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Problem formulation 
 

• Consider again the scenario where the system 𝐴𝑥 = 𝑏 doesn’t have 

solution. 

• Goal: Solve 𝐴𝑥 = 𝑝 instead, where 𝑝 is the projection 

of 𝑏 onto the column space of 𝐴. 

• The error 𝑒 = 𝑏 − 𝑝 is again perpendicular 

to the column space of 𝐴. 

• This scenario is depicted in the figure 

on the right for 𝑅3. 

• The quantities shown are column vectors 

and 𝐴 = 𝑎1 𝑎2 . 
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Projection error, solution, projection matrix 
 

• The error 𝑒 is perpendicular to 𝑎1 and 𝑎2. 

𝑎1
𝑇 𝑏 − 𝐴𝑥 = 0 and 𝑎2

𝑇 𝑏 − 𝐴𝑥 = 0 

𝑎1
𝑇

𝑎2
𝑇 𝑏 − 𝐴𝑥 = 0 ⇒ 𝐴𝑇 𝑏 − 𝐴𝑥 = 0 

• Consider 𝐴𝑇 𝑏 − 𝐴𝑥 = 0. 

• Question: In which subspace does 𝑏 − 𝐴𝑥  belong? 

Answer:  𝑒 ∈ 𝑁(𝐴𝑇). Therefore 𝑒 is perpendicular to the column space 

of 𝐴. This is also obvious from 𝐴𝑇 𝑏 − 𝐴𝑥 = 0. 

• Solution:  𝐴𝑇𝐴𝑥 = 𝐴𝑇 𝑏 ⟹ 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏 

• Projection: 𝑝 = 𝑃𝑏 = 𝐴 𝐴𝑇𝐴 −1 𝐴𝑇𝑏 

• Projection matrix: 𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 
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Projection matrix 
 

• Projection matrix: 𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 

 

• 𝐴 is not square (it is rectangular) and therefore we cannot use the 

property 𝐴𝑇𝐴 −1 = 𝐴−1 𝐴𝑇 −1. 

 

• Question: If 𝐴 was a square and invertible matrix of size 𝑛 × 𝑛 what 

would 𝑃 be? 

Answer:  In that case the column space of 𝐴 would be the entire 𝑅𝑛 

and therefore the projection of any vector on 𝐶(𝐴) would be 

the vector itself. 

This can be also verified by 

𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴𝐴−1 𝐴𝑇 −1𝐴𝑇 = 𝐼 ∙ 𝐼 = 𝐼 
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Projection matrix 
 

• Projection matrix: 𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 

 

• Question: If 𝑏 is perpendicular to 𝐶(𝐴), what do I get when I apply 

projection? 

Answer: In that case 𝑏 belongs to the null space of 𝐴𝑇 and therefore 

𝐴𝑇𝑏 = 0. We then obtain 𝑃𝑏 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇𝑏 = 0 

 

• Question: What is the projection that gives me 𝑒? 

Answer: 𝑃′𝑏 = 𝑒 ⇒ 𝑃′𝑏 = 𝑏 − 𝑝 ⇒ 𝑃′𝑏 = 𝑏 − 𝑃𝑏 

 ⇒ 𝑃′𝑏 = 𝐼𝑏 − 𝑃𝑏 = 𝐼 − 𝑃 𝑏 ⇒ 𝑃′ = 𝐼 − 𝑃 
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Projection matrix: Properties 
 

• Properties of 𝑃 

 

Symmetric 

𝐴𝑇𝐴 symmetric and therefore 𝐴𝑇𝐴 −1 is symmetric 

[to prove this we use the property 𝐴−1 𝑇 = 𝐴𝑇 −1] 

𝑃𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 𝑇 = 𝐴𝑇 𝑇 𝐴𝑇𝐴 −1 𝑇𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝑃 

 

𝑃2 = 𝑃 

𝑃2 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1[𝐴𝑇𝐴 𝐴𝑇𝐴 −1]𝐴𝑇 = 

= 𝐴 𝐴𝑇𝐴 −1𝐼𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝑃 

 

 



Mathematics for Signals and Systems 

Application: Least squares method. Fitting by a line. 
 

• Problem: I am given the three points 

shown with stars in the figure on the 

right. I want to fit them on the “best” 

possible straight line. 

• The points are (1,1), (2,2), (3,2) 

• The required line is 𝑏 = 𝐶 + 𝐷𝑡 

with 𝐶 and 𝐷 unknowns. 

• The three points must satisfy the line equation: 

𝐶 + 𝐷 = 1 

𝐶 + 2𝐷 = 2 

𝐶 + 3𝐷 = 2 
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Application: Least squares method. Fitting by a line. 
 

• Problem: Solve the system 𝐴𝑥 = 𝑏 
1 1
1 2
1 3

𝐶
𝐷

=
1
2
2

 

• The system is not solvable because 

𝑏 ∉ 𝐶 𝐴  (show that). 

• Solution: Solve 𝐴𝑥 = 𝑝 instead, where 

𝑝 is the projection of 𝑏 onto 𝐶(𝐴). 

A random 𝑏 is written as: 

𝑏 − 𝑝 = 𝑒 ⇒ 𝑏 = 𝑝 + 𝑒 

𝑝 is in column space and 𝑒 is perpendicular to the column space. 

• Projection kills 𝑒 and keeps 𝑝. 

 

 

 

 

 

 



Solution of the specific example 
 

• The proposed approach 𝐴𝑥 = 𝑝 yields the solution which can be also 

obtained if we look for an 𝑥  that minimizes the function 

𝐴𝑥 − 𝑏 2 = 𝑒 2 

• The above function is the magnitude of the total error. 

• This method is called linear regression. 

• Let’s solve this specific problem at the end! 

𝐴𝑇𝐴 =
3 6
6 14

  𝐴𝑇𝑏 =
5
11

  

• We can use the inverse 𝐴𝑇𝐴 −1 =
7/3 −1
−1 1/2

 

• Or we can solve directly the equations 3𝐶 + 6𝐷 = 5, 6𝐶 + 14𝐷 = 11. 

• Final solution is 𝐷 =
1

2
, 𝐶 =

2

3
. The “best” line is 𝑏 =

2

3
+

1

2
𝑡 (red line). 
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Solution of the specific example 
 

• As mentioned, an alternative approach is to find the unknowns that 

minimize the error function: 

𝐶 + 𝐷 − 1 2 + 𝐶 + 2𝐷 − 2 2 + 𝐶 + 3𝐷 − 2 2 

• We must take the partial derivatives with respect to the two unknowns 

and set them to zero. 

• Verify that, by implementing this method, you get the same solution as 

previously. 

• The vector 𝑝 is obtained by: 

𝑝1 = 𝐶 + 𝐷 =
1

2
+

2

3
=

7

6
  

𝑝2 = 𝐶 + 2𝐷 =
2

3
+ 1 =

5

3
 

𝑝3 = 𝐶 + 3𝐷 =
2

3
+

3

2
=

13

6
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Solution of the specific example 
 

• Furthermore: 

𝑒1 =
−1

6
  

𝑒2 =
2

6
 

𝑒3 =
−1

6
 

 

• Verify that: 

𝑏 = 𝑝 + 𝑒 

𝑝 and 𝑒 are perpendicular to each other 
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Problem 
 

• Problem: Show that if 𝐴 has independent columns then 𝐴𝑇𝐴 is 

invertible. I will need this in the next lecture. 

 

• I must prove that 𝐴𝑇𝐴𝑥 = 0 implies 𝑥 = 0. I assume then that 𝐴𝑇𝐴𝑥 = 0. 

 

• The above implies 𝑥𝑇𝐴𝑇𝐴𝑥 = 0 ⇒ 𝐴𝑥 𝑇𝐴𝑥 = 0 

 

• I define 𝐴𝑥 = 𝑦 and therefore 𝑦𝑇𝑦 = 0 ⇒ 𝑦 2 = 0 ⇒ 𝑦 = 0 ⇒ 𝐴𝑥 = 0 ⇒
𝑥 = 0 if 𝐴 has independent columns! 

 

• There is one case in which the columns of 𝐴 are for sure independent 

and this is when they are perpendicular unit vectors! 

 

 

 


