioned 

this graph is called a tree.

• The following relationships hold:

 dim(𝑁(𝐴𝑇)) = 𝑚 − 𝑟 ⇒ #small loops = #edges − (#nodes − 1)

 #nodes − #edges + #small loops = 1. This relationship is known as Euler’s 

formula.
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Real networks: Ohm’s Law

• In real life networks we have: current=𝑐 ∙potential differences.

• 𝑐 is the so called conductance.

• It tells us how easily flow gets through an edge (high for metal, low for plastic 

etc.)

• Current through an edge is a function of the conductance across this edge only

and the potential difference across the edge.

• Therefore, each edge is associated with a conductance.

• This yields 𝑦 = 𝐶𝑒, with 𝐶 being a diagonal matrix.

• The relationship 𝑦 = 𝐶𝑒, is the so called Ohm’s Law.



Summary

• In real life networks we have: 

 Potential differences: 𝑒 = 𝐴𝑥
 Ohm’s Law: 𝑦 = 𝐶𝑒
 Kirchoff’s Current Law: 𝐴𝑇𝑦 = 𝟎

• The above three equations can be merged in a single equation as follows:

𝐴𝑇𝑦 = 𝟎 ⇒ 𝐴𝑇𝐶𝑒 = 𝟎 ⇒ 𝐴𝑇𝐶𝐴𝑥 = 𝟎


