

Maths for Signals and Systems

Linear Algebra in Engineering

Lectures 13 – 15, Tuesday 8th and Friday 11th November 2016

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Positive definite matrices

- A symmetric or Hermitian matrix is positive definite if and only if (iff) all its eigenvalues are real and positive.
- Therefore, the pivots are positive and the determinant is positive.
- However, positive determinant doesn't guarantee positive definiteness.

Example: Consider the matrix

$$A = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$$

Eigenvalues are obtained from:

$$(5 - \lambda)(3 - \lambda) - 4 = 0 \Rightarrow \lambda^2 - 8\lambda + 11 = 0$$
$$\lambda_{1,2} = \frac{8 \pm \sqrt{64 - 44}}{2} = \frac{8 \pm \sqrt{20}}{2} = 4 \pm \sqrt{5}$$

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is positive definite.

Positive definite matrices cont.

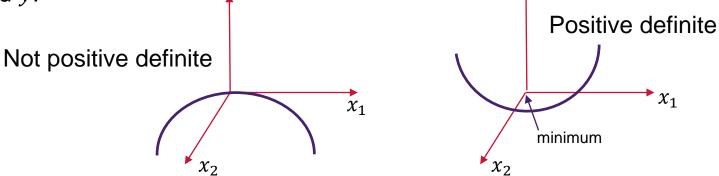
- We are talking about symmetric matrices.
- We have various tests for positive definiteness. Consider the 2×2 case of a positive definite matrix $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$.
 - The eigenvalues are positive $\lambda_1 > 0, \lambda_2 > 0$.
 - The pivots are positive a > 0, $\frac{ac-b^2}{a} > 0$.
 - All determinates of leading ("north west") sub-matrices are positive a > 0, $ac b^2 > 0$.
 - $x^T A x > 0$, x is any vector.
 - $x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = ax_1^2 + 2bx_1x_2 + cx_2^2$. This is called **Quadratic** Form.

Positive semi-definite matrices

- **Example:** Consider the matrix $\begin{bmatrix} 2 & 6 \\ 6 & x \end{bmatrix}$
 - Which sufficiently large values of x makes the matrix positive definite? The answer is x > 18. (The determinant is $2x 36 > 0 \Rightarrow x > 18$)
 - If x = 18 we obtain the matrix $\begin{bmatrix} 2 & 6 \\ 6 & 18 \end{bmatrix}$.
 - For x = 18 the matrix is **positive semi-definite**. The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 20$. One of its eigenvalues is zero.
 - It has only one pivot since the matrix is singular. The pivots are 2 and 0.
 - Its quadratic form is $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 + 12x_1x_2 + 18x_2^2$.
 - In that case the matrix marginally failed the test.

Graph of quadratic form

• In mathematics, a **quadratic form** is a **homogeneous polynomial** of degree two in a number of variables. For example, the condition for positive-definiteness of a 2×2 matrix, $f(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$, is a quadratic form in the variables x and y.



- For the positive definite case we have:
 - Obviously, first derivatives must be zero at the minimum. This condition is not enough.
 - Second derivatives' matrix is positive definite, i.e., for $\begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}$, we have $f_{x_1x_1} > 0$, $f_{x_1x_1}f_{x_2x_2} 2f_{x_1x_2} > 0$.
 - Positive for a number turns into positive definite for a matrix.

Imperial College London

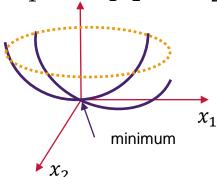
Example 1

Example:

$$\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$$
, trace $(A) = 22 = \lambda_1 + \lambda_2$, det $(A) = 4 = \lambda_1 \lambda_2$

$$[x_1 x_2] \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 + 12x_1x_2 + 20x_2^2$$

•
$$f(x_1, x_1) = 2x_1^2 + 12x_1x_2 + 20x_2^2 = 2(x_1 + 3x_2)^2 + 2x_2^2$$
.



- A horizontal intersection could be $f(x_1, x_1) = 1$. It is an ellipse.
- Its quadratic form is $2(x_1 + 3x_2)^2 + 2x_2^2 = 1$.

Example 1 cont.

Example:

$$\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$$
, trace $(A) = 22 = \lambda_1 + \lambda_2$, det $(A) = 4 = \lambda_1 \lambda_2$

•
$$f(x_1, x_2) = 2x_1^2 + 12x_1x_2 + 20x_2^2 = 2(x_1 + 3x_2)^2 + 2x_2^2$$

Note that computing the square form is effectively elimination

$$A = \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \xrightarrow{\text{(2)} - 3(1)} \begin{bmatrix} \mathbf{2} & 6 \\ 0 & \mathbf{2} \end{bmatrix} = U \text{ and } L = \begin{bmatrix} 1 & 0 \\ \mathbf{3} & 1 \end{bmatrix}$$

- The pivots and the multipliers appear in the quadratic form when we compute the square.
- Pivots are the multipliers of the squared functions so positive pivots imply sum of squares and hence positive definiteness.

Imperial College London

Example 2

- Example: Consider the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
 - The leading ("north west") determinants are 2,3,4.
 - The pivots are 2, 3/2, 4/3.
 - The quadratic form is $x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 2x_1 x_2 2x_2 x_3$.
 - This can be written as:

$$2\left(x_1 - \frac{1}{2}x_2\right)^2 + \frac{3}{2}\left(x_2 - \frac{2}{3}x_3\right)^2 + \frac{4}{3}x_3^2$$

- The eigenvalues of A are $\lambda_1 = 2 \sqrt{2}$, $\lambda_2 = 2$, $\lambda_3 = 2 + \sqrt{2}$
- The matrix A is positive definite when $x^T A x > 0$.

Positive definite matrices cont.

- If a matrix A is positive-definite, its inverse A^{-1} it also positive definite. This comes from the fact that the eigenvalues of the inverse of a matrix are equal to the inverses of the eigenvalues of the original matrix.
- If matrices A and B are positive definite, then their sum is positive definite. This comes from the fact $x^T(A+B)x = x^TAx + x^TBx > 0$. The same comment holds for positive semi-definiteness.
- Consider the matrix A of size $m \times n$, $m \neq n$ (rectangular, not square). In that case we are interested in the matrix A^TA which is square.
- Is $A^T A$ positive definite?

The case of A^TA and AA^T

- Is $A^T A$ positive definite?
- $x^T A^T A x = (Ax)^T A x = ||Ax||^2$
- In order for $||Ax||^2 > 0$ for every $x \neq 0$, the null space of A must be zero.
- In case of A being a rectangular matrix of size $m \times n$ with m > n, the rank of A must be n.
- In case of A being a rectangular matrix of size $m \times n$ with m < n, the null space of A cannot be zero and therefore, A^TA is not positive definite.
- Following the above analysis, it is straightforward to show that AA^T is positive definite if m < n and the rank of A is m.

Similar matrices

- Consider two square matrices A and B.
- Suppose that for some invertible matrix M the relationship $B = M^{-1}AM$ holds. In that case we say that A and B are similar matrices.
- **Example:** Consider a matrix A which has a full set of eigenvectors. In that case $S^{-1}AS = \Lambda$. Based on the above A is similar to Λ .
- Similar matrices have the same eigenvalues.
- Matrices with identical eigenvalues are not necessarily similar.
- There are different families of matrices with the same eigenvalues.
- Consider the matrix A with eigenvalues λ and corresponding eigenvectors x and the matrix $B = M^{-1}AM$.

We have
$$Ax = \lambda x \Rightarrow AMM^{-1}x = \lambda x \Rightarrow M^{-1}AMM^{-1}x = \lambda M^{-1}x$$

$$BM^{-1}x = \lambda M^{-1}x$$

Therefore, λ is also an eigenvalue of B with corresponding eigenvector $M^{-1}x$.

Matrices with identical eigenvalues with some repeated

- Consider the families of matrices with repeated eigenvalues.
- **Example:** Lets take the 2×2 size matrices with eigenvalues $\lambda_1 = \lambda_2 = 4$.
 - The following two matrices

$$\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = 4I \text{ and } \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$$

have eigenvalues 4,4 but they belong to different families.

- There are **two** families of matrices with eigenvalues 4,4.
- The matrix $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ has no "relatives". The only matrix similar to it, is itself.
- The big family includes $\begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$ and any matrix of the form $\begin{bmatrix} 4 & a \\ 0 & 4 \end{bmatrix}$, $a \neq 0$. These matrices are not diagonalizable since they only have one non-zero eigenvector.

- The so called Singular Value Decomposition (SVD) is one of the main highlights in Linear Algebra.
- Consider a matrix A of dimension $m \times n$ and rank r.
- I would like to diagonalize A. What I know so far is $A = S\Lambda S^{-1}$. This diagonalization has the following weaknesses:
 - A has to be square.
 - There are not always enough eigenvectors.
 - For example consider the matrix $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, $a \neq 0$. It only has the eigenvector $\begin{bmatrix} x & 0 \end{bmatrix}^T$.
- Goal: I am looking for a type of decomposition which can be applied to any matrix.

- I am looking for a type of matrix factorization of the form $A = U\Sigma V^T$ where A is any real matrix A of dimension $m \times n$ and furthermore,
 - U is a unitary matrix $(U^TU = I)$ with columns u_i , of dimension $m \times m$.
 - Σ is an $m \times n$ rectangular matrix with non-negative real entries only along the main diagonal. The main diagonal is defined by the elements σ_{ij} , i = j.
 - V is a unitary matrix $(V^TV = I)$ with columns v_i , of dimension $n \times n$.
- *U* is, in general, different to *V*.
- The above type of decomposition is called Singular Value Decomposition.
- The non-zero elements of Σ are the so called **Singular Values** of matrix A. They are chosen to be **positive**.
- When A is a square invertible matrix then $A = S\Lambda S^{-1}$.
- When A is a symmetric matrix, the eigenvectors of S are orthonormal, so $A = Q\Lambda Q^T$.
- Therefore, for symmetric matrices SVD is effectively an eigenvector decomposition U=Q=V and $\Lambda=\Sigma$.
- For complex matrices, **transpose** must be replaced with **conjugate transpose**.

• From $A = U\Sigma V^T$, the following relationship hold:

$$AV = U\Sigma$$

Do not forget that U and V are assumed to be unitary matrices and therefore,

$$U^T U = U U^T = V^T V = V V^T = I$$

• If I manage to write $A = U\Sigma V^T$, the matrix A^TA is decomposed as:

$$A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T$$

- In the above expression $\Sigma^T \Sigma$ is a matrix of dimension $(n \times m) \times (m \times n) = n \times n$ (square matrix). From the form of the original Σ , you can easily deduct that $\Sigma^T \Sigma$ is a diagonal matrix. It has r non-zero elements across the diagonal. These are the squares of the singular values of A which are located along the main diagonal of the rectangular matrix Σ . $\Sigma^T \Sigma = \Sigma^2$ if the original matrix A is a square matrix.
- Please note the difference between the "diagonal" (square matrices) and the "main diagonal" (rectangular matrices).
- Therefore, the above expression is the eigenvector decomposition of A^TA as follows:

$$A^T A = V(\Sigma^T \Sigma) V^T$$

• Similarly, the eigenvector decomposition of AA^T is:

$$AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T$$

- In the above expression $\Sigma\Sigma^T$ is a matrix of dimension $(m \times n) \times (n \times m) = m \times m$. Similarly to $\Sigma^T\Sigma$, it is a square matrix with r non-zero elements across the diagonal.
- Based on the properties stated in previous slides, the number and values of non-zero elements of matrices $\Sigma\Sigma^T$ and $\Sigma^T\Sigma$ are identical. Note that these two matrices have different dimensions if $m \neq n$. In that case one of them (the bigger one) has at least one zero element in its diagonal since they both have rank r which is $r \leq \min(m, n)$.
- From this and previous slides, we deduct that we can determine all the factors of SVD by the eigenvector decompositions of matrices A^TA and AA^T .

Useful properties

- Let A be an $m \times n$ matrix and let B be an $n \times m$ matrix with $n \ge m$. Then the n eigenvalues of BA are the m eigenvalues of AB with the extra eigenvalues being 0. Therefore, the non-zero eigenvalues of AB and BA are identical.
- Therefore: Let A be an $m \times n$ matrix with $n \ge m$. Then the n eigenvalues of A^TA are the m eigenvalues of AA^T with the extra eigenvalues being 0. Similar comments for $n \le m$ are valid.
- Matrices A, A^TA and AA^T have the same rank.
- Let A be an $m \times n$ matrix with $n \ge m$ and rank r. The matrix A has r singular values. Both A^TA and AA^T have r non-zero eigenvalues which are the squares of the singular values of A. Furthermore:
 - A^TA is of dimension $n \times n$. It has r eigenvectors $[v_1 \dots v_r]$ associated with its r non-zero eigenvalues and n-r eigenvectors associated with its n-r zero eigenvalues.
 - AA^T is of dimension $m \times m$. It has r eigenvectors $[u_1 \quad ... \quad u_r]$ associated with its r non-zero eigenvalues and m-r eigenvectors associated with its m-r zero eigenvalues.

- I can write $V = [v_1 \dots v_r \ v_{r+1} \dots v_n]$ and $U = [u_1 \dots u_r \ u_{r+1} \dots u_m]$.
- Matrices U and V have already been defined previously.
- Note that in the above matrices, I put first in the columns the eigenvectors of A^TA and AA^T which correspond to non-zero eigenvalues.
- To take the above even further, I order the eigenvectors according to the magnitude of the associated eigenvalue.
- The eigenvector that corresponds to the maximum eigenvalue is placed in the first column and so on.
- This ordering is very helpful in various real life applications.

- As already shown, from $A = U\Sigma V^T$ we obtain that $AV = U\Sigma$ or $A[v_1 \dots v_r v_{r+1} \dots v_n] = [u_1 \dots u_r u_{r+1} \dots u_m]\Sigma$
- Therefore, we can break $AV = U\Sigma$ into a set of relationships of the form $Av_i = \sigma_i u_i$. Note that σ_i is a scalar and v_i and u_i vectors.
- For $i \le r$ the relationship $AV = U\Sigma$ tells us that:
 - The vectors $v_1, v_2, ..., v_r$ are in the row space of A. This is because from $AV = U\Sigma$ we have $U^TAVV^T = U^TU\Sigma V^T \Rightarrow U^TA = \Sigma V^T \Rightarrow v_i^T = \frac{1}{\sigma_i}u_i^TA$, $\sigma_i \neq 0$.
 - Furthermore, since the v_i 's associated with $\sigma_i \neq 0$ are orthonormal, they form a basis of the row space.
 - The vectors $u_1, u_2, ..., u_r$ are in the column space of A. This observation comes directly from $u_i = \frac{1}{\sigma_i} A v_i$, $\sigma_i \neq 0$, i.e., u_i s are linear combinations of columns of A. Furthermore, the u_i s associated with $\sigma_i \neq 0$ are orthonormal. Thus, they form a basis of the column space.

- Based on the facts that:
 - $Av_i = \sigma_i u_i$,
 - v_i form an orthonormal basis of the row space of A,
 - u_i form an orthonormal basis of the column space of A, we conclude that:

with SVD, an orthonormal basis of the row space, which is given by the columns of v, is mapped by matrix A to an orthonormal basis of the column space given by the columns of u. This comes from $AV = U\Sigma$.

- The n-r additional v's which correspond to the zero eigenvalues of matrix A^TA are taken from the null space of A.
- The m-r additional u's which correspond to the zero eigenvalues of matrix AA^T are taken from the left null space of A.

Examples of different \Sigma matrices

- We managed to find an orthonormal basis (V) of the row space and an orthonormal basis (U) of the column space that diagonalize the matrix A to Σ .
- In general, the basis of *V* is different to the basis of *U*.
- The SVD is written as:

$$A[v_1 \quad \dots \quad v_r \quad v_{r+1} \quad \dots \quad v_n] = [u_1 \quad \dots \quad u_r \quad u_{r+1} \quad \dots \quad u_m]\Sigma$$

• The form of matrix Σ depends on the dimensions m, n, r. It is of dimension $m \times n$. Its elements are chosen as:

$$\Sigma_{ij} = \begin{cases} \sqrt{\sigma_i^2} = \sigma_i & i = j, 1 \le i, j \le r \\ 0 & \text{otherwise} \end{cases}$$

- σ_i^2 are the non-zero eigenvalues of A^TA or AA^T .
- $\sqrt{\sigma_i^2}$ are the non-zero singular values of A.

Examples of different \Sigma matrices cont.

• Example: m = n = r = 3.

$$\Sigma = egin{bmatrix} \sqrt{\sigma_1^2} & 0 & 0 \\ 0 & \sqrt{\sigma_2^2} & 0 \\ 0 & 0 & \sqrt{\sigma_3^2} \end{bmatrix}$$

• Example: m = 4, n = 3, r = 2.

$$\Sigma = \begin{bmatrix} \sqrt{\sigma_1^2} & 0 & 0 \\ 0 & \sqrt{\sigma_2^2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Truncated or Reduced Singular Value Decomposition

- In the expression for SVD we can reformulate the dimensions of all matrices involved by ignoring the eigenvectors which correspond to zero eigenvalues.
- In that case we have:

$$A \begin{bmatrix} v_1 & \dots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & \dots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r \end{bmatrix} \Rightarrow A = u_1 \sigma_1 v_1^T + \dots + u_r \sigma_r v_r^T$$

where:

- The dimension of A is $m \times n$.
- The dimension of $[v_1 \dots v_r]$ is $n \times r$.
- The dimension of $[u_1 \quad ... \quad u_r]$ is $m \times r$.
- The dimension of Σ is $r \times r$.
- The above formulation is called Truncated or Reduced Singular Value Decomposition.
- As seen, the Truncated SVD gives the splitting of A into a sum of r matrices, each of rank 1.
- In the case of a square, invertible matrix (m = n = r), the two decompositions are identical.

Singular Value Decomposition. Example 1.

- Example: $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$ and $A^T A = \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}$
- The eigenvalues of A^TA are $\sigma_1^2=32$ and $\sigma_2^2=18$.
- The eigenvectors of A^TA are $v_1=\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}$ and $v_2=\begin{bmatrix}1/\sqrt{2}\\-1/\sqrt{2}\end{bmatrix}$ $A^TA=V\Sigma^2V^T$
- Similarly $AA^T = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}$
- Therefore, the eigenvectors of AA^T are $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $AA^T = U\Sigma^2U^T$.
- CAREFUL: u_i 's are chosen to satisfy the relationship $u_i = \frac{1}{\sigma_i} A v_i$, i = 1,2.
- Therefore, the SVD of $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$ is:

$$A = U\Sigma V^T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{32} & 0 \\ 0 & \sqrt{18} \end{bmatrix} \begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{vmatrix} = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$$

Singular Value Decomposition. Example 2.

- Example: $A = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$ (singular) and $A^T A = \begin{bmatrix} 4 & 8 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix} = \begin{bmatrix} 80 & 60 \\ 60 & 45 \end{bmatrix}$
- The eigenvalues of A^TA are $\sigma_1^2=125$ and $\sigma_2^2=0$.
- The eigenvectors of A^TA are $v_1 = \begin{bmatrix} 4/5 \\ 3/5 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 4/5 \\ -3/5 \end{bmatrix}$ $A^TA = V\Sigma^2V^T$
- Similarly $AA^T = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 25 & 50 \\ 50 & 100 \end{bmatrix}$
- u_1 is chosen to satisfy the relationship $u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{125}} {5 \brack 10} = \frac{1}{\sqrt{5}} {1 \brack 2}$.
- u_2 is chosen to be perpendicular to u_1 . Note that the presence of u_2 and v_2 does not affect the calculations, since their elements are multiplied by zeros.
- Therefore, the SVD of $A = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$ is:

$$A = U \Sigma V^{T} = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 5\sqrt{5} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4/5 & 3/5 \\ 4/5 & -3/5 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$$

Singular Value Decomposition. Example 2 cont.

• The SVD of $A = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$ is: $A = U \Sigma V^{T} = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 5\sqrt{5} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4/5 & 3/5 \\ 4/5 & -3/5 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$

The truncated SVD is:

$$A = U \Sigma V^{T} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} 5\sqrt{5} [4/5 \quad 3/5] = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$$

Singular Value Decomposition. Example 3.

- Example: $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. We see that r = 2. $A^T A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
- The eigenvalues of A^TA are $\sigma_1^2=3$ and $\sigma_2^2=1$ and $\sigma_3^2=0$ (obviously).
- The eigenvectors of A^TA are $v_1=\begin{bmatrix}1/\sqrt{6}\\2/\sqrt{6}\\1/\sqrt{6}\end{bmatrix}$, $v_2=\begin{bmatrix}1/\sqrt{2}\\0\\-1/\sqrt{2}\end{bmatrix}$ and $v_3=\begin{bmatrix}1/\sqrt{3}\\-1/\sqrt{3}\\1/\sqrt{3}\end{bmatrix}$.
- Similarly $AA^T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$
- u_1 is chosen to satisfy the relationship $u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- u_2 is chosen to satisfy the relationship $u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Note that the presence of v_3 does not affect the calculations, since its elements are multiplied by zeros.

Singular Value Decomposition. Example.

• Therefore, the SVD of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ is

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

The truncated SVD for this example is:

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix}$$

Pseudoinverse

 Suppose that A is a matrix of dimension m × n and rank r. The SVD of matrix A is given by:

$$A = U\Sigma V^T$$

• I define a matrix Σ^+ of dimension $n \times m$ as follows:

$$\Sigma_{ij}^{+} = \begin{cases} 1/\sqrt{\sigma_i^2} & i = j, 1 \le i, j \le r \\ 0 & \text{otherwise} \end{cases}$$

- The matrix $A^+ = V \Sigma^+ U^T$ is called the **Pseudoinverse** of matrix A or the **Moore Penrose** inverse.
- $A^+A = V \Sigma^+U^T U\Sigma V^T = V \Sigma^+\Sigma V^T$.
- The matrix $\Sigma^+\Sigma$ is of dimension $n \times n$ (square) and has rank r. It is defined as follows:

$$(\Sigma^{+}\Sigma)_{ij} = \begin{cases} 1 & i = j, 1 \le i, j \le r \\ 0 & \text{otherwise} \end{cases}$$

- $AA^+ = U\Sigma V^T V \Sigma^+ U^T = U\Sigma \Sigma^+ U^T$.
- The matrix $\Sigma \Sigma^+$ is of dimension $m \times m$ and has rank r. It is defined as $\Sigma^+\Sigma$ above.

Pseudoinverse

- Note that $\Sigma^{+}\Sigma$ and Σ Σ^{+} have different dimensions.
- Note that $\Sigma^+\Sigma$ and Σ^+ look like identity matrices where the last (n-r) or (m-r) diagonal elements have been replaced by zeros.
- If $m \ge n$ and the rank of A is n then $\Sigma^+\Sigma = I_{n \times n}$. In that case $A^+A = V \ \Sigma^+U^T \ U\Sigma V^T = V \ \Sigma^+\Sigma V^T = V \ V^T = I_{n \times n}$. Therefore, A^+ is a left inverse matrix of A.
- If $m \le n$ and the rank of A is m then $\Sigma \Sigma^+ = I_{m \times m}$. In that case $AA^+ = I_{m \times m}$. Therefore, A^+ is a right inverse matrix of A.

Pseudoinverse cont.

- As already proved, the relationship $Av_i = \sigma_i u_i$, which comes directly from $AV = U\Sigma$, maps a vector from the row space to the column space.
- Similarly, from $A^+ = V \Sigma^+ U^T$ we get $A^+ U = V \Sigma^+$ and therefore, $A^+ u_i = \frac{1}{\sigma_i} v_i$. Therefore, the multiplication of a vector from the column space with the pseudo inverse A^+ , gives a the vector in the row space.

Other types of matrix inverses

Consider a matrix A of dimension $m \times n$ and rank r. The following cases hold:

- r = m = n. In that case $AA^{-1} = I = A^{-1}A$. The matrix A has a **two-sided inverse** or simply an **inverse**.
- r = n < m (more rows thank columns)
 - The matrix has full column rank (independent columns).
 - Null space = {0}.
 - 0 or 1 solutions to Ax = b.

In that case A^TA of dimension $n \times n$ is invertible and A has a **left inverse** only.

- r = m < n (more columns than rows)
 - The matrix has full row rank (independent rows).
 - There are n-m free variables.
 - Left null space = {0}.
 - Infinite solutions to Ax = b.
 - In that case AA^T of dimension $m \times m$ is invertible and A has a **right inverse** only.

$$(A^{T}A)^{-1}A^{T}A = I_{n \times n}$$

$$n \times m \quad m \times n$$

$$A_{left}^{-1} \quad A = I_{n \times n}$$

$$AA^{T}(AA^{T})^{-1} = I_{m \times m}$$

$$m \times n \quad n \times m$$

$$A A_{right}^{-1} = I_{m \times m}$$