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In this set of lectures we will talk about: 

• Eigenvectors and eigenvalues 

• Matrix diagonalization 

• Applications of matrix diagonalization 

• Stochastic matrices 

 



Eigenvectors and eigenvalues 

• Consider a matrix 𝐴 and a vector 𝑥. 

• The operation 𝐴𝑥 produces a vector 𝑦 at some direction. 

• I am interested in vectors 𝑦 which lie in the same direction as 𝑥. 

• In that case I have 𝐴𝑥 = 𝜆𝑥 with 𝜆 being a scalar. 

• When the above relationship holds, 𝑥 is called an eigenvector and 𝜆 is called an 

eigenvalue of matrix 𝐴. 

• If 𝐴 is singular then 𝜆 = 0 is an eigenvalue. 

• Problem: How do we find the eigenvectors and eigenvalues of a matrix? 

 



• Problem: What are the eigenvectors 𝑥′ and eigenvalues 𝜆′ of a projection matrix 

𝑃? In the figure, consider the matrix 𝑃 which projects vector 𝑏 onto vector 𝑝. 
 

Question: Is 𝑏 an eigenvector of 𝑃? 

Answer:  No, because 𝑏 and 𝑃𝑏 lie in different directions. 
 

Question: What vectors are eigenvectors of 𝑃? 

Answer:  Vectors 𝑥 which lie on the projection plane already. 

In that case 𝑃𝑥 = 𝑥 and therefore 

𝑥 is an eigenvector with eigenvalue 1. 

 

 

Eigenvectors and eigenvalues of a projection matrix 



Eigenvectors and eigenvalues of a projection matrix (cont.) 

• The eigenvectors of 𝑃 are vectors 𝑥 which lie on the projection plane already. In 

that case 𝑃𝑥 = 𝑥 and therefore 𝑥 is an eigenvector with eigenvalue 1. 

• We can find 2 independent eigenvectors of 𝑃 which lie on the projection plane both 

associated with an eigenvalue of 1. 

 

Problem: In the 3D space we can find 3 independent vectors. Can you find a 

third eigenvector of 𝑃 that is perpendicular to the eigenvectors of 𝑃 that 

lie on the projection plane?  

Answer: YES! Any vector 𝑒 perpendicular to the plane. 

In that case 𝑃𝑒 = 𝟎 = 0𝑒. Therefore, 

the eigenvalues of 𝑃 are 𝜆 = 0 and 𝜆 = 1. 

 

 

 



• Consider the permutation matrix 𝐴 =
0 1
1 0

. 

 

Problem: Can you give an eigenvector of the above matrix? Or can you think of a 

vector that if permuted is still a multiple of itself? 

Answer: YES. It is the vector 
1
1

 and the corresponding eigenvalue is 𝜆 = 1. 

And furthermore, the vector 
−1
1

 with eigenvalue 𝜆 = −1. 
 

• 𝑛 × 𝑛 matrices will have 𝑛 eigenvalues. 

• It is not easy to find them. 

• The sum of the eigenvalues, called the trace of a matrix, equals the sum of 

the diagonal elements of the matrix. 

• The product of the eigenvalues equals the determinant of the matrix. 

• Therefore, in the previous example, once I found an eigenvalue 𝜆 = 1, I should 

know that there is another eigenvalue 𝜆 = −1. 

 

 

 

Eigenvectors and eigenvalues of a permutation matrix 



• Consider an eigenvector 𝑥 of matrix 𝐴. In that case 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴𝑥 − 𝜆𝑥 = 𝟎 (𝟎 is 

the zero vector). Therefore, 𝐴 − 𝜆𝐼 𝑥 = 𝟎. 

In order for the above set of equations to have a non-zero solution, the nullspace 

of (𝐴 − 𝜆𝐼) must be non-zero, i.e., the matrix (𝐴 − 𝜆𝐼) must be singular. 

Therefore, det 𝐴 − 𝜆𝐼 = 0. 
 

• I now have an equation for 𝜆. It is called the characteristic equation, or the 

eigenvalue equation. From the roots of this equation we can find the 

eigenvalues. 
 

• I might have repeated 𝜆s. This might cause problems but I will deal with it 

later. 
 

• After I find 𝜆, I can find 𝑥 from 𝐴 − 𝜆𝐼 𝑥 = 𝟎. Basically, I will be looking for the 

nullspace of 𝐴 − 𝜆𝐼 . 

• The eigenvalues of 𝐴𝑇   are obtained through the equation det 𝐴𝑇 − 𝜆𝐼 = 0. But: 

det 𝐴𝑇 − 𝜆𝐼 = det 𝐴𝑇 − 𝜆𝐼𝑇 = det 𝐴 − 𝜆𝐼 𝑇 = det (𝐴 − 𝜆𝐼). 

• Therefore, the eigenvalues of 𝐴𝑇 are the same as the eigenvalues of 𝐴. 

 

 

 

 

 

 

 

 

Problem: Solve 𝐴𝑥 = 𝜆𝑥 



• Consider the matrix 𝐴 =
3 1
1 3

. A symmetric matrix always has real 

eigenvalues. 
 

• Furthermore, the eigenvectors of a symmetric matrix can be chosen to be 

orthogonal. 
 

• det 𝐴 − 𝜆𝐼 = 3 − 𝜆 2 − 1 = 0 ⇒ 3 − 𝜆 = ±1 ⇒ 𝜆 = 3 ± 1 ⇒ 𝜆1 = 4, 𝜆2 = 2. 

Or det 𝐴 − 𝜆𝐼 = 𝜆2 − 6𝜆 + 8 = 0. Note that 6 = 𝜆1 + 𝜆2 and 8 = det(𝐴) = 𝜆1𝜆2. 
 

• Find the eigenvector for 𝜆1 = 4. 

𝐴 − 4𝐼 =
−1 1
1 −1

⇒
−1 1
1 −1

𝑥
𝑦 =

0
0
⇒ 𝑥 = 𝑦 

 

• Find the eigenvector for 𝜆2 = 2. 

𝐴 − 2𝐼 =
1 1
1 1

⇒
1 1
1 1

𝑥
𝑦 =

0
0
⇒ 𝑥 = −𝑦 

 

• Notice that there are families of eigenvectors, not single eigenvectors. 

 

 

Solve 𝐴𝑥 = 𝜆𝑥. An example. 



• Consider the matrix 𝐴 =
3 1
1 3

. As shown it has eigenvectors 
𝑥
𝑥

 and 
−𝑥
𝑥

 with 

eigenvalues 𝜆1 = 4 and 𝜆2 = 2. 

 

• Consider the matrix 𝐵 =
0 1
1 0

, also with eigenvectors 
𝑥
𝑥

 and 
−𝑥
𝑥

 and 

eigenvalues 𝜆1 = 1 and 𝜆2 = −1. 

 

• We observe that 𝑨 = 𝑩 + 𝟑𝑰. The eigenvalues of 𝑨 are obtained from the 

eigenvalues of 𝑩 if we increase them by 3. 

 

• The eigenvectors of 𝑨 and 𝑩 are the same. 

 

 

Compare the two matrices given previously 



• Consider the matrix 𝐴 = 𝐵 + 𝑐𝐼. 
 

• Consider an eigenvector 𝑥 of 𝐵 with eigenvalue 𝜆. Then 𝐵𝑥 = 𝜆𝑥 and therefore, 

𝐴𝑥 = 𝐵 + 𝑐𝐼 𝑥 = 𝐵𝑥 + 𝑐𝐼𝑥 = 𝐵𝑥 + 𝑐𝑥 = 𝜆𝑥 + 𝑐𝑥 = 𝜆 + 𝑐 𝑥 

𝐴 has the same eigenvectors with 𝐵 with eigenvalues 𝜆 + 𝑐. 
 

• There aren’t any properties that enable us to find the eigenvalues of 𝑨 + 𝑩 

and 𝑨𝑩. 

 

 

Generalization of the above observation 



• Take a matrix that rotates every vector by 90o. 
 

• This is 𝑄 =
cos(90) −sin(90)
sin(90) cos(90)

=
0 −1
1 0

 

 

• 𝜆1 + 𝜆2 = 0 and det 𝑄 = 𝜆1𝜆2 = 1. 
 

• What vector can be parallel to itself after rotation? 
 

• det 𝑄 − 𝜆𝐼 = det
−𝜆 −1
1 −𝜆

= 𝜆2 + 1 = 0 ⇒ 𝜆 = ±𝑖. 
 

• In that case we have a skew symmetric (or anti-symmetric) matrix with 

𝑄𝑇 = 𝑄−1 = −𝑄. 
 

• We observe that the eigenvalues are complex. 

 

• Complex eigenvalues always come in complex conjugate pairs if the associated 

matrix is real. 

 

 

Example 



• Consider 𝐴 =
3 1
0 3

. 

 

• 𝜆1 + 𝜆2 = 6 and det(𝜆1𝜆2) = 9. 
 

• det 𝐴 − 𝜆𝐼 = det
3 − 𝜆 1
0 3 − 𝜆

= (3 − 𝜆)2= 0 ⇒ 𝜆1,2 = 3 

 

• The eigenvalues of a triangular matrix are the values of the diagonal. 
 

• For that particular case we have 

3 1
0 3

𝑥
𝑦 =

3𝑥
3𝑦

⇒ 𝑦 = 0 and 𝑥 can be any number. 

 

 

Example 



• Suppose we have 𝑛 independent eigenvectors of a matrix 𝐴. We call them 𝑥𝑖. 
 

• The associated eigenvalues are 𝜆𝑖. 
 

• We put them in the columns of a matrix 𝑆. 
 

• We form the matrix: 

𝐴𝑆 = 𝐴 𝑥1 𝑥2 … 𝑥𝑛 = 𝜆1𝑥1 𝜆2𝑥2 … 𝜆𝑛𝑥𝑛 = 

𝑥1 𝑥2 … 𝑥𝑛

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮
0 0

⋱
…

⋮
𝜆𝑛

= 𝑆Λ ⇒ 𝐴𝑆 = 𝑆Λ 

𝑆−1𝐴𝑆 = Λ or 𝐴 = 𝑆Λ𝑆−1 

• The above formulation of 𝐴 is very important in Mathematics and Engineering 

and is called matrix diagonalization. 

 

 

 

 

Matrix diagonalization 

The case of independent eigenvectors 



• If 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴2𝑥 = 𝜆𝐴𝑥 ⇒ 𝐴2𝑥 = 𝜆2𝑥. 

• Therefore, the eigenvalues of 𝐴2 are 𝜆2. 

• The eigenvectors of 𝐴2 remain the same since 𝐴2 = 𝑆Λ𝑆−1𝑆Λ𝑆−1 = 𝑆Λ2𝑆−1 

• In general 𝐴𝑘 = 𝑆Λ𝑘𝑆−1 

• lim 𝐴𝑘 = 0 if the eigenvalues of 𝐴 have the property 𝜆𝑖 < 1. 

• A matrix has 𝑛 independent eigenvectors and therefore is diagonalizable if all the 

eigenvalues are different. 

• If there are repeated eigenvalues a matrix may, or may not have independent 

eigenvectors. As an example consider the identity matrix. Its eigenvectors are the 

row (or column) vectors. They are all independent. However, the eigenvalues are 

all equal to 1. 

• Find the eigenvalues of 𝐴 =
1 𝑎
0 1

, 𝑎 ≠ 0. This is a standard textbook matrix 

which cannot be diagonalized. 

(Answer: The eigenvectors are of the form [𝑥 0]𝑇) 

 

 

 

 

 

 

Matrix diagonalization: Eigenvalues of 𝐴𝑘  



• Consider a system that follows an equation of the form 𝑢𝑘+1 = 𝐴𝑢𝑘. 

• 𝑢𝑘 is the vector which consists of the system parameters which evolve with time. 

• The eigenvalues of 𝐴 characterize fully the behavior of the system. 

• I start with a given vector 𝑢0. 

𝑢1 = 𝐴𝑢0, 𝑢2 = 𝐴
2𝑢0 and in general 𝑢𝑘 = 𝐴

𝑘𝑢0  

• In order to solve this system I assume that I can write 𝑢0 = 𝑐1𝑥1 +𝑐2 𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 

where 𝑥𝑖 are the eigenvectors of matrix 𝐴. This is a standard approach to the 

solution of this type of problem. 

• 𝐴𝑢0 = 𝑐1𝐴𝑥1 +𝑐2 𝐴𝑥2 +⋯+ 𝑐𝑛𝐴𝑥𝑛= 𝑐1𝜆1𝑥1 +𝑐2 𝜆2𝑥2 +⋯+ 𝑐𝑛𝜆𝑛𝑥𝑛 

𝐴100𝑢0 = 𝑐1𝜆1
100𝑥1 +𝑐2 𝜆2

100𝑥2 +⋯+ 𝑐𝑛𝜆𝑛
100𝑥𝑛=𝑆Λ100𝑐 

𝑐 is a column vector that contains the coefficients 𝑐𝑖. 

𝑆, Λ are the matrices defined previously. 

 

 

 

 

 

 

Application of matrix diagonalization cont. 

A first order system which evolves with time 



• I will take two numbers which I denote with 𝐹0 = 0 and 𝐹1 = 1. 
 

• The Fibonacci sequence of numbers is given by the two initial numbers given 

above and the relationship 𝐹𝑘 = 𝐹𝑘−1 +𝐹𝑘−2. 
 

• The sequence is 0,1,1,2,3,5,8,13 and so on. 
 

• How can I get a closed form formula for the 100th Fibonacci number or any 

Fibonacci number? 
 

• I will present a standard approach to this problem. 

I define a vector 𝑢𝑘 =
𝐹𝑘+1
𝐹𝑘

 and an extra equation 𝐹𝑘+1 = 𝐹𝑘+1. By merging the 

two equations I obtain the following matrix form: 
 

𝑢𝑘+1 =
𝐹𝑘+2
𝐹𝑘+1

=
1 1
1 0

𝐹𝑘+1
𝐹𝑘

= 𝐴𝑢𝑘 

• I managed to convert the second order scalar problem into a first order matrix 

problem. 

 

 

 

 

 

 

 

 

Application of matrix diagonalization cont. 

Fibonacci example: 

Convert a second order scalar problem into a first order system 



• The eigenvalues of 𝐴 are obtained from 

det
1 − 𝜆 1
1 −𝜆

= − 1 − 𝜆 𝜆 − 1 = 0 ⇒ 𝜆2 − 𝜆 − 1 = 0 

• Observe the analogy between 𝜆2 − 𝜆 − 1 = 0 and 𝐹𝑘 −𝐹𝑘−1 −𝐹𝑘−2 = 0. 

• 𝜆1,2 =
1± 5

2
. Eigenvalues add up to 1. The matrix 𝐴 is diagonalizable. 

• It can be shown that the eigenvectors are 𝑥1 =
𝜆1
1

 and 𝑥2 =
𝜆2
1

. 

• How can I get a formula for the 100th Fibonacci number? 

• 𝑢𝑘+1 =
𝐹𝑘+2
𝐹𝑘+1

= 𝐴𝑢𝑘 = 𝐴
2𝑢𝑘−1 etc. Therefore, 𝑢100 = 𝐴

100𝑢0 = 𝑆Λ
100𝑆−1𝑢0 

• Λ100 =
𝜆1
100 0

0 𝜆2
100 ≅ 𝜆1

100 0
0 0

, 𝑆 =
𝜆1 𝜆2
1 1

, 𝑆−1 =
1

𝜆1−𝜆2

1 −𝜆2
−1 𝜆1

 

• 𝑢100 ≅
1

𝜆1−𝜆2

𝜆1 𝜆2
1 1

𝜆1
100 0
0 0

1 −𝜆2
−1 𝜆1

1
0
=

1

𝜆1−𝜆2

𝜆1 𝜆2
1 1

𝜆1
100 0
0 0

1
−1

=

1

𝜆1−𝜆2

𝜆1 𝜆2
1 1

𝜆1
100

0
=

1

𝜆1−𝜆2

𝜆1
101

𝜆1
100 ⇒ 𝐹100 =

1

𝜆1−𝜆2
𝜆1
100

 

 

 

 

 

 

 

Application of matrix diagonalization cont. 

Fibonacci example cont. 

Convert a second order scalar problem into a first order system 



Problem: 

Solve the system of differential equations: 
𝑑𝑢1(𝑡)

𝑑𝑡
= −𝑢1 𝑡 + 2𝑢2 𝑡 ,

𝑑𝑢2(𝑡)

𝑑𝑡
= 𝑢1(𝑡) − 2𝑢2(𝑡) 

Solution: 

 We convert the system of equations into a matrix form 

𝑑𝑢1(𝑡)

𝑑𝑡
𝑑𝑢2(𝑡)

𝑑𝑡

= 𝐴
𝑢1(𝑡)
𝑢2(𝑡)

. 

 We set 𝑢(𝑡) =
𝑢1(𝑡)
𝑢2(𝑡)

. We impose the initial conditions 𝑢(0) =
1
0

. 

 The system’s matrix is 𝐴 =
−1 2
1 −2

. The matrix 𝐴 is singular. One of the 

eigenvalues is zero. Therefore, from the trace we conclude that the eigenvalues 

are 𝜆1 = 0, 𝜆2 = −3. 

 The solution of the above system depends exclusively on the eigenvalues of 𝐴. 

 We can easily show that the eigenvectors are 𝑥1 =
2
1

 and 𝑥2 =
1
−1

. 

 

 

 

 

 

 

 

 
Applications of matrix diagonalization cont. 

First order differential equations 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢 



• The solution of the above system of equations is of the form 

𝑢 𝑡 = 𝑐1𝑒
𝜆1𝑡𝑥1 + 𝑐2𝑒

𝜆2𝑡𝑥2 

 

Problem: 

Verify the above by plugging-in 𝑒𝜆𝑖𝑡𝑥𝑖 to the equation 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢. 

 Let’s find 𝑢 𝑡 = 𝑐1𝑒
0𝑡 2
1
+ 𝑐2𝑒

−3𝑡 1
−1

= 𝑐1
2
1
+ 𝑐2𝑒

−3𝑡 1
−1

 

 𝑐1, 𝑐2 comes from the initial conditions. 

𝑐1
2
1
+ 𝑐2

1
−1

=
1
0
⇒

2 1
1 −1

𝑐1
𝑐2

=
1
0
⇒ 𝑆

𝑐1
𝑐2

= 𝑢(0) ⇒ 𝑐1 =
1

3
, 𝑐2 =

1

3
. 

 The Steady State of the system is defined as 𝑢 ∞ =
2/3
1/3

.  

 Stability is achieved if the real part of the eigenvalues is negative. 

 Note that if complex eigenvalues exists, they appear in conjugate pairs. 

 

 

 

 

 

 

 

Applications of matrix diagonalization cont. 

First order differential equations 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢 



• Stability is achieved if the real part of the eigenvalues is negative. 

 

• We do have a steady state if at least one eigenvalue is 0 and the rest of the 

eigenvalues have negative real part. 

 

• The system is unstable if at least one eigenvalue has a positive real part. 

 

• For stability the trace of the system’s matrix must be negative. 

 

• The reverse is not true. Obviously a negative trace does not guarantee stability. 

 

 

 

 

 

 

 

 

 

Applications of matrix diagonalization cont. 

First order differential equations 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢 



• Consider a first-order differential equation 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢. 

• Recall the matrix 𝑆 which contains the eigenvectors of 𝐴 defined previously. 

• I set 𝑢(𝑡) = 𝑆𝑣(𝑡) and therefore the differential equation becomes: 

• 𝑆
𝑑𝑣(𝑡)

𝑑𝑡
= 𝐴𝑆𝑣(𝑡) ⇒

𝑑𝑣 𝑡

𝑑𝑡
= 𝑆−1𝐴𝑆𝑣(𝑡) = Λ𝑣(𝑡) 

• This is an interesting result which can be found in various engineering 

applications. 

• I start from a system of equations 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐴𝑢(𝑡) which are coupled (or 

dependent or correlated) and I end up with a set of equations which are 

decoupled and easier to solve. 

• From the relationship 
𝑑𝑣(𝑡)

𝑑𝑡
= Λ𝑣(𝑡) we get  𝑣 𝑡 = 𝑒Λ𝑡𝑣(0) and 

𝑢 𝑡 = 𝑆𝑒Λ𝑡𝑆−1𝑢(0) with 𝑒𝐴𝑡 = 𝑆𝑒Λ𝑡𝑆−1  

 

Question: What is the exponential of a matrix? See next slide. 

 

 

 

 

 

 

 

 

 

 

Applications of matrix diagonalization cont. 

First order differential equations 
𝑑𝑢

𝑑𝑡
= 𝐴𝑢 



• How do I change the second order homogeneous differential equation 

𝑦′′(𝑡) + 𝑏𝑦′(𝑡) + 𝑘𝑦(𝑡) = 0 

to two first order ones? 

 

• I use the equation above and the additional equation 𝑦′ 𝑡 = 𝑦′(𝑡). 

 

• I define 𝑢(𝑡) =
𝑦′(𝑡)
𝑦(𝑡)

 and from the two available equations I form the matrix 

representation shown below. 

  

𝑢′(𝑡) =
𝑦′′(𝑡)

𝑦′(𝑡)
=
−𝑏 −𝑘
1 0

𝑦′(𝑡)
𝑦(𝑡)

 

𝑢′(𝑡) =
−𝑏 −𝑘
1 0

𝑢(𝑡) 

 
 

 

 

 

 

 

 

 

 

 

 

Applications of matrix diagonalization cont. 

Second order homogeneous differential equations 



• How do I change the 𝑛th order homogeneous differential equation 

𝑦 𝑛 (𝑡) + 𝑏1𝑦
𝑛−1 (𝑡) + ⋯+ 𝑏𝑛−1𝑦(𝑡) = 0  

to 𝑛 first order ones? 

• I define 𝑢(𝑡) =

𝑦 𝑛−1 (𝑡)
⋮

𝑦′(𝑡)
𝑦(𝑡)

 and 𝑛 additional equations 𝑦 𝑖 𝑡 = 𝑦 𝑖 𝑡 , 𝑖 =

1, … , (𝑛 − 1) and therefore, I obtain the matrix representation below: 

𝑢′(𝑡) =

𝑦 𝑛 (𝑡)

𝑦 𝑛−1 (𝑡)
⋮

𝑦′′(𝑡)

𝑦′(𝑡)

=

−𝑏1 −𝑏2 … −𝑏𝑛−2 −𝑏𝑛−1
1
⋮

0 …
⋮ …

0
⋮

0
⋮

0
0

0 …
0 …

0 0
1 0

𝑢(𝑡) 

 

• As previously analysed the solution of this system is explicitly affiliated to the 

eigenvalues of the system’s matrix. 

 

 

 

 

 

 

 

 

 

Applications of matrix diagonalization cont. 

Higher order homogeneous differential equations 



• The exponential 𝑒Λ𝑡 of a diagonal matrix is given by: 

𝑒Λ𝑡 =

𝑒𝜆1𝑡 0 … 0

0 𝑒𝜆2𝑡 … 0
⋮ ⋮
0 0

⋱
…

⋮
𝑒𝜆𝑛𝑡

 

with 𝜆𝑖 being the elements of the diagonal. 

• Furthermore,  

 

Λ𝑡 =

𝜆1
𝑡 0 … 0

0 𝜆2
𝑡 … 0

⋮ ⋮
0 0

⋱
…

⋮
𝜆𝑛

𝑡

 

 

• As we already showed 

lim
𝑡→∞

𝑒Λ𝑡 = 0 if Re 𝜆𝑖 < 0, ∀𝑖 

lim
𝑡→∞

Λ𝑡 = 0 if 𝜆𝑖 < 1, ∀𝑖 

 

 

 

 

 

 

 

 

 

 

Diagonal matrix exponentials 



• Consider the exponential 𝑒𝐴𝑡. 

 The Taylor series expansion is 𝑒𝑥 =  
𝑥𝑛

𝑛!
∞
0 . 

 Similarly, 𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
(𝐴𝑡)2

2
 +

(𝐴𝑡)3

6
+⋯+

𝐴𝑡 𝑛

𝑛!
+⋯ 

 𝑒𝐴𝑡 = 𝐼 + 𝑆Λ𝑆−1𝑡 +
𝑆Λ2𝑆−1𝑡2

2
 +

𝑆Λ3𝑆−1𝑡3

6
+⋯+

𝑆Λ𝑛𝑆−1𝑡𝑛

𝑛!
+⋯ = 𝑆𝑒Λ𝑡𝑆−1 

 The assumption built-in to the above formula is that 𝐴 must be diagonalizable. 

 

• Furthermore, note that 
1

1−𝑥
=  𝑥𝑛∞

0 . 

 For matrices we have (𝐼 − 𝐴𝑡)−1= 𝐼 + 𝐴𝑡 + (𝐴𝑡)2+(𝐴𝑡)3+⋯  

 This sum converges if the magnitudes of the eigenvalues of matrix 𝐴𝑡 are of 

magnitude less than 1, i.e., 𝜆(𝐴𝑡) < 1. This statement is proven using 

diagonalization. 

 

 

 

 

 

 

 

Matrix exponentials 𝑒𝐴𝑡  



Stochastic matrices 

• Consider a matrix 𝐴 with the following properties: 

 It is square 

 All entries are positive and real. 

 The elements of each column or each row or both each column and each row 

add up to 1. 

 Based on the above, a matrix that exhibits the above properties will have all 

entries ≤ 1. 

• This is called a stochastic matrix. 

• Stochastic matrices are also called Markov, probability, transition, or 

substitution matrices. 

• The entries of a stochastic matrix usually represent a probability.  

• Stochastic matrices are widely used in probability theory, statistics, mathematical 

finance and linear algebra, as well as computer science. 

 

 

 



Stochastic matrices. Types. 

• There are several types of stochastic matrices: 

 A right stochastic matrix is a matrix of nonnegative real entries, with each row’s 

elements summing to 1. 

 A left stochastic matrix is a matrix of nonnegative real entries, with each 

column’s elements summing to 1. 

 A doubly stochastic matrix is a matrix of nonnegative real entries with each 

row’s and each column’s elements summing to 1. 

• A stochastic matrix often describes a so called Markov chain 𝑋𝑡 over a finite state 

space 𝑆. 

• Generally, an 𝑛 × 𝑛 stochastic matrix is related to 𝑛 “states”. 

• If the probability of moving from state 𝑖 to state 𝑗 is 𝑃𝑟 𝑗 𝑖 = 𝑝𝑖𝑗, the stochastic 

matrix 𝑃 is given by using 𝑝𝑖𝑗 as the 𝑖th row and 𝑗th column element: 

𝑃 =

𝑝11 𝑝12
𝑝21 𝑝22

… 𝑝1𝑛
… 𝑝2𝑛

⋮ ⋮
𝑝𝑛1 𝑝𝑛2

⋱ ⋮
… 𝑝𝑛𝑛

 

• Depending on the particular problem, the above matrix can be formulated in such a 

way so that it is either right or left stochastic. 

 

 



Products of stochastic matrices. Stochastic vectors. 

• An example of a left stochastic matrix is the following: 
 

𝐴 =
0.1 0.01 0.3
0.2 0.99 0.3
0.7 0 04

 

 

• You can prove that if 𝐴 and 𝐵 are stochastic matrices of any type, then 𝐴𝐵 is also 

a stochastic matrix of the same type. 

• Consider two left stochastic matrices 𝐴 and 𝐵 with elements 𝑎𝑖𝑗 and 𝑏𝑖𝑗 

respectively, and 𝐶 = 𝐴𝐵 with elements 𝑐𝑖𝑗. 

• Let us find the sum of the elements of the 𝑗th column of 𝐶: 

 𝑐𝑖𝑗 =   𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 =𝑛

𝑖=1
𝑛
𝑖=1   𝑎𝑖𝑘𝑏𝑘𝑗

𝑛
𝑖=1 =𝑛

𝑘=1   𝑏𝑘𝑗  𝑎𝑖𝑘
𝑛
𝑖=1 =𝑛

𝑘=1 1 ∙ 1 = 1 

• Based on the above any power of a stochastic matrix is a stochastic matrix. 

• Furthermore, a vector with real, nonnegative entries 𝑝𝑘, for which all the 𝑝𝑘 add 

up to 1, is called a stochastic vector. For a stochastic matrix, every column or 

row or both is a stochastic vector. 

• I am interested in the eigenvalues and eigenvectors of a stochastic matrix. 

 

 

 

 



Stochastic matrices and their eigenvalues 

• I would like to prove that  𝜆 = 1 is always an eigenvalue of a stochastic matrix. 

• Consider again a left stochastic matrix 𝐴. 

• Since the elements of each column of 𝐴 add up to 1, the elements of each row of 

𝐴𝑇 should add up to 1. Therefore, 

𝐴𝑇
1
1
⋮
1

=

1
1
⋮
1

= 1 ∙

1
1
⋮
1

 

• Therefore, 1 is an eigenvalue of 𝐴𝑇  . 

• As already shown, the eigenvalues of 𝐴 and 𝐴𝑇  are the same, which implies that 

1 is also an eigenvalue of 𝐴. 

• Since det 𝐴 − 𝐼 = 0, the matrix 𝐴 − 𝐼 is singular, which means that there is a 

vector 𝑥 for which 

𝐴 − 𝐼 𝑥 = 𝟎 ⇒ 𝐴𝑥 = 𝑥 

• A vector of the null space of 𝐴 − 𝐼 is the eigenvector of 𝐴 that corresponds to 

eigenvalue 𝜆 = 1. 



Stochastic matrices and their eigenvalues cont. 

• I would like now to prove that the eigenvalues of a stochastic matrix have 

magnitude smaller or equal to 1. 

• Assume that 𝑣 =

𝑣1
𝑣2
⋮
𝑣𝑛

 is an eigenvector of a right stochastic matrix 𝐴 with an 

associated eigenvalue 𝜆 > 1. Then 𝐴𝑣 = 𝜆𝑣 implies  𝐴𝑖𝑗𝑣𝑗 = 𝜆𝑣𝑖
𝑛
𝑗=1 . 

• We can see that  𝐴𝑖𝑗𝑣𝑗 ≤
𝑛
𝑗=1 𝑣max 𝐴𝑖𝑗 = 𝑣max

𝑛
𝑗=1 . 

• All the elements of the vector 𝐴𝑣 are smaller or equal to 𝑣max. 

• If 𝜆 > 1 at least one element of the vector 𝜆𝑣 (which is equal to 𝐴𝑣) will be 

greater than 𝑣max (𝜆𝑣max). 

• Based on the above, the assumption of an eigenvalue being larger than 1 can not 

be valid.  

• For left stochastic matrices we use 𝐴𝑇 in the proof above, and the fact that the 

eigenvalues of 𝐴 and 𝐴𝑇  are the same. 

 



An application of stochastic matrices: First order systems 

• Consider again the first order system described by an equation of the form 

𝑢𝑘 = 𝐴
𝑘𝑢0, where 𝐴 is now a stochastic matrix. 

• Previously, we managed to write 𝑢𝑘 = 𝐴
𝑘𝑢0 = 𝑐1𝜆1

𝑘𝑥1 + 𝑐2𝜆2
𝑘𝑥2 +⋯ where 𝜆𝑖 

and 𝑥𝑖 are the eigenvalues and eigenvectors of matrix 𝐴, respectively. 

• Note that the above relationship requires a complete set of eigenvectors. 

• If 𝜆1 = 1 and 𝜆𝑖 < 1, 𝑖 > 1 then the steady state of the system is 𝑐1𝑥1 (which is 

part of the initial condition 𝑢0). 

• I will use an example where 𝐴 is a 2 × 2 matrix. Generally, an 𝑛 × 𝑛 stochastic 

matrix is related to 𝑛 “states”. Assume that the 2 “states” are 2 UK cities. 

• I take London and Oxford. I am interested in the population of the two cities and 

how it evolves. 

• I assume that people who inhabit these two cities move between them only. 

𝑢ox
𝑢lon 𝑡=𝑘+1

=
0.9 0.2
0.1 0.8

 
𝑢ox
𝑢lon 𝑡=𝑘

 

• It is now obvious that the column elements are positive and also add up to 1 

because they represent probabilities. 

 



Application of stochastic matrices (cont.) 

• I assume that 
𝑢ox
𝑢lon 𝑡=𝑘=0

=
0

1000
. Then 

𝑢ox
𝑢lon 𝑘=1

=
0.9 0.2
0.1 0.8

0
1000

=
200
800

. 

• What is the population of the two cities after a long time? 

• Consider the matrix 
0.9 0.2
0.1 0.8

. The eigenvalues are 𝜆1 = 1 and 𝜆2 = 0.7. 

(Notice that the second eigenvalue is found by the trace of the matrix.) 

• The eigenvectors of this matrix are 𝑥1 =
2
1

 and 𝑥2 =
−1
1

. 

𝑢ox
𝑢lon 𝑘

= 𝑐1𝜆1
𝑘 2
1
+ 𝑐2𝜆2

𝑘 −1
1

= 𝑐1
2
1
+ 𝑐20.7

𝑘 −1
1

 

• I find 𝑐1, 𝑐2 from the initial condition 
𝑢ox
𝑢lon 𝑘=0

=
0

1000
  

0
1000

=𝑐1
2
1
+ 𝑐2

−1
1

 and therefore, 𝑐1 =
1000

3
 and 𝑐2 =

2000

3
. 

•
𝑢ox
𝑢lon 𝑘→∞

=
1000

3

2
1
+
2000

3
0.7𝑘→∞

−1
1

=

2000

3
1000

3

 

 



Application of stochastic matrices (cont.) 

• Stochastic models facilitate the modeling of various real life engineering 

applications. 

• An example is the modeling of the movement of people without gain or loss: total 

number of people is conserved. 



Symmetric matrices 

• In this lecture we will be interested in symmetric matrices. 

• In case of real matrices, symmetry is defined as 𝐴 = 𝐴𝑇 . 

• In case of complex matrices, symmetry is defined as 𝐴∗ = 𝐴𝑇 or 𝐴∗𝑇 = 𝐴. A matrix 

which possesses this property is called Hermitian. 

• We can also use the symbol 𝐴𝐻 = 𝐴∗
𝑇
. 

• We will prove that the eigenvalues of a symmetric matrix are real. 

• The eigenvectors of a symmetric matrix can be chosen to be orthogonal. If we 

also choose them to have a magnitude of 1, then the eigenvectors can be chosen 

to form an orthonormal set of vectors. 

• However, the eigenvectors of a symmetric matrix that correspond to different 

eigenvalues are orthogonal (prove is given in subsequent slide).  

• For a random matrix with independent eigenvectors we have 𝐴 = 𝑆Λ𝑆−1. 

• For a symmetric matrix with orthonormal eigenvectors we have 

𝐴 = 𝑄Λ𝑄−1= 𝑄Λ𝑄𝑇 

 

 

 



Real symmetric matrices 

Problem: 

Prove that the eigenvalues of a symmetric matrix occur in complex conjugate pairs. 

 

Solution: 

Consider 𝐴𝑥 = 𝜆𝑥. 

If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

If 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. Therefore, if 𝜆 is an eigenvalue of 𝐴 with corresponding 

eigenvector 𝑥 then 𝜆∗ is an eigenvalue of 𝐴 with corresponding eigenvector 𝑥∗. 

 



Real symmetric matrices cont. 

Problem: 

Prove that the eigenvalues of a symmetric matrix are real. 

 

Solution: 

We proved that if 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. 

If we take transpose in both sides we get  

𝑥∗𝑇𝐴𝑇 = 𝜆∗𝑥∗𝑇 ⇒ 𝑥∗𝑇𝐴 = 𝜆∗𝑥∗𝑇 

We now multiply both sides from the right with 𝑥 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆∗𝑥∗𝑇𝑥 

We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 𝑥∗𝑇 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

From the above we see that 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 𝑥∗𝑇𝑥 ≠ 0, we see that 𝜆 =
𝜆∗. 

 

 

 



Real symmetric matrices cont. 

Problem: 

Prove that the eigenvectors of a symmetric matrix which correspond to different 

eigenvalues are always perpendicular. 

 

Solution: 

Suppose that 𝐴𝑥 = 𝜆1𝑥 and 𝐴𝑦 = 𝜆2𝑦 with 𝜆1 ≠ 𝜆2. 

 

𝜆1𝑥
𝑇𝑦 = 𝑥𝑇𝜆1𝑦 = 𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑦 = 𝑥𝑇𝜆2𝑦 

 

The conditions 𝑥𝑇𝜆1𝑦 = 𝑥
𝑇𝜆2𝑦 and 𝜆1 ≠ 𝜆2 give 𝑥𝑇𝑦 = 0. 

 

The eigenvectors 𝑥 and 𝑦 are perpendicular. 

 

 



Complex matrices. Complex symmetric matrices. 

• Let us find which complex matrices have real eigenvalues and orthogonal 

eigenvectors. 

• Consider 𝐴𝑥 = 𝜆𝑥 with 𝐴 possibly complex. 

• If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

• If we take transpose in both sides we get  

𝑥∗𝑇𝐴∗𝑇 = 𝜆∗𝑥∗𝑇 

• We now multiply both sides from the right with 𝑥 we get 

𝑥∗𝑇𝐴∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 

• We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 𝑥∗𝑇 and we 

get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

• From the above we see that if 𝐴∗𝑇 = 𝐴  then 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 𝑥∗𝑇𝑥 ≠ 0, 

we see that 𝜆 = 𝜆∗. 

• If 𝐴∗𝑇 = 𝐴 the matrix is called Hermitian. 

 



Complex vectors and matrices 

• Consider a complex column vector 𝑧 = 𝑧1 𝑧2 … 𝑧𝑛 𝑇. 

• Its length is 𝑧∗𝑇𝑧 =  𝑧𝑖
2𝑛

𝑖=1 . 

• As already mentioned, when we both transpose and conjugate we can use the 

symbol 𝑧𝐻 = 𝑧∗
𝑇
 (Hermitian). 

• The inner product of two complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥. 

• For complex matrices the symmetry is defined as 𝐴∗𝑇 = 𝐴. As already mentioned, 

these are called Hermitian matrices. 

• They have real eigenvalues and perpendicular eigenvectors. If these are complex 

we check their length using 𝑞𝑖
∗𝑇𝑞𝑖 and also 𝑄∗𝑇𝑄 = 𝐼. 

Example: Consider the matrix 

𝐴 =
2 3 + 𝑖

3 − 𝑖 5
 

Eigenvalues are found from: 

2 − 𝜆 5 − 𝜆 − 3 + 𝑖 3 − 𝑖 = 0 
⇒ 𝜆2 − 7𝜆 + 10 − 9 − 3𝑖 + 3𝑖 − 𝑖2 = 0 ⇒ 𝜆 𝜆 − 7 = 0 



Eigenvalue sign 

• We proved that: 

 

 The eigenvalues of a symmetric matrix, either real or complex, are real. 

 

 The eigenvectors of a symmetric matrix can be chosen to be orthogonal. 

 

 The eigenvectors of a symmetric matrix that correspond to different 

eigenvalues are orthogonal. 

 

• Do not forget the definition of symmetry for complex matrices. 

 

• It can be proven that the signs of the pivots are the same as the signs of the 

eigenvalues. 
 

• Just to remind you: 

Product of pivots=Product of eigenvalues=Determinant 

 

 


