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Positive definite matrices

• A symmetric or Hermitian matrix is positive definite if and only if (iff) all its 

eigenvalues are real and positive. 

• Therefore, the pivots are positive and the determinant is positive.

• However, positive determinant doesn’t guarantee positive definiteness.

Example: Consider the matrix

𝐴 =
5 2
2 3

Eigenvalues are obtained from:

5 − 𝜆 3 − 𝜆 − 4 = 0 ⇒ 𝜆2 − 8𝜆 + 11 = 0

𝜆1,2 =
8 ± 64 − 44

2
=
8 ± 20

2
= 4 ± 5

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is 

positive definite.



Positive definite matrices cont.

• We are talking about symmetric matrices.

• We have various tests for positive definiteness. Consider the 2 × 2 case of a 

positive definite matrix 𝐴 =
𝑎 𝑏
𝑏 𝑐

.

 The eigenvalues are positive 𝜆1 > 0, 𝜆2 > 0.

 The pivots are positive 𝑎 > 0, 
𝑎𝑐−𝑏2

𝑎
> 0.

 All determinates of leading (“north west”) sub-matrices are positive

𝑎 > 0, 𝑎𝑐 − 𝑏2 > 0.

 𝑥𝑇𝐴 𝑥 > 0, 𝑥 is any vector.

 𝑥𝑇𝐴 𝑥 = 𝑥1 𝑥2
𝑎 𝑏
𝑏 𝑐

𝑥1
𝑥2

= 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2. This is called Quadratic 

Form.



Positive semi-definite matrices

• Example: Consider the matrix 
2 6
6 𝑥

 Which sufficiently large values of 𝑥 makes the matrix positive definite? The 

answer is 𝑥 > 18. (The determinant is 2𝑥 − 36 > 0 ⇒ 𝑥 > 18)

 If 𝑥 = 18 we obtain the matrix 
2 6
6 18

.

 For 𝑥 = 18 the matrix is positive semi-definite. The eigenvalues are 𝜆1 = 0
and 𝜆2 = 20. One of its eigenvalues is zero.

 It has only one pivot since the matrix is singular. The pivots are 2 and 0. 

 Its quadratic form is 𝑥1 𝑥2
2 6
6 18

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 18𝑥2

2.

 In that case the matrix marginally failed the test.



Graph of quadratic form

• In mathematics, a quadratic form is a homogeneous polynomial of degree two 

in a number of variables. For example, the condition for positive-definiteness of a 

2 × 2 matrix, 𝑓 𝑥1, 𝑥2 = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 , is a quadratic form in the variables 𝑥
and 𝑦.

• For the positive definite case we have:

 Obviously, first derivatives must be zero at the minimum. This condition is not 

enough.

 Second derivatives’ matrix is positive definite, i.e., for 
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

,

we have 𝑓𝑥1𝑥1 > 0, 𝑓𝑥1𝑥1𝑓𝑥2𝑥2−2𝑓𝑥1𝑥2 > 0.

 Positive for a number turns into positive definite for a matrix.

𝑥1

𝑥2

Not positive definite

Positive definite

𝑥1

𝑥2

minimum



• Example:

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2

 𝑥1 𝑥2
2 6
6 20

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2

 𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 2 𝑥1 + 3𝑥2
2
+ 2𝑥2

2.

 A horizontal intersection could be 𝑓 𝑥1, 𝑥1 = 1. It is an ellipse.

 Its quadratic form is 2 𝑥1 + 3𝑥2
2
+ 2𝑥2

2 = 1.

Example 1

𝑥1

𝑥2

minimum



Example 1 cont.

• Example:

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2

 𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 𝟐 𝑥1 + 𝟑𝑥2
2
+ 𝟐𝑥2

2

 Note that computing the square form is effectively elimination

𝐴 =
2 6
6 20 2 −3(1)

𝟐 6
0 𝟐

= 𝑈 and 𝐿 =
1 0
𝟑 1

 The pivots and the multipliers appear in the quadratic form when we 

compute the square.

 Pivots are the multipliers of the squared functions so positive pivots imply 

sum of squares and hence positive definiteness.



Example 2

• Example: Consider the matrix 𝐴 =
2 −1 0
−1 2 −1
0 −1 2

 The leading (“north west”) determinants are 2,3,4.

 The pivots are 2, 3/2, 4/3.

 The quadratic form is 𝒙𝑇𝐴 𝒙 = 2𝑥1
2 + 2𝑥2

2 + 2𝑥3
2 − 2𝑥1 𝑥2 − 2𝑥2 𝑥3 .

 This can be written as:

𝟐 𝑥1 −
1

2
𝑥2

2

+
𝟑

𝟐
𝑥2 −

2

3
𝑥3

2

+
𝟒

𝟑
𝑥3
2

 The eigenvalues of 𝐴 are 𝜆1 = 2 − 2, 𝜆2 = 2, 𝜆3 = 2 + 2

 The matrix 𝐴 is positive definite when 𝒙𝑇𝐴 𝒙 > 0.



Positive definite matrices cont.

• If a matrix 𝐴 is positive-definite, its inverse 𝐴−1 it also positive definite. This 

comes from the fact that the eigenvalues of the inverse of a matrix are equal to 

the inverses of the eigenvalues of the original matrix.

• If matrices 𝐴 and 𝐵 are positive definite, then their sum is positive definite. This 

comes from the fact 𝑥𝑇 𝐴 + 𝐵 𝑥 = 𝑥𝑇𝐴𝑥 +𝑥𝑇 𝐵𝑥 > 0. The same comment holds 

for positive semi-definiteness.

• Consider the matrix 𝐴 of size 𝑚 × 𝑛, 𝑚 ≠ 𝑛 (rectangular, not square). In that case 

we are interested in the matrix 𝐴𝑇𝐴 which is square.

• Is 𝐴𝑇𝐴 positive definite?



The case of 𝑨𝑻𝑨 and 𝑨𝑨𝑻

• Is 𝐴𝑇𝐴 positive definite?

• 𝑥𝑇𝐴𝑇𝐴𝑥 = (𝐴𝑥)𝑇𝐴𝑥 = 𝐴𝑥 2

• In order for 𝐴𝑥 2 > 0 for every 𝑥 ≠ 0, the null space of 𝐴 must be zero.

• In case of 𝐴 being a rectangular matrix of size 𝑚 × 𝑛 with 𝑚 > 𝑛, the rank of 𝐴
must be 𝑛.

• In case of 𝐴 being a rectangular matrix of size 𝑚 × 𝑛 with 𝑚 < 𝑛, the null space 

of 𝐴 cannot be zero and therefore, 𝐴𝑇𝐴 is not positive definite.

• Following the above analysis, it is straightforward to show that 𝐴𝐴𝑇 is positive 

definite if 𝑚 < 𝑛 and the rank of 𝐴 is 𝑚.



Similar matrices

• Consider two square matrices 𝐴 and 𝐵.

• Suppose that for some invertible matrix 𝑀 the relationship 𝐵 = 𝑀−1𝐴𝑀 holds. In 

that case we say that 𝐴 and 𝐵 are similar matrices.

• Example: Consider a matrix 𝐴 which has a full set of eigenvectors. In that case 

𝑆−1𝐴𝑆 = Λ. Based on the above 𝐴 is similar to Λ.

• Similar matrices have the same eigenvalues.

• Matrices with identical eigenvalues are not necessarily similar.

• There are different families of matrices with the same eigenvalues.

• Consider the matrix 𝐴 with eigenvalues 𝜆 and corresponding eigenvectors 𝑥 and 

the matrix 𝐵 = 𝑀−1𝐴𝑀 .

We have 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴𝑀𝑀−1𝑥 = 𝜆𝑥 ⇒ 𝑀−1𝐴𝑀𝑀−1𝑥 = 𝜆𝑀−1𝑥
𝐵𝑀−1𝑥 = 𝜆𝑀−1𝑥

Therefore, 𝜆 is also an eigenvalue of 𝐵 with corresponding eigenvector 𝑀−1𝑥.



Matrices with identical eigenvalues with some repeated

• Consider the families of matrices with repeated eigenvalues.

• Example: Lets take the 2 × 2 size matrices with eigenvalues 𝜆1 = 𝜆2 = 4.

 The following two matrices 

4 0
0 4

= 4𝐼 and 
4 1
0 4

have eigenvalues 4,4 but they belong to different families.

 There are two families of matrices with eigenvalues 4,4. 

 The matrix 
4 0
0 4

has no “relatives”. The only matrix similar to it, is itself.

 The big family includes 
4 1
0 4

and any matrix of the form 
4 𝑎
0 4

, 𝑎 ≠ 0. These 

matrices are not diagonalizable since they only have one non-zero 

eigenvector.



Singular Value Decomposition (SVD)

• The so called Singular Value Decomposition (SVD) is one of the main 

highlights in Linear Algebra.

• Consider a matrix 𝐴 of dimension 𝑚 × 𝑛 and rank 𝑟.

• I would like to diagonalize 𝐴. What I know so far is 𝐴 = 𝑆Λ𝑆−1. This 

diagonalization has the following weaknesses:

 𝐴 has to be square.

 There are not always enough eigenvectors.

 For example consider the matrix 
1 𝑎
0 1

, 𝑎 ≠ 0. It only has the eigenvector 

𝑥 0 𝑇 .

• Goal: I am looking for a type of decomposition which can be applied to any 

matrix.



Singular Value Decomposition (SVD)

• I am looking for a type of matrix factorization of the form 𝐴 = 𝑈Σ𝑉𝑇 where 𝐴 is 

any real or complex matrix 𝐴 of dimension 𝑚 × 𝑛 and furthermore, 

 𝑈 is a unitary matrix 𝑈𝑇𝑈 = 𝐼 with columns 𝑢𝑖, of dimension 𝑚 ×𝑚. 

 Σ is an 𝑚 × 𝑛 rectangular matrix with non-negative real entries only along the 

main diagonal. The main diagonal is defined by the elements 𝜎𝑖𝑗, 𝑖 = 𝑗.

 𝑉 is a unitary matrix 𝑉𝑇𝑉 = 𝐼 with columns 𝑣𝑖, of dimension 𝑛 × 𝑛.

• 𝑈 is, in general, different to 𝑉.

• The above type of decomposition is called Singular Value Decomposition.

• The elements of Σ are the so called Singular Values of matrix 𝐴.

• When 𝐴 is a square invertible matrix then 𝐴 = 𝑆Λ𝑆−1.

• When 𝐴 is a symmetric matrix, the eigenvectors of 𝑆 are orthonormal, so 𝐴 =
𝑄Λ𝑄𝑇.

• Therefore, for symmetric matrices SVD is effectively an eigenvector 

decomposition 𝑈 = 𝑄 = 𝑉 and Λ = Σ .



Singular Value Decomposition (SVD)

• From 𝐴 = 𝑈Σ𝑉𝑇, the following relationship hold:

𝐴𝑉 = 𝑈Σ

• Do not forget that 𝑈 and 𝑉 are assumed to be unitary matrices and therefore,

𝑈𝑇𝑈 = 𝑉𝑇𝑉 = 𝐼

• If I manage to write 𝐴 = 𝑈Σ𝑉𝑇, the matrix 𝐴𝑇𝐴 is decomposed as:

𝐴𝑇𝐴 = 𝑉Σ𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇

• Therefore, the above expression is the eigenvector decomposition of 𝐴𝑇𝐴.

• Similarly, the eigenvector decomposition of 𝐴𝐴𝑇 is:

𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑈𝑇 = 𝑈Σ2𝑈𝑇

• Thus, we can determine all the factors of SVD by the eigenvector decompositions 

of matrices 𝐴𝑇𝐴 and 𝐴𝐴𝑇.



Useful properties

• Let 𝐴 be an 𝑚 × 𝑛 matrix and let 𝐵 be an 𝑛 × 𝑚 matrix with 𝑛 ≥ 𝑚. Then the 𝑛
eigenvalues of 𝐵𝐴 are the 𝑚 eigenvalues of 𝐴𝐵 with the extra eigenvalues being 

0. Therefore, the non-zero eigenvalues of 𝐴𝐵 and 𝐵𝐴 are identical.

• Therefore: Let 𝐴 be an 𝑚 × 𝑛 matrix with 𝑛 ≥ 𝑚. Then the 𝑛 eigenvalues of 𝐴𝑇𝐴
are the 𝑚 eigenvalues of 𝐴𝐴𝑇 with the extra eigenvalues being 0. Similar 

comments for 𝑛 ≤ 𝑚 are valid.

• Matrices 𝐴, 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the same rank.

• Let 𝐴 be an 𝑚 × 𝑛 matrix with 𝑛 ≥ 𝑚 and rank 𝑟. The matrix 𝐴 has 𝑟 non-zero 

singular values. Both 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have 𝑟 non-zero eigenvalues which are the 

squares of the singular values of 𝐴. Furthermore:

 𝐴𝑇𝐴 is of dimension 𝑛 × 𝑛. It has 𝑟 eigenvectors 𝑣1 … 𝑣𝑟 associated with 

its 𝑟 non-zero eigenvalues and 𝑛 − 𝑟 eigenvectors associated with its 𝑛 − 𝑟
zero eigenvalues.

 𝐴𝐴𝑇 is of dimension 𝑚 ×𝑚. It has 𝑟 eigenvectors 𝑢1 … 𝑢𝑟 associated with 

its 𝑟 non-zero eigenvalues and 𝑚 − 𝑟 eigenvectors associated with its 𝑚 − 𝑟
zero eigenvalues.



Singular Value Decomposition (SVD)

• I can write 𝑉 = 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 and 𝑈 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 .

• Matrices 𝑈 and 𝑉 have already been defined previously.

• Note that in the above matrices, I put first in the columns the eigenvectors of 𝐴𝑇𝐴
and 𝐴𝐴𝑇 which correspond to non-zero eigenvalues.

• To take the above even further, I order the eigenvectors according to the 

magnitude of the associated eigenvalue.

• The eigenvector that corresponds to the maximum eigenvalue is placed in the 

first column and so on.

• This ordering is very helpful in various real life applications.



Singular Value Decomposition (SVD)

• As already shown, from 𝐴 = 𝑈Σ𝑉𝑇 we obtain that 𝐴𝑉 = 𝑈Σ or

𝐴 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 Σ

• Therefore, we can break 𝐴𝑉 = 𝑈Σ into a set of relationships of the form 𝐴𝑣𝑖 =
𝜎𝑖𝑢𝑖.

• For 𝑖 ≤ 𝑟 the relationship 𝐴𝑉 = 𝑈Σ tells us that:

 The vectors 𝑣1, 𝑣2, … , 𝑣𝑟 are in the row space of 𝐴. This is because from 𝐴𝑉 =

𝑈Σ we have 𝑈𝑇𝐴𝑉𝑉𝑇 = 𝑈𝑇𝑈Σ𝑉𝑇 ⇒ 𝑈𝑇𝐴 = Σ𝑉𝑇 ⇒ 𝑣𝑖
𝑇 =

1

𝜎𝑖
𝑢𝑖
𝑇𝐴, 𝜎𝑖 ≠ 0.

Furthermore, since the 𝑣𝑖’s associated with 𝜎𝑖 ≠ 0 are orthonormal, they form 

a basis of the row space.

 The vectors 𝑢1, 𝑢2, … , 𝑢𝑟 are in the column space of 𝐴. This observation comes 

directly from 𝑢𝑖 =
1

𝜎𝑖
𝐴𝑣𝑖 , 𝜎𝑖 ≠ 0, i.e., 𝑢𝑖s are linear combinations of columns of 

𝐴. Furthermore, the 𝑢𝑖s associated with 𝜎𝑖 ≠ 0 are orthonormal. Thus, they 

form a basis of the column space.



Singular Value Decomposition (SVD)

• Based on the facts that:

 𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖,

 𝑣𝑖 form an orthonormal basis of the row space of 𝐴,

 𝑢𝑖 form an orthonormal basis of the column space of 𝐴, we conclude that:

with SVD an orthonormal basis in the row space, which is given by the columns 

of 𝑣, is mapped by matrix 𝐴 to an orthonormal basis in the column space given 

by the columns of 𝑢. This comes from 𝐴𝑉 = 𝑈Σ.

• The 𝑛 − 𝑟 additional 𝑣’s which correspond to the zero eigenvalues of matrix 𝐴𝑇𝐴
are taken from the null space of 𝐴.

• The 𝑚 − 𝑟 additional 𝑢’s which correspond to the zero eigenvalues of matrix

𝐴𝐴𝑇 are taken from the left null space of 𝐴.



Singular Value Decomposition (SVD)

• We managed to find an orthonormal basis (𝑉) of the row space and an 

orthonormal basis (𝑈) of the column space that diagonalize the matrix 𝐴 to Σ.

• In the generic case, the basis of 𝑉 would be different to the basis of 𝑈.

• The SVD is written as:

𝐴 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 Σ

• The form of matrix Σ depends on the dimensions 𝑚, 𝑛, 𝑟. It is of dimension 𝑚 × 𝑛.

Σ = ቊΣ𝑖𝑖 = 𝜎𝑖
2 1 ≤ 𝑖 ≤ 𝑟

0 otherwise

• Example: 𝑚 = 𝑛 = 𝑟 = 3.
𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

• Example: 𝑚 = 4, 𝑛 = 3, 𝑟 = 2.
𝜎1
2

0

0
𝜎2
2

0
0

0 0 0
0 0 0



Truncated or Reduced Singular Value Decomposition

• In the expression for SVD we can reformulate the dimensions of all matrices 

involved by ignoring the eigenvectors which correspond to zero eigenvalues.

• In that case we have:

𝐴 𝑣1 … 𝑣𝑟 = 𝑢1 … 𝑢𝑟

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟

⇒ 𝐴 = 𝑢1𝜎1𝑣1
𝑇 +⋯+ 𝑢𝑟𝜎𝑟𝑣𝑟

𝑇

where:

 The dimension of 𝐴 is 𝑚 × 𝑛.

 The dimension of 𝑣1 … 𝑣𝑟 is 𝑛 × 𝑟.

 The dimension of 𝑢1 … 𝑢𝑟 is 𝑚 × 𝑟.

 The dimension of Σ is 𝑟 × 𝑟.

• The above formulation is called Truncated or Reduced Singular Value 

Decomposition.

• As seen, the Truncated SVD gives the splitting of 𝐴 into a sum of 𝑟 matrices, 

each of rank 1.

• In the case of a square, invertible matrix, the two decompositions are identical. 



Singular Value Decomposition. Example.

• Example: 𝐴 =
4 4
−3 3

and 𝐴𝑇𝐴 =
4 −3
4 3

4 4
−3 3

=
25 7
7 25

• The eigenvalues of 𝐴𝑇𝐴 are 𝜎1
2 = 32 and 𝜎2

2 = 18.

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =
ൗ1 2

ൗ1 2

and 𝑣2 =
ൗ1 2

− ൗ1 2

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• Similarly 𝐴𝐴𝑇 =
4 4
−3 3

4 −3
4 3

=
32 0
0 18

• Therefore, the eigenvectors of  𝐴𝐴𝑇are 𝑢1 =
1
0

and  𝑢2 =
0
−1

and 𝐴𝐴𝑇 =

𝑈Σ2𝑈𝑇 .

• CAREFUL: 𝑢𝑖 ’s are chosen to satisfy the relationship 𝑢𝑖 =
1

𝜎𝑖
𝐴𝑣𝑖, 𝑖 = 1,2.

• Therefore, the SVD of 𝐴 =
4 4
−3 3

is:

𝐴 = 𝑈Σ𝑉𝑇 =
1 0
0 −1

32 0

0 18

ൗ1
2

ൗ1
2

ൗ1
2

ൗ−1
2

=
4 4
−3 3



Singular Value Decomposition. Example.

• Example: 𝐴 =
4 3
8 6

(singular) and 𝐴𝑇𝐴 =
4 8
3 6

4 3
8 6

=
80 60
60 45

• The eigenvalues of 𝐴𝑇𝐴 are 𝜎1
2 = 125 and 𝜎2

2 = 0.

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =
Τ4 5

Τ3 5
and 𝑣2 =

Τ4 5

− Τ3 5

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• Similarly 𝐴𝐴𝑇 =
4 3
8 6

4 8
3 6

=
25 50
50 100

• 𝑢1 is chosen to satisfy the relationship 𝑢1 =
1

𝜎1
𝐴𝑣1 =

1

125

5
10

=
1

5

1
2

.

• 𝑢2 is chosen to be perpendicular to 𝑢1. Note that choice of 𝑢2 does not affect the 

calculations, since its elements are only multiplied by zeros.

• Therefore, the SVD of 𝐴 =
4 3
8 6

is:

𝐴 = 𝑈 Σ 𝑉𝑇 =
ൗ1
5

ൗ2
5

ൗ2
5

− ൗ1
5

5 5 0
0 0

ൗ4 5 ൗ3 5

ൗ4 5 − ൗ3 5

=
4 3
8 6


