Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 3, Friday 14t Octoher 2016

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Mathematics for Signals and Systems

In this set of lectures we will tackle the following problems:

- Column Space, Row Space and Rank of a matrix
- Vector Spaces and Subspaces
- Column Spaces and Nullspaces
- Solving $A x=0$
- Pivot / Free Variables
- Special Solutions

Imperial College

Background Column Space, Row Space and Rank of a matrix

- In linear algebra, we define the column space $C(A)$ of a matrix A (sometimes called the range of a matrix) as the set of all possible linear combinations of its column vectors.
- Consider a matrix A of size $m \times n$. Its columns are m - dimensional vectors. Therefore, its column space is a linear subspace of the m - dimensional plane R^{m}.
- The dimension of the column space of a matrix A is called the rank of the matrix.
- We define the row space $R(A)$ of a matrix A as the set of all possible linear combinations of its row vectors.
- Consider a matrix A of size $m \times n$. Its rows are n - dimensional vectors. Therefore, its row space is a linear subspace of the n - dimensional plane R^{n}.
- The column and row space of a matrix are always of the same dimension!
- Therefore, the dimension of the row space of a matrix A also defines the rank of the matrix A.
- Based on the above, the rank of a matrix is at most $\min (m, n)!!!$

Rank: What you know so far

To summarise the previous material, let A be an $m \times n$ matrix. So far you know that:

- $\operatorname{rank}(A)=\operatorname{dim}(R(A))=\operatorname{dim}(C(A))$
- $\operatorname{rank}(A)=$ the maximum number of linearly independent rows or columns of A.
- $\operatorname{rank}(A) \leq \min (m, n)$
- Keep in mind and don't forget that the column and row space of a matrix are of the same dimension, but they are different spaces!

Imperial College

Mathematics for Signals and Systems: Vector Spaces

- An N-dimensional space in which we can define specific vector operations is called vector space.
- For example, R^{2} ($x-y$ plane) is a vector space where operations on 2dimensional vectors can be defined.
- Note that all vectors with two real components are included in R^{2}.
- A vector space must be closed under multiplication and addition. If it is not, then it is NOT a vector space! This means that:
> The product of a vector with a real number has to be in the vector space.
> Any linear combination of vectors in the vector space has to be in the vector space.

is a vector space (subspace of R^{2})

Mathematics for Signals and Systems: Sulhspaces

- Examples of vector spaces which are subspaces of R^{2} :
$>$ All of R^{2} (plane).
$>$ All lines that go through the origin (line).
$>$ Zero vector only (point).
- Examples of vector spaces which are subspaces of R^{3} :
$>$ All of R^{3}.
$>$ All planes that go through the origin (R^{2} planes).
$>$ All lines through the origin (lines).
$>$ Zero vector only (point).

Mathematics for Signals and Systems: Column Space

- Consider the columns of matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 4 & 1\end{array}\right]$.
- They are 3-dimensional vectors and therefore, they lie in R^{3}.
- Their linear combinations form a subspace of R^{3}.
- This subspace of R^{3} is called the Column Space of A and it is denoted by $C(A)$.
- In that particular example, matrix A has two independent columns that lie in R^{3}.
- The column space of matrix A is a two dimensional plane (subspace) that goes through the origin.

Mathematics for Signals and Systems: Column Space cont.

- Consider the column spaces of matrix A and matrix B.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
4 & 1
\end{array}\right] \quad B=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

- The union of $C(A)$ and $C(B)$ is not a subspace.
- Linear combination of columns A and B do not necessarily lie in the union.
- The intersection of $C(A)$ and $C(B)$ is a subspace. This is because intersection is the zero vector which is a subspace.
- In general, the intersection of subspaces is always a subspace.

Mathematics for Signals and Systems: Column Space cont.

- A system of linear equations doesn't always have a solution for every b.

$$
A x=b
$$

- Consider the example where we have 4 equations with 3 unknowns:

$$
A x=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=b
$$

- If b is a linear combination of the columns of A then the system has a solution.
- The column space $C(A)$ contains, by definition, all the linear combinations $A x$ of the columns of A.
- Therefore, we can solve $A x=b$ exactly only when b is in the column space of $C(A)$.

Mathematics for Signals and Systems: Column Space cont.

- Notice that in the previous example, column 3 of A is a linear combination of the other two columns.

$$
A x=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=b
$$

- The first two columns are independent.
- Independent columns are also known as pivot columns.
- The column space $C(A)$ of matrix A is a two dimensional plane which is a subspace of R^{4}.
- The number of pivot (independent) columns defines the column space of a matrix.

Mathematics for Signals and Systems: Nullspace

- The nullspace of A, denoted as $N(A)$, contains all possible solutions of the system:

$$
A x=0
$$

- Consider the example:

$$
A x=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- In this example $C(A)$ is a subspace of R^{4} and $N(A)$ is a subspace of R^{3}.
- We can see that the solutions of $A x=0$ have the form:

$$
c\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

- So the nullspace of A is a line (as defined above) which is a subspace of R^{3}.

Mathematics for Signals and Systems: Nullspace cont.

- The solutions to $A x=0$ always form a subspace.
- This is because any linear combination of the solutions to $A x=0$ is also a solution since if $A v=0$ and $A w=0$ then $A(v+w)=A v+A w=0$.
- Also any multiple of the solutions to $A x=0$ is also a solution since if $A v=0$ then $A(c v)=c A v=0$.

Mathematics for Signals and Systems Column Spaces and Nullspaces

- Consider again the system $A x=b$ where b is non-zero:

$$
A x=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

- The solutions to $A x=b$ where b is non-zero do not form a subspace.
- The above statement can be easily verified by the fact that the zero vector is not a solution, and therefore, the solutions cannot form a subspace.
- In other words, the solutions to $A x=b$ lie in a plane or line that doesn't go through the origin, and hence, they don't form a subspace.

Imperial College

Mathematics for Signals and Systems Column Spaces and Nullspaces

- The column space $C(A)$ contains all the linear combinations of the form $A x$.
- The nullspace $N(A)$ contains all the solutions to the system $A x=0$.
- Lets see how we describe the column space and nullspace.
- We will describe / compute the nullspace of following matrix:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right]
$$

- We will perform elimination on this rectangular matrix.
- Note that a number of columns and rows are not independent. For example the second column is obtained from the first column if the later is multiplied by 2.
- This will become apparent during elimination.

Imperial College

Mathematics for Signals and Systems Computing the Nullspace

- We will solve the system $A x=0$ by elimination.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right]
$$

- During elimination the nullspace remains unchanged, since the solution to $A x=0$ does not change by elimination.
- The first two steps of elimination yield the matrix below right.
- Note that we can't find a pivot in the second column, meaning that the second column is not independent (depends on the previous column).

$$
\begin{gathered}
{[2]-2[1]} \\
{[3]-3[1]}
\end{gathered}\left(\left[\begin{array}{lllc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 2 & 4
\end{array}\right]\right.
$$

Imperial College

Mathematics for Signals and Systems Computing the Nullspace

- We ignore the fact that we can't find a pivot in the second column and we continue the elimination in the third column.
- We also notice that the last column doesn't have a pivot and it also depends on the previous columns.

$$
\begin{aligned}
& { }_{[2]}^{[2]-2[1]}-3\left(\begin{array}{lllc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right. \\
& \text { [3]-[2] }\left(\begin{array}{rrrr}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 2 & 4
\end{array}\right.
\end{aligned}
$$

- Therefore, in this case we only have 2 pivots, signifying the number of independent columns.
- The number of pivots is called the rank of the matrix.
- Therefore, in this particular example $\operatorname{rank}(A)=2$.
- Note that in the rectangular (non-square) case the resulting matrix u is not really an upper triangular, but it is in the so-called Echelon (staircase) form.
- In order to identify the nullspace we need to describe the solutions of $A x=0$.

Imperial College

Mathematics for Signals and Systems Computing the Nullspace

- By applying elimination we obtained the upper triangular matrix u.

$$
u=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right.} \begin{array}{|l|l}
2 \\
0 \\
0
\end{array}]\left[\begin{array}{|cc|}
\hline 2 \\
2 \\
0
\end{array}\right] \begin{array}{l}
2 \\
4 \\
0
\end{array}]
$$

- The matrix u contains two pivot columns shown in red and two free columns shown in blue.
- The free columns represent free variables, i.e., variables that we can assign any values to them.
- We obtain the null space of $A x=0$, by solving the system $u x=0$.

Mathematics for Signals and Systems Computing the Nullspace

- In order to calculate the null space we need to solve the system $A x=0$.
- The system $A x=0$ is equivalent to $u x=0$ which can be written as:

$$
u x=\left[\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

- Using row formulation we obtain:

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0 \Rightarrow x_{1}+2 x_{2}-4 x_{4}+2 x_{4}=0 \Rightarrow x_{1}=-2 x_{2}+2 x_{4} \\
2 x_{3}+4 x_{4}=0 \Rightarrow x_{3}=-2 x_{4}
\end{gathered}
$$

- The solution of the above system is of the form:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}+2 x_{4} \\
x_{2} \\
-2 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

- x_{2} and x_{4} can take any values (free variables).

Mathematics for Signals and Systems Computing the Nullspace

- By assigning the value of 1 to a particular free variable and the value of 0 to the rest of the free variables we obtain a so called special solution.
- First Special Solution is obtained for $x_{2}=1, x_{4}=0$ and is

$$
\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]
$$

- Second Special Solution is obtained for $x_{2}=0, x_{4}=1$ and is

$$
\left[\begin{array}{r}
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

- The null space is the linear combination of the special solutions:

$$
c\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+d\left[\begin{array}{r}
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

Imperial College

Mathematics for Signals and Systems Computing the Nullspace-Summary

- We have seen that the matrix u contains two pivot and two free columns.

$$
\left[\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- In general if an $m \times n$ matrix has rank r, it has r pivot variables and $n-r$ free variables.
- The matrix has r independent columns and $n-r$ dependent columns.
- We choose freely $n-r$ variables.
- By assigning the value of 1 to a particular free variable and the value of 0 to the rest of the free variables we obtain a so called special solution.
- There are obviously $n-r$ special solutions.
- The linear combinations of these $n-r$ special solutions constitute the nullspace $A x=0$.
- The column space of A has dimension r and the nullspace has dimension $n-r$.

Imperial College

Mathematics for Signals and Systems Computing the Nullspace

- Now lets continue with elimination upwards to make the matrix even more "sparse".

$$
A=\left[\begin{array}{lllc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right], u=\left[\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- Matrix u is in an echelon form.
- We notice that it has a row of zeros.
- Therefore, elimination revealed the fact that the third row of A is a linear combination of rows one and two.
- We continue with eliminations upwards to get zeros above (and below) the pivots.
- Finally we divide the second row by 2 to get one at the pivot positions.

$$
[1]-[2]\left(\left[\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad[2] / 2\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]=R\right.
$$

Imperial College

Mathematics for Signals and Systems Computing the Nullspace

- The matrix R is said to have a reduced row echelon form, it has unit pivots and zeros above and below the pivots.

$$
R=\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- In MATLAB we can calculate the reduced row echelon form of matrix A with the command:

$$
R=\operatorname{rref}(A)
$$

- Notice the identity matrix which occupies the pivot rows and columns and represents the independent part of matrix A.
- The rest of the matrix contains the free columns.
- Homework: Find the nullspace of A^{T}.

