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Mathematics for Signals and Systems 

In this set of lectures we will talk about: 

 

• The complete or general solution of the system 𝐴𝑥 = 𝑏. 

• Independent vectors. 

• Dependent vectors. 

• Basis of a space. 

• Dimension of a space. 



Mathematics for Signals and Systems 

 

• In the previous set of lectures, we discussed about the system 𝐴𝑥 = 0. 

• In this lecture, we are interested in the general case, 𝐴𝑥 = 𝑏, where the right-

hand side is not zero. 

• A system of linear equations, 𝐴𝑥 = 𝑏, can have one solution, infinite solutions or 

no solution. 

• Previously we discussed about pivot and free variables. 

• Intuitively, we know that we have free variables if the number of equations is 

less than the number of unknowns. Furthermore, we know that if the number of 

equations is less than the number of unknowns the system has infinite number 

of solutions. 

• Intuitively, we know that if the number of equations is larger than the number of 

unknowns the system, in general, hasn’t got exact solutions or it might have 

one solution. 

 



Solution of the general form Ax=b 

General=Particular+Homogeneous 
 

• Let’s focus on the system 𝐴𝑥 = 𝑏. 

• If 𝑥1 and 𝑥2 are solutions of the system 𝐴𝑥 = 𝑏 then (𝑥2−𝑥1) and (𝑥1−𝑥2) are 

solutions of the system 𝐴𝑥 = 0. 

• We see that 𝑥2 = 𝑥1 + (𝑥2−𝑥1) and 𝑥1 = 𝑥2 + (𝑥1−𝑥2)  

• From the above, we observe that if we pick a specific solution 𝑥1 of the system 

𝐴𝑥 = 𝑏, any other solution 𝑥2 can be expressed as the previous solution 𝑥1 plus a 

solution of the system 𝐴𝑥 = 0. 

• Therefore, any solution of the system 𝐴𝑥 = 𝑏 consists of two parts as follows: 

 Any specific solution of the system 𝐴𝑥 = 𝑏. This is called particular solution. 

One way to obtain a particular solution, which we denote with 𝑥𝑝, is by setting 

all free variables to zero and solving for the pivot variables. Hence, we have that 

𝐴𝑥𝑝 = 𝑏. 

 The (family of) solution(s) of the system 𝐴𝑥 = 0. We denote these solutions with 

𝑥𝑛. Hence, we have that 𝐴𝑥𝑛 = 0. The system 𝐴𝑥 = 0 is called homogeneous 

system and its solutions are called homogeneous solutions. 



Solution of the general form Ax=b 

• In this lecture we will discuss when the system 𝐴𝑥 = 𝑏 has solution(s) and find 

this(these) solution(s). 

• As already mentioned, systems of linear equations can have one solution, 

infinite solutions or no solution. 

• Let us consider the system 𝐴𝑥 = 𝑏, where 𝐴 is taken from the previous lecture: 

 

 
 

• We will perform elimination for the general case where 𝑏 is a non-zero vector, so 

the augmented matrix is: 
 

 

 

 

• We can immediately spot that the above system of linear equations can be solved 

only if 𝑏3 − 𝑏2 − 𝑏1 = 0. 

• The above formula is a condition for solvability. 

𝐴 =
1 2
2 4
3 6

    
2 2
6 8
8 10

 

𝟐 − 𝟐 𝟏  

𝟐 − 𝟑 𝟏  𝟑 − 𝟐  

1 2
2 4
3 6

    
2 2
6 8
8 10

  

𝑏1

𝑏2

𝑏3

 
1 2
0 0
0 0

    
2 2
2 4
2 4

  

𝑏1

𝑏2 − 2𝑏1

𝑏3 − 3𝑏1

 
1 2
0 0
0 0

    
2 2
2 4
0 0

  

𝑏1

𝑏2 − 2𝑏1

𝑏3 − 𝑏2 − 𝑏1

 



Solution of the general form Ax=b. Particular Solution. 

• We have seen in the previous example that the condition for solvability is  

𝑏3 − 𝑏2 − 𝑏1 = 0. 

 

 

 

• Let us consider the complete solution of the above system for a vector 𝑏 that 

satisfies the above condition, for example 𝑏 =
1
5
6

. 

• In that case the system becomes: 

𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 = 1 

2𝑥3 + 4𝑥4 = 3 

• The pivot variables of the above system are 𝑥1 and 𝑥3, and the free variables 𝑥2 

and 𝑥4. 

• By setting all free variables to zero we have: 

𝑥1 + 2𝑥3 = 1 

2𝑥3 = 3 

 

 

 

 

 

1 2
0 0
0 0

    
2 2
2 4
0 0

  

𝑏1

𝑏2 − 2𝑏1

𝑏3 − 𝑏2 − 𝑏1

 



Particular and Homogeneous Solutions cont. 

• Based on the previous slide, the pivot variables of the system are obtained by 

solving the equations below. 

𝑥1 + 2𝑥3 = 1 

2𝑥3 = 3 

The pivot variables are 𝑥3 = 3/2, 𝑥1 = −2. 

• Therefore, the particular solution of the system is  

𝑥𝑝 =

−2
0

3/2
0

 

• Furthermore, as explained previously, the family of solutions of the homogeneous 

system 𝐴𝑥 = 0 is given by: 
 

𝑥𝑛 = 𝑐1𝑥1
𝑠 + 𝑐2𝑥2

𝑠 

where 𝑥1
𝑠, 𝑥2

𝑠 are the special solutions 𝑥1
𝑠 =

−2
1
0
0

, 𝑥2
𝑠 =

   2
   0
−2
   1

. 



Particular and Homogeneous Solutions cont. 

• The complete (general) solution of the system 𝐴𝑥 = 𝑏 is 𝑥=𝑥𝑝+𝑥𝑛. 

 

• For the particular example presented previously the complete solution is 
 

𝑥 =

−2
0

3/2
0

+ 𝑐1

−2
1
0
0

+ 𝑐2

2
0

−2
1

 

 

• Therefore, the complete solution is a family of solutions which form a two 

dimensional plane in 𝑅4 that goes through the point 𝑥𝑝. 

𝑥2 

𝑥𝑝 

𝑥1 

𝑥3 
𝑥4 𝑥𝑛 

𝑥 



Solution of the general form Ax=b. More rows than columns. 

• Consider an 𝑚 × 𝑛 matrix 𝐴 with 𝑛 < 𝑚 and rank 𝑟. 

• We know that 𝑟 ≤ 𝑚 and 𝑟 ≤ 𝑛. 

• Suppose that the condition of full column rank, i.e., 𝑟 = 𝑛 holds. In that case: 

 We don’t have free variables. 

 The null space 𝑁(𝐴) contains only the zero vector. 

 IF there is a solution to the system 𝐴𝑥 = 𝑏, it is the particular solution 𝑥𝑝. 

 Therefore, the system has a unique solution, if this exists. 

 We conclude that the number of solutions is 0 or 1. 

 

Example: Consider the system with matrix 𝐴 shown below. 

 rank = 2 
 there aren’t any free variables 
 the null space is the zero vector  
 there is a unique solution to 𝐴𝑥 = 𝑏 only when 

𝑏 is a linear combination of the columns of 𝐴 
 this unique solution is the particular solution 

𝑥𝑝 

 

1 3
2 1
6 1
5 1

𝑒𝑙𝑖𝑚𝑖𝑛.
1 0
0 1
0 0
0 0

 

𝐴 𝑅 



 rank = 2 
 there are 2 free variables 
 the null space is non-zero 
 there are infinite number of solutions 
 
 
 
 

Solution of the general form Ax=b. More columns than rows. 

• Consider an 𝑚 × 𝑛 matrix 𝐴 with 𝑛 > 𝑚 and rank 𝑟. 

• We know that 𝑟 ≤ 𝑚 and 𝑟 ≤ 𝑛. 

• Suppose that the condition of full row rank, i.e., 𝑟 = 𝑚 holds. In that case: 

 We have 𝑛 − 𝑚 free variables. 

 The null space 𝑁(𝐴) is non-zero. 

 The number of solutions is ∞. 

 

Example: Consider the system with matrix 𝐴 shown below. 

 

 

 

 

• Note that in the above example I assumed that the pivot columns are gathered 

together in the left part of the RREF matrix, so that 𝑅 = 𝐼 𝐹 . 

• I can always rearrange the order of my unknowns so that 𝑅 = 𝐼 𝐹 . 

 

 

 

1 4 6
3 1 1

    
5
1

𝑒𝑙𝑖𝑚𝑖𝑛. 1 0 𝑓12

0 1 𝑓21
    

𝑓12

𝑓22
 

𝐴 𝑅 



Solution of the general form Ax=b. Same rows and columns. 

• Consider an 𝑚 × 𝑛 matrix 𝐴 with 𝑚 = 𝑛 and rank 𝑟. 

• We know 𝑟 ≤ 𝑚 and 𝑟 ≤ 𝑛. 

• Suppose that the condition of full row and column rank, i.e., 𝑟 = 𝑚 = 𝑛 holds. 

 We have 0 free variables. 

 The null space 𝑁(𝐴) contains only the zero vector. 

 A solution always exists.  

 The solution is unique. 

 

Example: Consider the system with matrix 𝐴 showing below. 

1 2
3 1

𝑒𝑙𝑖𝑚𝑖𝑛. 1 0
0 1

 
 rank = 2 
 there are 0 free variables 
 the null space is the zero vector 
 𝐴 is invertible and the corresponding 

echelon matrix 𝑅 is the identity matrix 
 there is always a unique solution 
 
 
 
 

𝐴 𝑅 



Linear Independence 

• The vectors 𝑣1, 𝑣2, 𝑣3, .. 𝑣𝑛  are independent if no linear combination of them 

gives the zero vector (except the zero combination, all 𝑐𝑖 = 0)  

𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3 + .. 𝑐𝑛𝑣𝑛 ≠ 0 

• Take two non-zero, non-parallel vectors in the two dimensional space. 

• They are independent because there isn’t any linear combination with non-zero 

coefficients of them that can give the zero vector. 

• Now consider three vectors in the two dimensional space. These are 

dependent. That means there exist 𝑥𝑖, 𝑖 = 1,2,3 for which 

𝑥1𝑣1 + 𝑥2𝑣2 + 𝑥3𝑣3 = 0 

• In other words, the above formula consists a system with 

two equations and three unknowns, so there are definitely 

free variables and the nullspace is nonzero. 

Therefore, there are vectors 𝑥 =

𝑥1

𝑥2

𝑥3

 for which 𝐴𝑥 = 0 

(𝐴 has the vectors 𝑣𝑖 in its columns). 

 

𝑣1 

𝑣2 

𝑣3 



Linear Independence of Column Vectors 

• Assume that the vectors 𝑣1, 𝑣2, 𝑣3, .. 𝑣𝑛  are the columns of a matrix 𝐴 and they 

are independent. Assume that the above vectors have 𝑚 elements. In that case 

𝑚 ≥ 𝑛. 

• The rank of 𝐴 is 𝑛. 

• The rows of 𝐴 are vectors of 𝑛 elements. 

• Since the rank of 𝐴 is 𝑛 the rows form a basis of the 𝑛 − dimensional space. 

• Therefore, the nullspace 𝑁(𝐴) is only the zero vector. 

• In other words 𝐴𝑥 = 0 has no solutions other than the zero vector. 

• In this case there are no free variables. 

 

On the other hand: 

• The vectors 𝑣1, 𝑣2, 𝑣3, .. 𝑣𝑛 are dependent if 𝐴𝑥 = 0 has solutions other than 

zero, i.e. 𝑁(𝐴) is a non-zero subspace. 

• If a matrix 𝐴 has dependent columns then 𝑟𝑎𝑛𝑘(𝐴) < 𝑛. 

• In this case there are free variables. 

 



Span 

• Vectors 𝑣1, 𝑣2, 𝑣3, .. 𝑣𝑛  span a space. This means that there is a space that 

consists of all combinations of those vectors. 

 

• The columns of a matrix span the column space. 

 

• Let 𝑆 be the space that a set of vectors span. That space is the smallest space 

with those vectors in it. 

 

Example: 

 Vectors 𝑣1, 𝑣2 and 𝑣3 span the 𝑅2. 

 𝑅2 is the smallest space with 𝑣1, 𝑣2 and 𝑣3 in it. 

 

𝑣1 

𝑣2 

𝑣3 



Basis 

• A basis for a vector space is a sequence of vectors  𝑣1, 𝑣2, 𝑣3, .. 𝑣𝑛  with two 

properties: 

1. They are independent. 

2. They span the space. 

 

Example: 

 Vectors 𝑣1 and 𝑣2 span the 𝑅2. 

 The independent vectors 𝑣1 and 𝑣2 form a basis. 

 

𝑣1 

𝑣2 



Basis cont. 

• Consider the hyperplane 𝑅𝑛. 𝑛 vectors consist a basis if the 𝑛 × 𝑛 matrix with 

these vectors as columns or rows is invertible. 

• Consequently, the columns or rows of an invertible 𝑛 × 𝑛 matrix form a basis of 

𝑅𝑛. 

• Every basis of 𝑅𝑛 has the same number of vectors, which is 𝑛. 

 

• The number of vectors that form a basis of a space 𝑅𝑛 is the dimension of that 

space. 

 

Example: 

 

 𝐴 =
1  
1  
1  

2  
1  
2  

3 
2 
3 

 1
 1
 1

 
 The columns of 𝐴 span the column space of 𝐴. 
 In that example they are not independent. 
 A basis for the column space consists of the first two columns. 
 The dimension of the column space is 2 and therefore, 

𝑟𝑎𝑛𝑘 𝐴 = 2. 
 𝑁(𝐴) has solutions other than the zero vector. 
 



Basis cont. 

• We have seen that the rank of the matrix is the dimension of the columns 

space: 

 

𝑑𝑖𝑚𝐶 𝐴 = 𝑟 

 

• The dimension of the nullspace is the same as the number of the free variables. 

 

𝑑𝑖𝑚𝑁 𝐴 = 𝑛 − 𝑟 

 

• The vectors of the special solutions form a basis for the nullspace. 

 

 

 



The Four Fundamental Subspaces: 

Column Space, Row Space, Nullspace, Left Nullspace 

• Column space of 𝐴 : 𝐶(𝐴) 

 

• Nullspace of 𝐴 : 𝑁(𝐴) 

 

• Row space of 𝐴: 𝐶(𝐴𝑇) 

 The row space of 𝐴 is all combinations of the rows, or all combinations of the 

columns of 𝐴𝑇. 

 The rows of 𝐴, or the columns of 𝐴𝑇, span the row space. 

 If the rows of 𝐴 are independent then they form a basis of the row space. 

 

• Nullspace of 𝐴𝑇: 𝑁(𝐴𝑇) 

 Usually referred to as the Left Nullspace of 𝐴 

 It consists of the vectors 𝑦 for which 𝐴𝑇𝑦 = 0 or 𝑦𝑇𝐴 = 0𝑇 

 



• Assume that the matrix 𝐴 is 𝑚 × 𝑛. 

• The column space of 𝐴, 𝐶(𝐴), is a subset of 𝑅𝑚. 

 The dimension of 𝐶(𝐴) is 𝑟𝑎𝑛𝑘 𝐴 = 𝑟. 

 A basis of 𝐶(𝐴) consists of its pivot columns. 
 

• The nullspace of 𝐴, 𝑁(𝐴), is a subset of 𝑅𝑛. 

 The dimension of 𝑁(𝐴) is 𝑛 − 𝑟. 

 A basis of 𝑁(𝐴) consists of the special solutions. 
 

• The row space of 𝐴, 𝐶(𝐴𝑇), is a subset of 𝑅𝑛. 

 The dimension of 𝐶(𝐴𝑇) is 𝑟𝑎𝑛𝑘 𝐴 = 𝑟. 

 A basis of 𝐶(𝐴𝑇) consists of the first 𝑟 rows of the RREF matrix 𝑅. Note that 

the last 𝑚 − 𝑟 rows of 𝑅 are zero. 
 

• The nullspace of 𝐴𝑇, 𝑁(𝐴𝑇), is a subset of 𝑅𝑚. 

 The dimension of 𝑁(𝐴𝑇) is 𝑚 − 𝑟. 

 A basis of 𝑵(𝐀𝑻) consists of the last 𝒎 − 𝒓 rows of 𝑬. 

 NOTE THAT: 𝑬𝒎×𝒎 𝑨𝒎×𝒏 𝑰𝒎×𝒎 = 𝑹𝒎×𝒏 𝑬𝒎×𝒎  (please see Prob. 1, Sheet 2) 

Dimensionality of the Four Fundamental Subspaces 


