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• The Determinant is a crucial number associated with square matrices only.

• It is denoted by det 𝐴 = 𝐴 . These are two different symbols we use for 

determinants.

• If a matrix 𝐴 is invertible, that means det 𝐴 ≠ 0.

• Furthermore, det 𝐴 ≠ 0 means that matrix 𝐴 is invertible. 

• For a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑

the determinant is defined as 
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐. This 

formula is explicitly associated with the solution of the system 𝐴𝑥 = 𝑏 where 𝐴 is 

a 2 × 2 matrix.

Determinants



1. det 𝐼 = 1. This is easy to show in the case of a 2 × 2 matrix using the formula of 

the previous slide.

2. If we exchange two rows of a matrix the sign of the determinant reverses. 

Therefore:

• If we perform an even number of row exchanges the determinant remains the 

same.

• If we perform an odd number of row exchanges the determinant changes sign.

• Hence, the determinant of a permutation matrix is 1 or −1.

1 0
0 1

= 1 and 
0 1
1 0

= −1 as expected.

Properties of determinants cont.



3a. If a row is multiplied with a scalar, the determinant is multiplied with that scalar 

too, i.e., 
𝑡𝑎 𝑡𝑏
𝑐 𝑑

= 𝑡
𝑎 𝑏
𝑐 𝑑

.

3b.
𝑎 + 𝑎′ 𝑏 + 𝑏′

𝑐 𝑑
=

𝑎 𝑏
𝑐 𝑑

+
𝑎′ 𝑏′

𝑐 𝑑
Note that  det 𝐴 + 𝐵 ≠ det 𝐴 + det 𝐵

I observe “linearity” only for a single row.

4. Two equal rows leads to det = 0.

 As mentioned, if I exchange rows the sign of the determinant changes.

 In that case the matrix is the same and therefore, the determinant should 

remain the same.

 Therefore, the determinant must be zero.

 This is also expected from the fact that the matrix is not invertible.

Properties of determinants cont.



5.
𝑎 𝑏

𝑐 − 𝑙𝑎 𝑑 − 𝑙𝑏
=

𝑎 𝑏
𝑐 𝑑

+
𝑎 𝑏
−𝑙𝑎 −𝑙𝑏

=
𝑎 𝑏
𝑐 𝑑

− 𝑙
𝑎 𝑏
𝑎 𝑏

=
𝑎 𝑏
𝑐 𝑑

Therefore, the determinant after elimination remains the same.

6. A row of zeros leads to det = 0. This can verified as follows for any matrix:
0 0
𝑐 𝑑

=
0 ∙ 𝑎 0 ∙ 𝑏
𝑐 𝑑

= 0
𝑎 𝑏
𝑐 𝑑

= 0

7. Consider an upper triangular matrix (∗ is a random element)
𝑑1 ∗ … ∗

0 𝑑2 … ∗

⋮
0

⋮
0

⋱
…

⋮
𝑑𝑛

= 𝑑1𝑑2…𝑑𝑛

I can easily show the above using the following steps:

 I transform the upper triangular matrix to a diagonal one using elimination.

 I use property 3a 𝑛 times.

 I end up with the determinant ς𝑖=1
𝑛 𝑑𝑖det(𝐼) = ς𝑖=1

𝑛 𝑑𝑖.

 The same observations are valid for a lower triangular matrix.

Properties of determinants cont.



8. det 𝐴 = 0 when 𝐴 is singular.  This is because if 𝐴 is singular I get a row of zeros 

by elimination.

Using the same concept I can say that if 𝐴 is invertible then det 𝐴 ≠ 0.

In general I have 𝐴 → 𝑈 → 𝐷, det 𝐴 = 𝑑1𝑑2…𝑑𝑛 =product of pivots.

9. det 𝐴𝐵 = det 𝐴 det 𝐵

det 𝐴−1 =
1

det 𝐴
det 𝐴2 = [det(𝐴)]2

det 𝑐𝐴 = 𝑐𝑛det(𝐴) where 𝐴: 𝑛 × 𝑛 and 𝑐 is a scalar.

10. det 𝐴𝑇 = det 𝐴 .

 We use the 𝐿𝑈 decomposition of 𝐴, 𝐴 = 𝐿𝑈. Therefore, 𝐴𝑇 = 𝑈𝑇𝐿𝑇.

 𝐿 and 𝐿𝑇 have the same determinant due to the fact that they are triangular 

matrices (so it is the product of the diagonal elements). The same observation is 

valid for 𝑈 and 𝑈𝑇. This observation and the property det 𝐴𝐵 = det 𝐴 det 𝐵
yields det 𝐴𝑇 = det 𝐴 .

 This property can also be proved by the use of induction.

Properties of determinants cont.



Determinant of a 2 × 2matrix

• The goal is to find the determinant of a 2 × 2 matrix
𝑎 𝑏
𝑐 𝑑

using the properties 

described previously.

• We know that 
1 0
0 1

= 1 and 
0 1
1 0

= −1.

•
𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 𝑑

+
0 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0

+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0

+
0 𝑏
0 𝑑

=

0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0

+ 0 = 𝑎𝑑
1 0
0 1

+ 𝑏𝑐
0 1
1 0

= 𝑎𝑑 − 𝑏𝑐

• I can realize the above analysis for 3 × 3 matrices.

• I break the determinant of a 2 × 2 random matrix into 4 determinants of simpler 

matrices.

• In the case of a 3 × 3 matrix I break it into 27 determinants.

• And so on.



Determinant of any matrix

• For the case of a 2 × 2 matrix
𝑎 𝑏
𝑐 𝑑

we got:

𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0

+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0

+
0 𝑏
0 𝑑

= 0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0

+ 0

• The determinants which survive have strictly one entry from each row and 

each column.

• The above is a universal conclusion.



Determinant of any matrix cont.

• For the case of a 3 × 3 matrix
𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

we got:

𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

=

𝑎11 0 0

0
0

𝑎22 0
0 𝑎33

+

𝑎11 0 0

0
0

0 𝑎23
𝑎32 0

+⋯ =

𝑎11𝑎22𝑎33 − 𝑎11𝑎23 𝑎32 +⋯

• As mentioned the determinants which survive have strictly one entry from each 

row and each column.

• Each of these determinants is obtained by the product its non-zero elements with 

a plus or a minus sign in front. The sign is determined by the number of re-

orderings required so that the matrix of interest becomes diagonal. For example 

the second determinant shown above requires one re-ordering (swap of rows 2 

and 3) to become the determinant of a diagonal matrix. One re-ordering implies, 

as shown previously, negating the sign of the original determinant.



Determinant of any matrix cont.

• For the case of a 2 × 2 matrix the determinant has 2 survived terms.

• For the case of a 3 × 3 matrix the determinant has 6 survived terms.

• For the case of a 4 × 4 matrix the determinant has 24 survived terms.

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! survived terms.

 The elements from the first row can be chosen in 𝑛 different ways.

 The elements from the second row can be chosen in (𝑛 − 1) different ways.

 and so on…

Problem

Find the determinant of the following matrix:
0 0
0 1

1 1
1 0

1 1
1 0

0 0
0 1

(The answer is 0).



The general form for the determinant

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! terms.

det 𝐴 = 

𝑛!terms

±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧

 𝑎, 𝑏, 𝑐, … , 𝑧 are different columns.

 In the above summation, half of the terms have a plus and half of them have a 

minus sign.



The general form for the determinant cont.

• For the case of a 𝑛 × 𝑛 matrix, the method of cofactors is a technique which 

helps us to connect a determinant to determinants of smaller matrices.

det 𝐴 = 

𝑛!terms

±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧

• For a 3 × 3 matrix we have det 𝐴 = 𝑎11(𝑎22𝑎33 − 𝑎23 𝑎32) + ⋯

• 𝑎22𝑎33 − 𝑎23 𝑎32 is the determinant of a 2 × 2 matrix which is a sub-matrix of the 

original matrix.



Cofactors

• The cofactor of element 𝑎𝑖𝑗 is defined as follows:

𝐶𝑖𝑗 = ±det 𝑛 − 1 × 𝑛 − 1 matrix 𝐴𝑖𝑗

 𝐴𝑖𝑗 is the 𝑛 − 1 × 𝑛 − 1 that is obtained from the original matrix if row 𝑖 and 

column 𝑗 are eliminated.

 We keep the + if (𝑖 + 𝑗) is even.

 We keep the − if (𝑖 + 𝑗) is odd.

• Cofactor formula along row 1:

det 𝐴 = 𝑎11𝐶11 + 𝑎12𝐶12 +⋯+ 𝑎1𝑛 𝐶1𝑛

• Generalization:

 Cofactor formula along row 𝑖: det 𝐴 = 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 +⋯+ 𝑎𝑖𝑛 𝐶𝑖𝑛
 Cofactor formula along column 𝑗: det 𝐴 = 𝑎1𝑗𝐶1𝑗 + 𝑎2𝑗𝐶2𝑗 +⋯+ 𝑎𝑛𝑗 𝐶𝑛𝑗

• Cofactor formula along any row or column can be used for the final 

estimation of the determinant.



Estimation of the inverse 𝐴−1 using cofactors

• For a 2 × 2 matrix it is quite easy to show that 

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

• The general formula for the inverse 𝐴−1 is given by:

𝐴−1 =
1

det(𝐴)
𝐶𝑇

𝐴𝐶𝑇 = det(𝐴) ⋅ 𝐼

• 𝐶𝑖𝑗 is the cofactor of 𝑎𝑖𝑗 which is a sum of products of 𝑛 − 1 entries.

• In general
𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 … 𝑎𝑛𝑛

𝐶11 … 𝐶𝑛1
⋮ ⋱ ⋮

𝐶1𝑛 … 𝐶𝑛𝑛

= det(𝐴) ⋅ 𝐼



Solve 𝐴𝑥 = 𝑏 when 𝐴 is square and invertible

• The solution of the system 𝐴𝑥 = 𝑏 when 𝐴 is square and invertible can be now 

obtained from

𝑥 = 𝐴−1𝑏 =
1

det(𝐴)
𝐶𝑇𝑏

𝐶𝑇𝑏 =
𝐶11 … 𝐶𝑛1
⋮ ⋱ ⋮

𝐶1𝑛 … 𝐶𝑛𝑛

𝑏1
⋮
𝑏𝑛

• Lets find the first element of vector 𝑥. This is:

𝑥1 =
1

det 𝐴
𝑏1𝐶11 + 𝑏2𝐶21 +⋯+ 𝑏𝑛𝐶𝑛1

• We see that in 𝑏1𝐶11 + 𝑏2𝐶21 +⋯+ 𝑏𝑛𝐶𝑛1 the cofactors used are the same ones 

that we use when we calculate the determinant of 𝐴 using its first column. 

• Therefore, 𝑏1𝐶11 + 𝑏2𝐶21 +⋯+ 𝑏𝑛𝐶𝑛1 = det 𝐵1 with

𝐵1 = 𝑏 ⋮ last 𝑛 − 1 columns of 𝐴

• 𝐵1 is obtained by 𝐴 if we replace the first column with 𝑏.

• In general, 𝐵𝑖 is obtained by 𝐴 if we replace the 𝑖th column with 𝑏.



Solve 𝐴𝑥 = 𝑏 when 𝐴 is square and invertible cont.

• Cramer’s rule:

 The solution of the system 𝐴𝑥 = 𝑏 with 𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑛

is given by

𝑥𝑖 =
det(𝐵𝑖)

det(𝐴)
, 𝑖 = 1, … , 𝑛.

 𝐵𝑖 is obtained by 𝐴 if we replace the 𝑖th column with 𝑏.

 In practice we must find (𝑛 + 1) determinants.



Geometrical interpretation of the determinant

• Consider 𝐴 to be a matrix of size 2 × 2.

• It can be proven that the determinant of 𝐴 is the area of the parallelogram with 

the column vectors of 𝐴 as the two of its sides.

• Consider 𝐴 to be a matrix of size 3 × 3.

• It can be proven that the determinant of 𝐴 is the volume of the parallelepiped with 

the column vectors of 𝐴 as the three of its sides.

• This observation is extended

to matrices of dimension 𝑛 × 𝑛

where the determinants are

parallelotopes.



Geometrical interpretation of the determinant cont.

• Take 𝐴 = 𝐼. Then the parallelepiped mentioned previously is the unit cube and 

its volume is 1.

Problem:

Consider an orthogonal square matrix 𝑄. Prove that det 𝑄 = 1 or −1.

Solution:

𝑄𝑇𝑄 = 𝐼 ⇒ det 𝑄𝑇𝑄 = det 𝑄𝑇 det 𝑄 = det(𝐼) = 1

But det 𝑄𝑇 =det 𝑄 ⇒ 𝑄 2 = 1 ⇒ 𝑄 = ±1

• Take 𝑄 and double one of its vectors.

 The determinant doubles as well (property 3a).

 In that case, the cube’s volume doubles, i.e., you have two cubes sitting on 

top of each other.

You may download for free a demonstration by Wolfram that illustrates the above 

observations http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/.


