Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lectures 13-14, Tuesday 8 ${ }^{\text {th }}$ Novemher 2016

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Positive definite matrices

- A symmetric or Hermitian matrix is positive definite if and only if (iff) all its eigenvalues are real and positive.
- Therefore, the pivots are positive and the determinant is positive.
- However, positive determinant doesn't guarantee positive definiteness.

Example: Consider the matrix

$$
A=\left[\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right]
$$

Eigenvalues are obtained from:

$$
\begin{aligned}
& (5-\lambda)(3-\lambda)-4=0 \Rightarrow \lambda^{2}-8 \lambda+11=0 \\
& \lambda_{1,2}=\frac{8 \pm \sqrt{64-44}}{2}=\frac{8 \pm \sqrt{20}}{2}=4 \pm \sqrt{5}
\end{aligned}
$$

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is positive definite.

Positive definite matrices cont.

- We are talking about symmetric matrices.
- We have various tests for positive definiteness. Consider the 2×2 case of a positive definite matrix $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$.
- The eigenvalues are positive $\lambda_{1}>0, \lambda_{2}>0$.
- The pivots are positive $a>0, \frac{a c-b^{2}}{a}>0$.
- All determinates of leading ("north west") sub-matrices are positive $a>0, a c-b^{2}>0$.
- $x^{T} A x>0, x$ is any vector.

- $x^{T} A x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$. This is called Quadratic Form.

Positive semi-definite matrices

- Example: Consider the matrix $\left[\begin{array}{ll}2 & 6 \\ 6 & x\end{array}\right]$
- Which sufficiently large values of x makes the matrix positive definite? The answer is $x>18$. (The determinant is $2 x-36>0 \Rightarrow x>18$)
- If $x=18$ we obtain the matrix $\left[\begin{array}{cc}2 & 6 \\ 6 & 18\end{array}\right]$.
- For $x=18$ the matrix is positive semi-definite. The eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=20$. One of its eigenvalues is zero.
- It has only one pivot since the matrix is singular. The pivots are 2 and 0 .
- Its quadratic form is $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ 6 & 18\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1}^{2}+12 x_{1} x_{2}+18 x_{2}^{2}$.
- In that case the matrix marginally failed the test.

Graph of quadratic form

- In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, the condition for positive-definiteness of a 2×2 matrix, $f\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$, is a quadratic form in the variables x and y.

- For the positive definite case we have:
- Obviously, first derivatives must be zero at the minimum. This condition is not enough.
- Second derivatives' matrix is positive definite, i.e., for $\left[\begin{array}{ll}f_{x_{1} x_{1}} & f_{x_{1} x_{2}} \\ f_{x_{2} x_{1}} & f_{x_{2} x_{2}}\end{array}\right]$, we have $f_{x_{1} x_{1}}>0, f_{x_{1} x_{1}} f_{x_{2} x_{2}}-2 f_{x_{1} x_{2}}>0$.
- Positive for a number turns into positive definite for a matrix.

Example 1

- Example:

$\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right], \operatorname{trace}(A)=22=\lambda_{1}+\lambda_{2}, \operatorname{det}(A)=4=\lambda_{1} \lambda_{2}$

- $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}$
- $f\left(x_{1}, x_{1}\right)=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}=2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}$.

- A horizontal intersection could be $f\left(x_{1}, x_{1}\right)=1$. It is an ellipse.
- Its quadratic form is $2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}=1$.

Example 1 cont.

- Example:
$\left[\begin{array}{cc}2 & 6 \\ 6 & 20\end{array}\right], \operatorname{trace}(A)=22=\lambda_{1}+\lambda_{2}, \operatorname{det}(A)=4=\lambda_{1} \lambda_{2}$
- $f\left(x_{1}, x_{1}\right)=2 x_{1}^{2}+12 x_{1} x_{2}+20 x_{2}^{2}=2\left(x_{1}+3 x_{2}\right)^{2}+2 x_{2}^{2}$
- Note that computing the square form is effectively elimination

$$
A=\left[\begin{array}{cc}
2 & 6 \\
6 & 20
\end{array}\right] \xrightarrow[(2)-3(1)]{ }\left[\begin{array}{ll}
2 & 6 \\
0 & 2
\end{array}\right]=U \text { and } L=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

- The pivots and the multipliers appear in the quadratic form when we compute the square.
- Pivots are the multipliers of the squared functions so positive pivots imply sum of squares and hence positive definiteness.

Example 2

- Example: Consider the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
- The leading ("north west") determinants are 2,3,4.
- The pivots are $2,3 / 2,4 / 3$.
- The quadratic form is $\boldsymbol{x}^{T} A \boldsymbol{x}=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$.
- This can be written as:

$$
2\left(x_{1}-\frac{1}{2} x_{2}\right)^{2}+\frac{3}{2}\left(x_{2}-\frac{2}{3} x_{3}\right)^{2}+\frac{4}{3} x_{3}^{2}
$$

- The eigenvalues of A are $\lambda_{1}=2-\sqrt{2}, \lambda_{2}=2, \lambda_{3}=2+\sqrt{2}$
- The matrix A is positive definite when $\boldsymbol{x}^{T} A \boldsymbol{x}>0$.

Positive definite matrices cont.

- If a matrix A is positive-definite, its inverse A^{-1} it also positive definite. This comes from the fact that the eigenvalues of the inverse of a matrix are equal to the inverses of the eigenvalues of the original matrix.
- If matrices A and B are positive definite, then their sum is positive definite. This comes from the fact $x^{T}(A+B) x=x^{T} A x+x^{T} B x>0$. The same comment holds for positive semi-definiteness.
- Consider the matrix A of size $m \times n, m \neq n$ (rectangular, not square). In that case we are interested in the matrix $A^{T} A$ which is square.
- Is $A^{T} A$ positive definite?

The case of $A^{T} A$ and $A A^{T}$

- Is $A^{T} A$ positive definite?
- $x^{T} A^{T} A x=(A x)^{T} A x=\|A x\|^{2}$
- In order for $\|A x\|^{2}>0$ for every $x \neq 0$, the null space of A must be zero.
- In case of A being a rectangular matrix of size $m \times n$ with $m>n$, the rank of A must be n.
- In case of A being a rectangular matrix of size $m \times n$ with $m<n$, the null space of A cannot be zero and therefore, $A^{T} A$ is not positive definite.
- Following the above analysis, it is straightforward to show that $A A^{T}$ is positive definite if $m<n$ and the rank of A is m.

Similar matrices

- Consider two square matrices A and B.
- Suppose that for some invertible matrix M the relationship $B=M^{-1} A M$ holds. In that case we say that A and B are similar matrices.
- Example: Consider a matrix A which has a full set of eigenvectors. In that case $S^{-1} A S=\Lambda$. Based on the above A is similar to Λ.
- Similar matrices have the same eigenvalues.
- Matrices with identical eigenvalues are not necessarily similar.
- There are different families of matrices with the same eigenvalues.
- Consider the matrix A with eigenvalues λ and corresponding eigenvectors x and the matrix $B=M^{-1} A M$.

$$
\begin{gathered}
\text { We have } A x=\lambda x \Rightarrow A M M^{-1} x=\lambda x \Rightarrow M^{-1} A M M^{-1} x=\lambda M^{-1} x \\
B M^{-1} x=\lambda M^{-1} x
\end{gathered}
$$

Therefore, λ is also an eigenvalue of B with corresponding eigenvector $M^{-1} x$.

Imperial College

London

Matrices with identical eigenvalues with some repeated

- Consider the families of matrices with repeated eigenvalues.
- Example: Lets take the 2×2 size matrices with eigenvalues $\lambda_{1}=\lambda_{2}=4$.
- The following two matrices

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=4 I \text { and }\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right]
$$

have eigenvalues 4,4 but they belong to different families.

- There are two families of matrices with eigenvalues 4,4.
- The matrix $\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$ has no "relatives". The only matrix similar to it, is itself.
- The big family includes $\left[\begin{array}{ll}4 & 1 \\ 0 & 4\end{array}\right]$ and any matrix of the form $\left[\begin{array}{ll}4 & a \\ 0 & 4\end{array}\right], a \neq 0$. These matrices are not diagonalizable since they only have one non-zero eigenvector.

Singular Value Decomposition [SVD]

- The so called Singular Value Decomposition (SVD) is one of the main highlights in Linear Algebra.
- Consider a matrix A of dimension $m \times n$ and rank r.
- I would like to diagonalize A. What I know so far is $A=S \Lambda S^{-1}$. This diagonalization has the following weaknesses:
- A has to be square.
- There are not always enough eigenvectors.
> For example consider the matrix $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right], a \neq 0$. It only has the eigenvector $\left[\begin{array}{ll}x & 0\end{array}\right]^{T}$.
- Goal: I am looking for a type of decomposition which can be applied to any matrix.

Singular Value Decomposition [SVD]

- I am looking for a type of matrix factorization of the form $A=U \Sigma V^{T}$ where A is any real or complex matrix A of dimension $m \times n$ and furthermore,
- U is a unitary matrix ($U^{T} U=I$) with columns u_{i}, of dimension $m \times m$.
- Σ is an $m \times n$ rectangular matrix with non-negative real entries only along the main diagonal. The main diagonal is defined by the elements $\sigma_{i j}, i=j$.
- V is a unitary matrix $\left(V^{T} V=I\right)$ with columns v_{i}, of dimension $n \times n$.
- U is, in general, different to V.
- The above type of decomposition is called Singular Value Decomposition.
- The elements of Σ are the so called Singular Values of matrix A.
- When A is a square invertible matrix then $A=S \Lambda S^{-1}$.
- When A is a symmetric matrix, the eigenvectors of S are orthonormal, so $A=$ $Q \Lambda Q^{T}$.
- Therefore, for symmetric matrices SVD is effectively an eigenvector decomposition $U=Q=V$ and $\Lambda=\Sigma$.

Singular Value Decomposition [SVIJ]

- From $A=U \Sigma V^{T}$, the following relationship hold:

$$
A V=U \Sigma
$$

- Do not forget that U and V are assumed to be unitary matrices and therefore,

$$
U^{T} U=V^{T} V=I
$$

- If I manage to write $A=U \Sigma V^{T}$, the matrix $A^{T} A$ is decomposed as:

$$
A^{T} A=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

- Therefore, the above expression is the eigenvector decomposition of $A^{T} A$.
- Similarly, the eigenvector decomposition of $A A^{T}$ is:

$$
A A^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T}
$$

- Thus, we can determine all the factors of SVD by the eigenvector decompositions of matrices $A^{T} A$ and $A A^{T}$.

Useful properties

- Let A be an $m \times n$ matrix and let B be an $n \times m$ matrix with $n \geq m$. Then the n eigenvalues of $B A$ are the m eigenvalues of $A B$ with the extra eigenvalues being 0 . Therefore, the non-zero eigenvalues of $A B$ and $B A$ are identical.
- Therefore: Let A be an $m \times n$ matrix with $n \geq m$. Then the n eigenvalues of $A^{T} A$ are the m eigenvalues of $A A^{T}$ with the extra eigenvalues being 0 . Similar comments for $n \leq m$ are valid.
- Matrices $A, A^{T} A$ and $A A^{T}$ have the same rank.
- Let A be an $m \times n$ matrix with $n \geq m$ and rank r. The matrix A has r non-zero singular values. Both $A^{T} A$ and $A A^{T}$ have r non-zero eigenvalues which are the squares of the singular values of A. Furthermore:
- $A^{T} A$ is of dimension $n \times n$. It has r eigenvectors $\left[\begin{array}{lll}v_{1} & \ldots & v_{r}\end{array}\right]$ associated with its r non-zero eigenvalues and $n-r$ eigenvectors associated with its $n-r$ zero eigenvalues.
- $A A^{T}$ is of dimension $m \times m$. It has r eigenvectors $\left[\begin{array}{lll}u_{1} & \text {... } & u_{r}\end{array}\right]$ associated with its r non-zero eigenvalues and $m-r$ eigenvectors associated with its $m-r$ zero eigenvalues.

Singular Value Decomposition [SVD]

- I can write $V=\left[\begin{array}{llllll}v_{1} & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}\end{array}\right]$ and $U=\left[\begin{array}{llllll}u_{1} & \ldots & u_{r} & u_{r+1} & \ldots & u_{m}\end{array}\right]$.
- Matrices U and V have already been defined previously.
- Note that in the above matrices, I put first in the columns the eigenvectors of $A^{T} A$ and $A A^{T}$ which correspond to non-zero eigenvalues.
- To take the above even further, I order the eigenvectors according to the magnitude of the associated eigenvalue.
- The eigenvector that corresponds to the maximum eigenvalue is placed in the first column and so on.
- This ordering is very helpful in various real life applications.

Singular Value Decomposition [SVD]

- As already shown, from $A=U \Sigma V^{T}$ we obtain that $A V=U \Sigma$ or

$$
A\left[\begin{array}{llllll}
v_{1} & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{llllll}
u_{1} & \ldots & u_{r} & u_{r+1} & \ldots & u_{m}
\end{array}\right] \Sigma
$$

- Therefore, we can break $A V=U \Sigma$ into a set of relationships of the form $A v_{i}=$ $\sigma_{i} u_{i}$.
- For $i \leq r$ the relationship $A V=U \Sigma$ tells us that:
- The vectors $v_{1}, v_{2}, \ldots, v_{r}$ are in the row space of A. This is because from $A V=$ $U \Sigma$ we have $U^{T} A V V^{T}=U^{T} U \Sigma V^{T} \Rightarrow U^{T} A=\Sigma V^{T} \Rightarrow v_{i}^{T}=\frac{1}{\sigma_{i}} u_{i}^{T} A, \sigma_{i} \neq 0$.
Furthermore, since the v_{i} 's associated with $\sigma_{i} \neq 0$ are orthonormal, they form a basis of the row space.
- The vectors $u_{1}, u_{2}, \ldots, u_{r}$ are in the column space of A. This observation comes directly from $u_{i}=\frac{1}{\sigma_{i}} A v_{i}, \sigma_{i} \neq 0$, i.e., $u_{i} s$ are linear combinations of columns of A. Furthermore, the $u_{i} \mathrm{~s}$ associated with $\sigma_{i} \neq 0$ are orthonormal. Thus, they form a basis of the column space.

Singular Value Decomposition [SVD]

- Based on the facts that:
- $A v_{i}=\sigma_{i} u_{i}$,
- v_{i} form an orthonormal basis of the row space of A,
- u_{i} form an orthonormal basis of the column space of A, we conclude that:
with SVD an orthonormal basis in the row space, which is given by the columns of v, is mapped by matrix A to an orthonormal basis in the column space given by the columns of u. This comes from $A V=U \Sigma$.
- The $n-r$ additional v 's which correspond to the zero eigenvalues of matrix $A^{T} A$ are taken from the null space of A.
- The $m-r$ additional u 's which correspond to the zero eigenvalues of matrix $A A^{T}$ are taken from the left null space of A.

Singular Value Decomposition [SVD]

- We managed to find an orthonormal basis (V) of the row space and an orthonormal basis (U) of the column space that diagonalize the matrix A to Σ.
- In the generic case, the basis of V would be different to the basis of U.
- The SVD is written as:

$$
A\left[\begin{array}{llllll}
v_{1} & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{llllll}
u_{1} & \ldots & u_{r} & u_{r+1} & \ldots & u_{m}
\end{array}\right] \Sigma
$$

- The form of matrix Σ depends on the dimensions m, n, r. It is of dimension $m \times n$.

$$
\Sigma=\left\{\begin{array}{cc}
\Sigma_{i i}=\sigma_{i}^{2} & 1 \leq i \leq r \\
0 & \text { otherwise }
\end{array}\right.
$$

- Example: $m=n=r=3$.

$$
\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right]
$$

- Example: $m=4, n=3, r=2$.

$$
\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Imperial College

Truncated or Reduced Singular Value Decomposition

- In the expression for SVD we can reformulate the dimensions of all matrices involved by ignoring the eigenvectors which correspond to zero eigenvalues.
- In that case we have:

$$
A\left[\begin{array}{lll}
v_{1} & \ldots & v_{r}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & \ldots & u_{r}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{r}
\end{array}\right] \Rightarrow A=u_{1} \sigma_{1} v_{1}^{T}+\cdots+u_{r} \sigma_{r} v_{r}^{T}
$$

where:

- The dimension of A is $m \times n$.
- The dimension of $\left[\begin{array}{lll}v_{1} & \ldots & v_{r}\end{array}\right]$ is $n \times r$.
- The dimension of $\left[\begin{array}{lll}u_{1} & \ldots & u_{r}\end{array}\right]$ is $m \times r$.
- The dimension of Σ is $r \times r$.
- The above formulation is called Truncated or Reduced Singular Value Decomposition.
- As seen, the Truncated SVD gives the splitting of A into a sum of r matrices, each of rank 1.
- In the case of a square, invertible matrix, the two decompositions are identical.

Singular Value Decomposition. Example.

- Example: $A=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$ and $A^{T} A=\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}25 & 7 \\ 7 & 25\end{array}\right]$
- The eigenvalues of $A^{T} A$ are $\sigma_{1}^{2}=32$ and $\sigma_{2}^{2}=18$.
- The eigenvectors of $A^{T} A$ are $v_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$
$A^{T} A=V \Sigma^{2} V^{T}$
- Similarly $A A^{T}=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]=\left[\begin{array}{cc}32 & 0 \\ 0 & 18\end{array}\right]$
- Therefore, the eigenvectors of $A A^{T}$ are $u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and $A A^{T}=$ $U \Sigma^{2} U^{T}$.
- CAREFUL: u_{i} 's are chosen to satisfy the relationship $u_{i}=\frac{1}{\sigma_{i}} A v_{i}, i=1,2$.
- Therefore, the SVD of $A=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$ is:

$$
A=U \Sigma V^{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{32} & 0 \\
0 & \sqrt{18}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right]
$$

Singular Value Decomposition. Example.

- Example: $A=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$ (singular) and $A^{T} A=\left[\begin{array}{ll}4 & 8 \\ 3 & 6\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]=\left[\begin{array}{ll}80 & 60 \\ 60 & 45\end{array}\right]$
- The eigenvalues of $A^{T} A$ are $\sigma_{1}^{2}=125$ and $\sigma_{2}^{2}=0$.
- The eigenvectors of $A^{T} A$ are $v_{1}=\left[\begin{array}{l}4 / 5 \\ 3 / 5\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}4 / 5 \\ -3 / 5\end{array}\right]$
- Similarly $A A^{T}=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]\left[\begin{array}{ll}4 & 8 \\ 3 & 6\end{array}\right]=\left[\begin{array}{cc}25 & 50 \\ 50 & 100\end{array}\right]$
- u_{1} is chosen to satisfy the relationship $u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{125}}\left[\begin{array}{c}5 \\ 10\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
- u_{2} is chosen to be perpendicular to u_{1}. Note that choice of u_{2} does not affect the calculations, since its elements are only multiplied by zeros.
- Therefore, the SVD of $A=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$ is:

$$
A=U \Sigma V^{T}=\left[\begin{array}{cc}
1 / \sqrt{5} & 2 / \sqrt{5} \\
2 / \sqrt{5} & -1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
5 \sqrt{5} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
4 / 5 & 3 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
8 & 6
\end{array}\right]
$$

