Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Symmetric Matrices
 DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Symmetric matrices

- In this lecture we will be interested in symmetric matrices.
- In case of real matrices, symmetry is defined as $A=A^{T}$.
- In case of complex matrices, symmetry is defined as $A^{*}=A^{T}$ or $A^{* T}=A$. A matrix which possesses this property is called Hermitian.
- We can also use the symbol $A^{H}=A^{* T}$.
- We will prove that the eigenvalues of a symmetric matrix are real.
- The eigenvectors of a symmetric matrix can be chosen to be orthogonal. If we also choose them to have a magnitude of 1 , then the eigenvectors can be chosen to form an orthonormal set of vectors.
- However, the eigenvectors of a symmetric matrix that correspond to different eigenvalues are orthogonal (prove is given in subsequent slide).
- For a random matrix with independent eigenvectors we have $A=S \Lambda S^{-1}$.
- For a symmetric matrix with orthonormal eigenvectors we have

$$
A=Q \Lambda Q^{-1}=Q \Lambda Q^{T}
$$

Real symmetric matrices

Problem:

Prove that the eigenvalues of a symmetric matrix occur in complex conjugate pairs.

Solution:

Consider $A x=\lambda x$.
If we take complex conjugate in both sides we get

$$
(A x)^{*}=(\lambda x)^{*} \Rightarrow A^{*} x^{*}=\lambda^{*} x^{*}
$$

If A is real then $A x^{*}=\lambda^{*} x^{*}$. Therefore, if λ is an eigenvalue of A with corresponding eigenvector x then λ^{*} is an eigenvalue of A with corresponding eigenvector x^{*}.

Real symmetric matrices cont.

Problem:

Prove that the eigenvalues of a symmetric matrix are real.

Solution:

We proved that if A is real then $A x^{*}=\lambda^{*} x^{*}$.
If we take transpose in both sides we get

$$
x^{* T} A^{T}=\lambda^{*} x^{* T} \Rightarrow x^{* T} A=\lambda^{*} x^{* T}
$$

We now multiply both sides from the right with x and we get

$$
x^{* T} A x=\lambda^{*} x^{* T} x
$$

We take now $A x=\lambda x$. We now multiply both sides from the left with $x^{* T}$ and we get

$$
x^{* T} A x=\lambda x^{* T} x
$$

From the above we see that $\lambda x^{* T} x=\lambda^{*} x^{* T} x$ and since $x^{* T} x \neq 0$, we see that $\lambda=$ λ^{*}.

Real symmetric matrices cont.

Problem:

Prove that the eigenvectors of a symmetric matrix which correspond to different eigenvalues are always perpendicular.

Solution:

Suppose that $A x=\lambda_{1} x$ and $A y=\lambda_{2} y$ with $\lambda_{1} \neq \lambda_{2}$.

$$
\left(\lambda_{1} x\right)^{T} y=x^{T} \lambda_{1} y=(A x)^{T} y=x^{T} A y=x^{T} \lambda_{2} y
$$

The conditions $x^{T} \lambda_{1} y=x^{T} \lambda_{2} y$ and $\lambda_{1} \neq \lambda_{2}$ give $x^{T} y=0$.

The eigenvectors x and y are perpendicular.

Imperial College

Complex matrices. Complex symmetric matrices.

- Let us find which complex matrices have real eigenvalues and orthogonal eigenvectors.
- Consider $A x=\lambda x$ with A possibly complex.
- If we take complex conjugate in both sides we get

$$
(A x)^{*}=(\lambda x)^{*} \Rightarrow A^{*} x^{*}=\lambda^{*} x^{*}
$$

- If we take transpose in both sides we get

$$
x^{* T} A^{* T}=\lambda^{*} x^{* T}
$$

- We now multiply both sides from the right with x we get

$$
x^{* T} A^{* T} x=\lambda^{*} x^{* T} x
$$

- We take now $A x=\lambda x$. We now multiply both sides from the left with $x^{* T}$ and we get

$$
x^{* T} A x=\lambda x^{* T} x .
$$

- From the above we see that if $A^{* T}=A$ then $\lambda x^{* T} x=\lambda^{*} x^{* T} x$ and since $x^{* T} x \neq 0$, we see that $\lambda=\lambda^{*}$.
- If $A^{* T}=A$ the matrix is called Hermitian.

Imperial College

Complex vectors and matrices

- Consider a complex column vector $z=\left[\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{n}\end{array}\right]^{T}$.
- Its length is $z^{* T} z=\sum_{i=1}^{n}\left|z_{i}\right|^{2}$.
- As already mentioned, when we both transpose and conjugate we can use the symbol $z^{H}=z^{*^{T}}$ (Hermitian).
- The inner product of two complex vectors is $y^{* T} x=y^{H} x$.
- For complex matrices the symmetry is defined as $A^{* T}=A$. As already mentioned, these are called Hermitian matrices.
- They have real eigenvalues and perpendicular eigenvectors. If these are complex we check their length using $q_{i}{ }^{* T} q_{i}$ and also $Q^{* T} Q=I$.
Example: Consider the matrix

$$
A=\left[\begin{array}{cc}
2 & 3+i \\
3-i & 5
\end{array}\right]
$$

Eigenvalues are found from:

$$
\begin{gathered}
(2-\lambda)(5-\lambda)-(3+i)(3-i)=0 \\
\Rightarrow \lambda^{2}-7 \lambda+10-\left(9-3 i+3 i-i^{2}\right)=0 \Rightarrow \lambda(\lambda-7)=0
\end{gathered}
$$

Eigenvalue sign

- We proved that:
- The eigenvalues of a symmetric matrix, either real or complex, are real.
- The eigenvectors of a symmetric matrix can be chosen to be orthogonal.
- The eigenvectors of a symmetric matrix that correspond to different eigenvalues are orthogonal.
- Do not forget the definition of symmetry for complex matrices.
- It can be proven that the signs of the pivots are the same as the signs of the eigenvalues.
- Just to remind you:

Product of pivots=Product of eigenvalues=Determinant

