

Linear Algebra in Engineering

Lectures 16-17, Tuesday 17 November 2015

DR TANIA STATHAKI

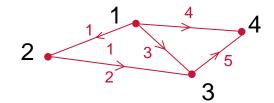
READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

In this set of lectures we will talk about two different topics:

- An application of linear system theory: graphs and networks
- Linear transformations

Graphs and networks: incidence matrix

A graph is a set of nodes and edges denoted as



- The graph can be represented by a matrix (incidence matrix) where each row corresponds to an edge and each column corresponds to a node.
- The element $A_{ij} = 1$ if current flows towards node j accross edge i.
- The element $A_{ij} = -1$ if current flows away from node j accross edge i.

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} 1-2-3 \text{ loop}$$

- A subgraph is formed by edges 1,2,3. This is a loop.
- Note that loops always correspond to linearly dependent rows.

Graphs and networks: null space of incidence matrix

 The null space of matrix A is zero if the columns are independent. For the given example we have:

$$Ax = 0 \Rightarrow \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_3 - x_1 \\ x_4 - x_1 \\ x_4 - x_3 \end{bmatrix} = 0$$

$$2 = 0$$

- The vector x represents potentials at nodes (e.g. voltages).
- $x_i x_i$ represents the difference in potential across certain edges.
- We see that the a solution of the above system is $x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- The null space is formed by vectors $c[1 \ 1 \ 1]^T$ and $\dim(N(A)) = 1$.
- The solution to the above system is obtained subject to a scalar c.
- Since n = 4 and and $\dim(N(A)) = 1$, we get $\operatorname{rank}(A) = 3$.

Graphs and networks: null space of transpose of incidence matrix

- By fixing the potential at node one to 0 we remove a column and we solve for the remaining potentials.
- Let us consider the equation

$$A^{T}y = 0 \Rightarrow \begin{bmatrix} -1 & 0 & -1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \end{bmatrix} = 0$$

- The vector y represents currents across the edges.
- The equation $A^T y = 0$ represents Kirchoff's law.
- (Note that there is a matrix C that connects potential differences and current at the edges, and represent Ohm's law: y = Ce).

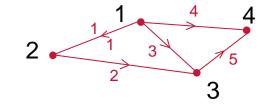
Graphs and networks: Kirchoff's law

The equation $A^T y = 0$ is Kirchoff's law.

$$\begin{bmatrix} -1 & 0 & -1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = 0$$

$$2 = 0$$

$$3$$



The first equation refers to node one and indicates that the net current flow is zero. Similarly we get:

$$-y_{1} - y_{3} - y_{4} = 0$$

$$y_{1} - y_{2} = 0$$

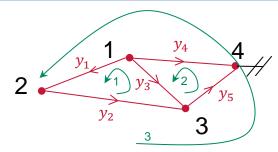
$$y_{2} + y_{3} - y_{5} = 0$$

$$y_{4} + y_{5} = 0$$

Graphs and networks: Kirchoff's law

 Three solution vectors that satisfy Kirchoff's law represent total current running across the three possible loops.

$$\begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$



$$-y_{1} - y_{3} - y_{4} = 0$$

$$y_{1} - y_{2} = 0$$

$$y_{2} + y_{3} - y_{5} = 0$$

$$y_{4} + y_{5} = 0$$

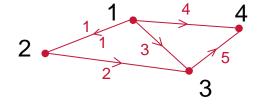
- We can see the third solution (current running across loop 3) is not independent from the first two solutions.
- The null space of A^T is two dimensional, which is the same as the number of loops.

$$\dim(N(A^T)) = 2$$

Graphs and networks: row space of incidence matrix

Consider the columns space of A^T which is the row space of A.

$$A^{T} = \begin{bmatrix} -1 & 0 & -1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad 2 \qquad \frac{1}{3} \qquad \frac{4}{5}$$



The pivot columns of A^T are the first, second and the fourth, that form a graph without loops. This graph is called a tree.

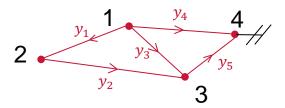
$$\dim(N(A^T)) = m - r$$

$$\#loops = \#edges - (\#nodes - 1)$$

$$\#nodes - \#edges + \#loops = 1 \quad (Euler's formula)$$

Graphs and networks

Summarizing all the equation



Potential differences: e = Ax

Ohm's Law: y = Ce

Kirchoff's Current Law: $A^T y = 0$

The above three equations can be merged in a single equation as follows:

$$A^T C A x = 0$$

Linear transformations

- Consider the parameters/functions/vectors/other mathematical quantities denoted by u and v.
- A transformation is an operator applied on the above quantities, i.e., T(u), T(v).
- A linear transformation possesses the following two properties:
 - ightharpoonup T(u+v) = T(u) + T(v)
 - ightharpoonup T(cv) = cT(v) where c is a scalar.
- By grouping the above two conditions we get $T(c_1u + c_2v) = c_1T(u) + c_2T(v)$
- The zero vector in a linear transformation is always mapped to zero.

Examples of transformations

- Is the transformation T: R² → R², which carries out projection of any vector of the 2-D plane on a specific straight line, a linear transformation?
- Is the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which shifts the entire plane by a vector v_0 , a linear transformation?
- Is the transformation $T: R^3 \to R$, which takes as input a vector and produces as output its length, a linear transformation?
- Is the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which rotates a vector by 45° a linear transformation?
- Is the transformation T(v) = Av, where A is a matrix, a linear transformation?

Examples of transformations

- Consider a transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$.
- In case T(v) = Av, then A is a matrix of size 2×3 .
- If we know the outputs of the transformation if applied on a set of vectors v_1, v_2, \dots, v_n which form a basis of some space, then we know the output to any vector that belongs to that space.
- Recall: The coordinates of a system are based on its basis!
- Most of the time when we talk about coordinates we think about the "standard" basis, which consists of the rows (columns) of the identity matrix.
- Another popular basis consists of the eigenvectors of a matrix.

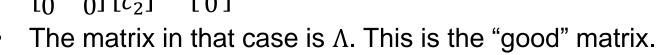
Examples of transformations: Projection

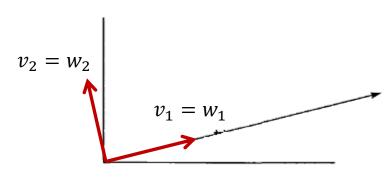
- Consider the matrix A that represents a linear transformation T.
- Most of the times the required transformation is of the form $T: \mathbb{R}^n \to \mathbb{R}^m$.
- I need to choose two bases, one for \mathbb{R}^n , denoted by v_1, v_2, \dots, v_n and one for \mathbb{R}^m denoted by w_1, w_2, \dots, w_m .
- I am looking for a transformation that if applied on a vector described with the input coordinates produces the output co-ordinates.
- Consider R^2 and the transformation which projects any vector on the line shown on the figure below.
- I consider as basis for R^2 the vectors shown with red below and not the "standard" vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- On of the basis vectors lies on the required line and the other is perpendicular to the former.

Examples of transformations: Projection (cont)

- I consider as basis for R^2 the vectors shown with red below both before and after the transformation.
- Any vector v in R^2 can be written as $v = c_1v_1 + c_1v_2$.
- We are looking for $T(\cdot)$ such that $T(v_1) = v_1$ and $T(v_2) = 0$. Furthermore,

$$T(v) = c_1 T(v_1) + c_1 T(v_2) = c_1 v_1$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ 0 \end{bmatrix}$$

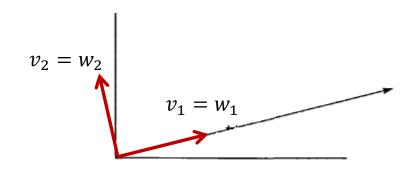




Examples of transformations: Projection (cont)

- I now consider as basis for R² the "standard" basis.
- $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- Consider projections on to 45° line.
- In this example the required matrix is

$$P = \frac{aa^T}{a^T a} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$



Here we didn't choose the "best" basis, we chose the "handiest" basis.

Rule for finding matrix A

- Suppose we are given the bases $v_1, v_2, ..., v_n$ and $w_1, w_2, ..., w_m$.
- How do I find the first column of A? The first column of A should tell me what happens to the first basis vector. Therefore, we apply $T(v_1)$. This should give

$$T(v_1) = a_{11}w_1 + a_{21} w_2 \dots a_{m1} w_m = \sum_{i=1}^m a_{i1}w_i$$

- We observe that $\{a_{i1}\}$ form the first column of the matrix A.
- In general $T(v_j) = a_{1j}w_1 + a_{2j} w_2 ... a_{mj} w_m = \sum_{i=1}^m a_{ij}w_i$

Examples of transformations: Derivative of a function

- Consider a linear transformation that takes the derivative of a function.
 (The derivative is a linear transformation!)
- $T = \frac{d(\cdot)}{dx}$
- Consider input $c_1 + c_2 x + c_3 x^2$. Basis consists of the functions 1, x, x^2 .
- The output should be $c_2 + 2c_3x$. Basis consists of the functions 1, x.
- I am looking for a matrix A such that $A\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} c_2 \\ 2c_3 \end{bmatrix}$.

This is
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Types of matrix inverses

2-sided inverse (or simply inverse)

$$r = m = n$$

(full rank)

$$AA^{-1} = I = A^{-1}A$$

Left inverse. (Note that a rectangular matrix cannot have a 2-sided inverse!)

$$r = n < m$$

(full column rank) independent columns nullspace = $\{0\}$ 0 or 1 solutions to Ax = b $A^{T}A$ $n \times n$ invertible

$$(A^{T}A)^{-1}A^{T}A = I$$

$$A_{left}^{-1} A = I$$

$$n \times m \quad m \times n$$

· Right inverse

$$r = m < n$$
 (full row rank)
 $n - m$ free variables independent rows

(full row rank) independent rows $N(A^T) = \{0\}$ ∞ solutions to Ax = b AA^{T} $m \ x \ m$ invertible

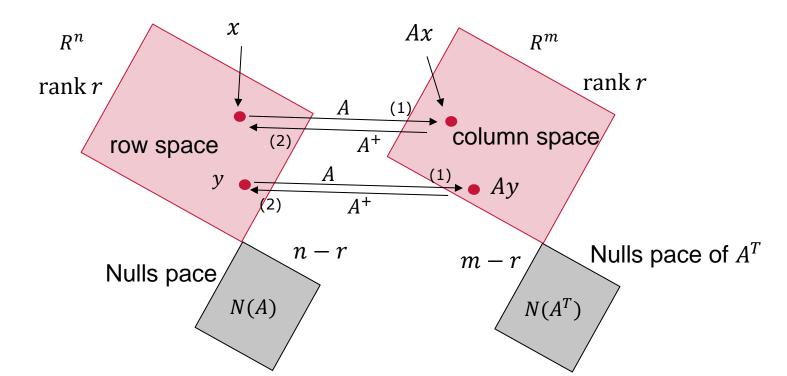
$$AA^{T}(AA^{T})^{-1} = I$$

$$AA_{right}^{-1} = I$$

$$m \times n \times m$$

Pseudo-inverse. The case for r < m, r < n

- The multiplication of a vector from the row space x with a matrix A gives a vector Ax in the column space (1)
- The multiplication of a vector from the column space Ax with the pseudo inverse of A (i.e. A^+) gives the vector $x = A^+Ax$ (2)



Pseudo-inverse

• If $x \neq y$ are different vectors in the row space then the vectors Ax, Ay are vectors in the column space. We can show that $Ax \neq Ay$.

Proof

Suppose Ax = Ay.

Then A(x - y) = 0 is in the null space.

But we know x, y and x - y are in the row space.

Therefore x - y is the zero vector and x = y so Ax = Ay.

• Therefore a matrix A is a mapping from row space to column space and viceversa. For that particular mapping the inverse of A is denoted by A^+ and is called pseudo-inverse.

Find the Pseudo-inverse

- •How can we find the pseudo-inverse A⁺
- •Starting from SVD, $A = U \Sigma V^T$ with $\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_r & 0 \\ 0 & 0 & 0 \end{bmatrix}$ of size $m \times n$ and rank r.
- •The pseudo-inverse is $A^+ = V \Sigma^+ U^T$, $\Sigma^+ = \begin{bmatrix} 1/\sigma_1 & 0 & 0 \\ 0 & 1/\sigma_r & 0 \\ 0 & 0 & 0 \end{bmatrix}$ of size $n \times m$ and rank r.
- •Note that $\Sigma \Sigma^+ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ of size $m \times m$ and is a projection matrix onto the column space.
- •Note also that $\Sigma^+\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ of size $n \times n$ is a projection matrix onto the row space.
- $\Sigma \Sigma^+ \neq I \neq \Sigma^+ \Sigma$.