Imperial College London

Waths for Signals and Systems Linear Algebra in Engineering

Lectures 13-14, Tuestay 1141 November 2014
 DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Mathematics for Signals and Systems

Eigenvectors and eigenvalues

- Consider a matrix A and a vector x.
- The operation $A x$ produces a vector y at some direction.
- I am interested in vectors y which lie in the same direction as x.
- In that case I have $A x=\lambda x$.
- When the above relationship holds, x is called an eigenvector and λ is called an eigenvalue of matrix A.
- If A is singular then $\lambda=0$ is an eigenvalue.
- Problem: How do we find the eigenvectors and eigenvalues of a matrix?

Imperial College

Mathematics for Signals and Systems

Eigenvectors and eigenvalues of a projection matrix

- Problem: What are the eigenvectors x^{\prime} and eigenvalues λ^{\prime} of a projection matrix P ?
In the figure, consider the matrix P which projects vector b onto vector p.
Question: Is b an eigenvector of P ?
Answer: NO, because b and $P b$ lie in different directions!
Question: What vectors are eigenvectors of P ?
Answer: Vectors x which lie on the projection plane already! In that case $P x=x$ and therefore x is an eigenvector with eigenvalue 1 .

Imperial College

Mathematics for Signals and Systems

Eigenvectors and eigenvalues of a projection matrix (cont.)

- The eigenvectors of P are vectors x which lie on the projection plane already! In that case $P x=x$ and therefore x is an eigenvector with eigenvalue 1 .
- We can find 2 independent eigenvectors of P which lie on the projection plane.
- Problem: In the 3D space we can find 3 independent vectors. Can you find a third eigenvector of P that is perpendicular to the eigenvectors of P that lie on the projection plane?
Answer: YES! Any vector e perpendicular to the plane. In that case $P e=0 e=0$.
- The eigenvalues of P are $\lambda=0$ and $\lambda=1$.

Mathematics for Signals and Systems

Eigenvectors and eigenvalues of a permutation matrix

- Consider the permutation matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
- Problem: Can you give an eigenvector of the above matrix? Or can you think of a vector that if permuted is still a multiple of itself?
Answer: YES! It is the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the corresponding eigenvalue is $\lambda=1$. And furthermore, the vector $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ with eigenvalue $\lambda=-1$.
- $n \times n$ matrices will have n eigenvalues.
- It is not so easy to find them!
- But there is an amazing fact! The sum of the eigenvalues, called the trace of a matrix, equals the sum of the diagonal elements of the matrix.
- Therefore, in the previous example, once I found an eigenvalue $\lambda=1$, I should suspect that there is another eigenvalue $\lambda=-1$.

Imperial College

Mathematics for Signals and Systems

Problem: Solve $A x=\lambda x$

- $A x=\lambda x \Rightarrow A x-\lambda x=0$ (0 is the zero vector). $(A-\lambda I) x=0$
In order for the above set of equations to have a non-zero solution, the matrix $(A-\lambda I)$ must be singular. Therefore, $\operatorname{det}(A-\lambda I)=0$.
- I now have an equation for λ. It is called the characteristic equation, or the eigenvalue equation. The idea then is to find λ s first.
- I might have repeated $\lambda \mathrm{s}$. These mean trouble but I will deal with this later!
- After I find λ, I can find x from $(A-\lambda I) x=0$. Basically, I will be looking for the null space of $(A-\lambda I)$.

Imperial College

Mathematics for Signals and Systems

Solve $A x=\lambda x$. An example

- Consider the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. A symmetric matrix has real eigenvalues!
- Eigenvectors of a symmetric matrix can be chosen to be orthogonal.
- $\operatorname{det}(A-\lambda I)=(3-\lambda)^{2}-1=0 \Rightarrow 3-\lambda= \pm 1 \Rightarrow \lambda=3 \pm 1 \Rightarrow \lambda_{1}=4$, $\lambda_{2}=2$.
$\operatorname{Or} \operatorname{det}(A-\lambda I)=\lambda^{2}-6 \lambda+8=0$. Note that $6=\lambda_{1}+\lambda_{2}$ and $8=\operatorname{det}(A)=\lambda_{1} \lambda_{2}$.
- Find the eigenvector for $\lambda_{1}=4$.
$A-4 I=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right] \Rightarrow\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow x=y$
- Find the eigenvector for $\lambda_{2}=2$.

$$
A-2 I=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow x=-y
$$

- There are entire lines of eigenvectors, not single eigenvectors!

Imperial College

London

Mathematics for Signals and Systems

Compare the two problems.

- Consider the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ with eigenvectors $\left[\begin{array}{l}x \\ x\end{array}\right]$ and $\left[\begin{array}{c}-x \\ x\end{array}\right]$ and eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=2$.
- Consider the matrix $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ with eigenvectors $\left[\begin{array}{l}x \\ x\end{array}\right]$ and $\left[\begin{array}{c}-x \\ x\end{array}\right]$ and eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$.
- We observe that $A=B+3 I$. The eigenvalues of A are obtained from the eigenvalues of B if we increase them by 3 !
- The eigenvectors of A and B are the same!

Imperial College

Mathematics for Signals and Systems

Generalization of the above observation

- Consider the matrix $A=B+c I$.
- Consider an eigenvector x of B with eigenvalue λ. Then: $B x=\lambda x$ and therefore, $A x=(B+c I) x=B x+c I x=B x+c x=\lambda x+c x=(\lambda+c) x$ A has the same eigenvectors with B with eigenvalues $\lambda+c$.
- BUT: There isn't any property that enables us to find the eigenvalues of $A+B$ and $A B$.

Imperial College

Mathematics for Signals and Systems

Example

- Take a matrix that rotates every vector by 90°.
- This is $Q=\left[\begin{array}{cc}\cos (90) & -\sin (90) \\ \sin (90) & \cos (90)\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
- $\lambda_{1}+\lambda_{2}=0$ and $\operatorname{det}(Q)=\lambda_{1} \lambda_{2}=1$
-What vector can be parallel to itself after rotation?
- $\operatorname{det}(Q-\lambda I)=\operatorname{det}\left[\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right]=\lambda^{2}+1=0 \Rightarrow \lambda= \pm i$
- In that case we have an anti-symmetric matrix with $Q^{T}=Q^{-1}=-Q$.
- The eigenvalues come in complex conjugate pairs.

Imperial College

Mathematics for Signals and Systems

Example

- Consider $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$
- $\lambda_{1}+\lambda_{2}=6$ and $\operatorname{det}\left(\lambda_{1} \lambda_{2}\right)=9$
- $\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}3-\lambda & 1 \\ 0 & 3-\lambda\end{array}\right]=(3-\lambda)^{2}=0 \Rightarrow \lambda=3$
- The eigenvalues of a triangular matrix are the values of the diagonal.
- In that case we have
$\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 x \\ 3 y\end{array}\right] \Rightarrow y=0$ and x can be any number.
- In that case of repeated eigenvalues, we don't have 2 independent eigenvectors!

Imperial College

Mathematics for Signals and Systems

Matrix diagonalization for the case of independent eigenvectors

- Suppose we have n independent eigenvectors of a matrix A. We call them x_{i}.
- We put them in the columns of a matrix S.
- We form the matrix $A S=A\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]=\left[\begin{array}{llll}\lambda_{1} x_{1} & \lambda_{2} x_{2} & \ldots & \lambda_{n} x_{n}\end{array}\right]=$
$\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]=S \Lambda \Rightarrow A S=S \Lambda$
$S^{-1} A S=\Lambda$ or $A=S \Lambda S^{-1}$

Imperial College

Mathematics for Signals and Systems

Matrix diagonalization: Eigenvalues of A^{k}

- If $A x=\lambda x \Rightarrow A^{2} x=\lambda A x \Rightarrow A^{2} x=\lambda^{2} x$.
- Therefore, the eigenvalues of A^{2} are λ^{2}.
- The eigenvectors of A^{2} remain the same.
- $A^{2}=S \Lambda S^{-1} S \Lambda S^{-1}=S \Lambda^{2} S^{-1}$
- $A^{k}=S \Lambda^{k} S^{-1}$
- $\lim \left(A^{k}\right)=0$ if the eigenvalues of A have the property $\left|\lambda_{i}\right|<1$
- A matrix has n independent eigenvectors and therefore is diagonalizable if all the eigenvalues are different (non repeated eigenvalues exist).
- If I have repeated eigenvalues I may, or may not have independent eigenvectors (consider the identity matrix!)
- Find the eigenvalues of $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.

Imperial College

Mathematics for Signals and Systems

Application at last! A first order system which evolves with time

- The system follows an equation of the form $u_{k+1}=A u_{k}$.
- u_{k} is the vector which consists of the system parameters which evolve with time.
- The eigenvalues of A characterize fully the behavior of the system.
- I start with a given vector u_{0}.
$u_{1}=A u_{0}, u_{2}=A^{2} u_{0}$ and in general $u_{k}=A^{k} u_{0}$
- To really solve the above, I write $u_{0}=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ where x_{i} are the eigenvectors of matrix A.
- $A u_{0}=c_{1} A x_{1}+c_{2} A x_{2}+\cdots+c_{n} A x_{n}=c_{1} \lambda_{1} x_{1}+c_{2} \lambda_{2} x_{2}+\cdots+c_{n} \lambda_{n} x_{n}$ $A^{100} u_{0}=c_{1} \lambda_{1}{ }^{100} x_{1}+c_{2} \lambda_{2}{ }^{100} x_{2}+\cdots+c_{n} \lambda_{n}{ }^{100} x_{n}=S \Lambda^{100} c$
c is a column vector that contains the coefficients c_{i}.

Imperial College

London

Mathematics for Signals and Systems

Fibonacci example. Convert a second order scalar problem into a first order system

- I will take two numbers which I call $F_{0}=0$ and $F_{1}=1$.
- The Fibonacci sequence of numbers is given by the two initial numbers given above and the relationship $F_{k}=F_{k-1}+F_{k-2}$.
- $0,1,1,2,3,5,8,13$ and so on.
- How can I get a formula for the $100^{\text {th }}$ Fibonacci number?
- Here is the trick:

I define a vector $u_{k}=\left[\begin{array}{c}F_{k+1} \\ F_{k}\end{array}\right]$ and an extra equation $F_{k+1}=F_{k+1}$

- $u_{k+1}=\left[\begin{array}{l}F_{k+2} \\ F_{k+1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{k+1} \\ F_{k}\end{array}\right]=A u_{k}$

Imperial College

Mathematics for Signals and Systems

Fibonacci example. Convert a second order scalar problem into a first order system

- The eigenvalues of A are obtained from

$$
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=-(1-\lambda) \lambda-1=0 \Rightarrow \lambda^{2}-\lambda-1=0
$$

- Observe the analogy between $\lambda^{2}-\lambda-1=0$ and $F_{k}-F_{k-1}-F_{k-2}=0$.
- $\lambda_{1,2}=\frac{1 \pm \sqrt{5}}{2}$. Eigenvalues add up to 1 . The matrix A is diagonalizable.
- How can I get a formula for the $100^{\text {th }}$ Fibonacci number?
- $F_{100} \approx c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{100}$. The term $c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{100}$ becomes negligible.
- The eigenvectors are $x_{1}=\left[\begin{array}{c}\lambda_{1} \\ 1\end{array}\right]$, and $x_{2}=\left[\begin{array}{c}\lambda_{2} \\ 1\end{array}\right]$.
- $u_{0}=\left[\begin{array}{l}F_{1} \\ F_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=c_{1}\left[\begin{array}{c}\lambda_{1} \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}\lambda_{2} \\ 1\end{array}\right]$. From this equation we find c_{1} and c_{2}.

Imperial College

Mathematics for Signals and Systems

More applications: First order differential equations $\frac{d u}{d t}=A u$

- Problem: Solve the system of differential equations:

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=-u_{1}+2 u_{2} \\
& \frac{d u_{2}}{d t}=u_{1}-2 u_{2}
\end{aligned}
$$

We set $u(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and we see that the system's matrix is $A=\left[\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right]$.
The matrix A is singular. One of the eigenvalues is zero.
Therefore, the eigenvalues are $\lambda_{1}=0, \lambda_{2}=-3$!

- The solution of the above system depends exclusively on the eigenvalues of A.
- The eigenvectors are $x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Mathematics for Signals and Systems

First order differential equations $\frac{d u}{d t}=A u$

- Solution: $u(t)=c_{1} e^{\lambda_{1} t} x_{1}+c_{2} e^{\lambda_{2} t} x_{2}$
- Problem: Verify the above by plugging-in $e^{\lambda_{i} t} x_{i}$ to the equation $\frac{d u}{d t}=A u$.
- Let's find $u(t)=c_{1} e^{0 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$
- c_{1}, c_{2} comes from the initial conditions.
- $c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Rightarrow c_{1}=\frac{1}{3}, c_{2}=1 / 3$.
- Steady state of the system is $u(\infty)=\left[\begin{array}{l}2 / 3 \\ 1 / 3\end{array}\right]$.
- Stability is achieved if the real part of the eigenvalues is negative.
- Note that the complex eigenvalues appear in conjugate pairs.

Mathematics for Signals and Systems

First order differential equations $\frac{d u}{d t}=A u$

- For $t=0$, the relationship $u(t)=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ becomes

$$
u(0)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- The above can be written in matrix form as:

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow S c=u(0)
$$

- $c_{1}=\frac{1}{3}, c_{2}=1 / 3$.

Imperial College
 London

Mathematics for Signals and Systems

Stability: First order differential equations $\frac{d u}{d t}=A u$

- Stability is achieved if the real part of the eigenvalues is negative.
- We do have a steady state if at least one eigenvalue is 0 and the rest of the eigenvalues have negative real part.
- We blow up if at least one eigenvalue has a positive real part!
- For stability the trace of the system's matrix must be negative.
- A negative trace, though, does not guarantee stability (why?)
- A negative trace and positive determinant does guarantee stability! (I am sure you know why!)

Imperial College

Mathematics for Signals and Systems

Back to the equation $\frac{d u}{d t}=A u$

- I set $u=S v$ and therefore the differential equation becomes:
- $S \frac{d v}{d t}=A S v \Rightarrow \frac{d v}{d t}=S^{-1} A S v=\Lambda v$
- This is an amazing result!!!
- I start from a system of equations $\frac{d u}{d t}=A u$ which are coupled (or "dependent" or "correlated") and I end up with a set of equations which are decoupled and easier to solve!!!
- I am hoping to get at some point:
$v(t)=e^{\Lambda t} v(0)$ and $u(t)=S e^{\Lambda t} S^{-1} u(0)$ with $e^{A t}=S e^{\Lambda t} S^{-1}$
- Question: What is the exponential of a matrix?

Imperial College

Mathematics for Signals and Systems

Matrix exponentials $e^{A t}$

- Taylor series $e^{A t}=I+A t+\frac{(A t)^{2}}{2}+\frac{(A t)^{3}}{6}+\cdots+\frac{(A t)^{n}}{n!}+\cdots$
- Note that $e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!}$. The exponential series always converges!
- Furthermore, note that $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n}$.

For matrices we have $(I-A t)^{-1}=I+A t+(A t)^{2}+(A t)^{3}+\cdots$
This sum converges if $|\lambda(A t)|<1$.

- The function that I am chiefly interested in is $e^{A t}$ and I would like to connect it to S and Λ.
- $e^{A t}=I+S \Lambda S^{-1} t+\frac{S \Lambda^{2} S^{-1} t^{2}}{2}+\frac{S \Lambda^{3} S^{-1} t^{3}}{6}+\cdots+\frac{S \Lambda^{n} S^{-1} t^{n}}{n!}+\cdots=S e^{\Lambda t} S^{-1}$
- Question: What assumption is built-in to this formula, that is not built to the original formula in the first line?
Answer: The assumption is that A must be diagonalizable.

Mathematics for Signals and Systems

Diagonal matrix exponentials $e^{\Lambda t}$

- The exponential $e^{\Lambda t}$ of a diagonal matrix

$$
\begin{aligned}
\Lambda & =\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right] \text { is } \\
e^{\Lambda t} & =\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \ldots & 0 \\
0 & e^{\lambda_{2} t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n} t}
\end{array}\right]
\end{aligned}
$$

- As we already showed

$$
\begin{gathered}
\lim _{t \rightarrow \infty} e^{\Lambda t}=0 \text { if } \operatorname{Re}\left(\lambda_{i}\right)<0, \forall i \\
\lim _{t \rightarrow \infty} \Lambda^{t}=0 \text { if }\left|\lambda_{i}\right|<0, \forall i
\end{gathered}
$$

Mathematics for Signals and Systems

Second order differential equations

- How do I change the second order differential equation

$$
y^{\prime \prime}+b y^{\prime}+k y=0
$$

to two first order ones?

- I define $u=\left[\begin{array}{c}y^{\prime} \\ y\end{array}\right]$ and therefore,

$$
\begin{gathered}
u^{\prime}=\left[\begin{array}{c}
y^{\prime \prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-b & -k \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y^{\prime} \\
y
\end{array}\right] \\
u^{\prime}=\left[\begin{array}{cc}
-b & -k \\
1 & 0
\end{array}\right] u
\end{gathered}
$$

Mathematics for Signals and Systems

Higher order differential equations

- How do I change the $n^{\text {th }}$ order differential equation

$$
y^{(n)}+b_{1} y^{(n-1)}+\cdots+b_{n-1} y=0
$$

to n first order ones?

- I define $u=\left[\begin{array}{c}y^{(n-1)} \\ \vdots \\ y^{\prime} \\ y\end{array}\right]$ and therefore,

$$
u^{\prime}=\left[\begin{array}{c}
y^{(n)} \\
y^{(n-1)} \\
\vdots \\
y^{\prime \prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cccrl}
-b_{1} & -b_{2} & \ldots & -b_{n-2} & -b_{n-1} \\
1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ldots & 1 & 0
\end{array}\right] u
$$

