Maths for Signals and Systems Linear Algebra in Engineering

Symmetric Matrices

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Symmetric matrices

- In this lecture we will be interested in symmetric matrices.
- In case of real matrices, symmetry is defined as $A = A^{T}$.
- In case of complex matrices, symmetry is defined as $A^* = A^T$ or $A^{*T} = A$. A matrix which possesses this property is called **Hermitian**.
- We can also use the symbol $A^H = A^{*T}$.
- We will prove that the eigenvalues of a symmetric matrix are real.
- The eigenvectors of a symmetric matrix <u>can be chosen to be</u> orthogonal. If we also choose them to have a magnitude of 1, then the eigenvectors can be chosen to form an orthonormal set of vectors.
- However, the eigenvectors of a symmetric matrix that correspond to different eigenvalues <u>are</u> orthogonal (prove is given in subsequent slide).
- For a random matrix with independent eigenvectors we have $A = S\Lambda S^{-1}$.
- For a symmetric matrix with orthonormal eigenvectors we have

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^T$$

Real symmetric matrices

Problem:

Prove that the eigenvalues of a symmetric matrix occur in complex conjugate pairs.

Solution:

Consider $Ax = \lambda x$.

If we take complex conjugate in both sides we get

 $(Ax)^* = (\lambda x)^* \Rightarrow A^* x^* = \lambda^* x^*$

If *A* is real then $Ax^* = \lambda^* x^*$. Therefore, if λ is an eigenvalue of *A* with corresponding eigenvector *x* then λ^* is an eigenvalue of *A* with corresponding eigenvector x^* .

Real symmetric matrices cont.

Problem:

Prove that the eigenvalues of a symmetric matrix are real.

Solution:

We proved that if *A* is real then $Ax^* = \lambda^* x^*$.

If we take transpose in both sides we get

$$x^{*T}A^T = \lambda^* x^{*T} \Rightarrow x^{*T}A = \lambda^* x^{*T}$$

We now multiply both sides from the right with *x* and we get $x^{*^T}Ax = \lambda^* x^{*^T}x$

We take now $Ax = \lambda x$. We now multiply both sides from the left with x^{*T} and we get $x^{*T}Ax = \lambda x^{*T}x$.

From the above we see that $\lambda x^{*^T} x = \lambda^* x^{*^T} x$ and since $x^{*^T} x \neq 0$, we see that $\lambda = \lambda^*$.

Real symmetric matrices cont.

Problem:

Prove that the eigenvectors of a symmetric matrix **which correspond to different eigenvalues** are always perpendicular.

Solution:

Suppose that $Ax = \lambda_1 x$ and $Ay = \lambda_2 y$ with $\lambda_1 \neq \lambda_2$.

$$(\lambda_1 x)^T y = x^T \lambda_1 y = (Ax)^T y = x^T A y = x^T \lambda_2 y$$

The conditions $x^T \lambda_1 y = x^T \lambda_2 y$ and $\lambda_1 \neq \lambda_2$ give $x^T y = 0$.

The eigenvectors x and y are perpendicular.

Complex matrices. Complex symmetric matrices.

- Let us find which complex matrices have real eigenvalues and orthogonal eigenvectors.
- Consider $Ax = \lambda x$ with A possibly complex.
- If we take complex conjugate in both sides we get $(Ax)^* = (\lambda x)^* \Rightarrow A^* x^* = \lambda^* x^*$
- If we take transpose in both sides we get

$$x^{*^T}A^{*^T} = \lambda^* x^{*^T}$$

• We now multiply both sides from the right with x we get

$$x^{*^T}A^{*^T}x = \lambda^* x^{*^T}x$$

• We take now $Ax = \lambda x$. We now multiply both sides from the left with x^{*T} and we get

$$x^{*^T}Ax = \lambda x^{*^T}x.$$

- From the above we see that if $A^{*T} = A$ then $\lambda x^{*T} x = \lambda^* x^{*T} x$ and since $x^{*T} x \neq 0$, we see that $\lambda = \lambda^*$.
- If $A^{*^T} = A$ the matrix is called **Hermitian**.

Complex vectors and matrices

- Consider a complex column vector $z = \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix}^T$.
- Its length is $z^{*T}z = \sum_{i=1}^{n} |z_i|^2$.
- As already mentioned, when we both transpose and conjugate we can use the symbol $z^{H} = {z^{*}}^{T}$ (Hermitian).
- The inner product of two complex vectors is $y^{*T}x = y^{H}x$.
- For complex matrices the symmetry is defined as $A^{*T} = A$. As already mentioned, these are called Hermitian matrices.
- They have real eigenvalues and perpendicular eigenvectors. If these are complex we check their length using $q_i^{*T}q_i$ and also $Q^{*T}Q = I$.

Example: Consider the matrix

$$A = \begin{bmatrix} 2 & 3+i \\ 3-i & 5 \end{bmatrix}$$

Eigenvalues are found from:

$$(2 - \lambda)(5 - \lambda) - (3 + i)(3 - i) = 0$$

$$\Rightarrow \lambda^2 - 7\lambda + 10 - (9 - 3i + 3i - i^2) = 0 \Rightarrow \lambda(\lambda - 7) = 0$$

Eigenvalue sign

- We proved that:
 - The eigenvalues of a symmetric matrix, either real or complex, are real.
 - The eigenvectors of a symmetric matrix can be chosen to be orthogonal.
 - The eigenvectors of a symmetric matrix that correspond to different eigenvalues are orthogonal.
- Do not forget the definition of symmetry for complex matrices.
- It can be proven that the signs of the pivots are the same as the signs of the eigenvalues.
- Just to remind you: Product of pivots=Product of eigenvalues=Determinant