Imperial College London

maths for Signals and Systems LInear Algebra in Engineering

Lectures 19-20, Tuestay 25st Movember 2014
 DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Mathematics for Signals and Systems

Linear transformations

- Consider the parameters/functions/vectors/other mathematical quantities denoted by u and v.
- A transformation is an operator applied on the above quantities, i.e., $T(u), T(v)$.
- A linear transformation possesses the following two properties:
$>T(u+v)=T(u)+T(v)$
$>T(c v)=c T(v)$ where c is a scalar.
- By grouping the above two conditions we get

$$
T\left(c_{1} u+c_{2} v\right)=c_{1} T(u)+c_{2} T(v)
$$

- The zero vector in a linear transformation is always mapped to zero.

Imperial College

Mathematics for Signals and Systems`

Examples of transformations

- Is the transformation $T: R^{2} \rightarrow R^{2}$, which carries out projection of any vector of the 2-D plane on a specific straight line, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which shifts the entire plane by a vector v_{0}, a linear transformation?
- Is the transformation $T: R^{3} \rightarrow R$, which takes as input a vector and produces as output its length, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which rotates a vector by 45° a linear transformation?
- Is the transformation $T(v)=A v$, where A is a matrix, a linear transformation?

Imperial College

Mathematics for Signals and Systems`

Examples of transformations

- Consider a transformation $T: R^{3} \rightarrow R^{2}$.
- In case $T(v)=A v$, then A is a matrix of size 2×3.
- If we know the outputs of the transformation if applied on a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ which form a basis of some space, then we know the output to any vector that belongs to that space.
- Recall: The coordinates of a system are based on its basis!
- Most of the time when we talk about coordinates we think about the "standard" basis, which consists of the rows (columns) of the identity matrix.
- Another popular basis consists of the eigenvectors of a matrix.

Imperial College

Mathematics for Signals and Systems`

Examples of transformations: Projection

- Consider the matrix A that represents a linear transformation T.
- Most of the times the required transformation is of the form $T: R^{n} \rightarrow R^{m}$.
- I need to choose two bases, one for R^{n}, denoted by $v_{1}, v_{2}, \ldots, v_{n}$ and one for R^{m} denoted by $w_{1}, w_{2}, \ldots, w_{m}$.
- I am looking for a transformation that if applied on a vector described with the input coordinates produces the output co-ordinates.
- Consider R^{2} and the transformation which projects any vector on the line shown on the figure below.
- I consider as basis for R^{2} the vectors shown with red below and not the "standard" vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- On of the basis vectors lies on the required line and the other is perpendicular to the former.

Imperial College

London

Mathematics for Signals and Systems`

Examples of transformations: Projection (cont)

- I consider as basis for R^{2} the vectors shown with red below both before and after the transformation.
- Any vector v in R^{2} can be written as $v=c_{1} v_{1}+c_{2} v_{2}$.
- We are looking for $T(\cdot)$ such that $T\left(v_{1}\right)=v_{1}$ and $T\left(v_{2}\right)=0$.
Furthermore,

$$
\begin{aligned}
& T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)=c_{1} v_{1} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]}
\end{aligned}
$$

- The matrix in that case is Λ. This is the "good" matrix.

Mathematics for Signals and Systems`

Examples of transformations: Projection (cont)

- I now consider as basis for R^{2} the "standard" basis.
- $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- Consider projections on to 45° line.
- In this example the required matrix is

$$
P=\frac{a a^{T}}{a^{T} a}=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

- Here we didn't choose the "best" basis, we chose the "handiest" basis.

Imperial College

London

Mathematics for Signals and Systems

Rule for finding matrix A

- Suppose we are given the bases $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$.
- How do I find the first column of A ? The first column of A should tell me what happens to the first basis vector. Therefore, we apply $T\left(v_{1}\right)$. This should give

$$
T\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2} \ldots a_{m 1} w_{m}=\sum_{i=1}^{m} a_{i 1} w_{i}
$$

- We observe that $\left\{a_{i 1}\right\}$ form the first column of the matrix A.
- In general $T\left(v_{j}\right)=a_{1 j} w_{1}+a_{2 j} w_{2} \ldots a_{m j} w_{m}=\sum_{i=1}^{m} a_{i j} w_{i}$

Mathematics for Signals and Systems`

Examples of transformations: Derivative of a function

- Consider a linear transformation that takes the derivative of a function. (The derivative is a linear transformation!)
- $T=\frac{d(\cdot)}{d x}$
- Consider input $c_{1}+c_{2} x+c_{3} x^{2}$. Basis consists of the functions $1, x, x^{2}$.
- The output should be $c_{2}+2 c_{3} x$. Basis consists of the functions $1, x$.
- I am looking for a matrix A such that $A\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}c_{2} \\ 2 c_{3}\end{array}\right]$.

This is $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.

Imperial College

Mathematics for Signals and Systems

Types of matrix inverses

- 2-sided inverse (or simply inverse)
$r=m=n$
(full rank)

$$
A A^{-1}=I=A^{-1} A
$$

- Left inverse. (Note that a rectangular matrix cannot have a 2-sided inverse!)
$r=n<m$
(full column rank)
independent columns nullspace $=\{0\}$
0 or 1 solutions to $A x=b$

invertible

- Right inverse
$r=m<n$
$n-m$ free variables independent rows

$$
N\left(A^{T}\right)=\{0\}
$$

∞ solutions to $A x=b$
$A A^{T}$
$m x m$ invertible

$A A_{\text {right }}^{-1}=I$ $m x n \cap x m$

Imperial College

London

Mathematics for Signals and Systems

Pseudo-inverse. The case for $r<m, r<n$

- The multiplication of a vector from the row space x with a matrix A gives a vector $A x$ in the column space (1)
- The multiplication of a vector from the column space $A x$ with the pseudo inverse of A (i.e. A^{+}) gives the vector $x=A^{+} A x$ (2)

Imperial College

Mathematics for Signals and Systems

Pseudo-inverse

- If $x \neq y$ are different vectors in the row space then the vectors $A x, A y$ are vectors in the column space. We can show that $A x \neq A y$.

Proof

Suppose $A x=A y$.
Then $A(x-y)=0$ is in the null space.
But we know x, y and $x-y$ are in the row space.
Therefore $x-y$ is the zero vector and $x=y$ so $A x=A y$.

- Therefore a matrix A is a mapping from row space to column space and viceversa. For that particular mapping the inverse of A is denoted by A^{+}and is called pseudo-inverse.

Imperial College

London

Mathematics for Signals and Systems

Find the Pseudo-inverse

-How can we find the pseudo-inverse A^{+}

- Starting from SVD, $A=U \Sigma \mathrm{~V}^{T}$ with $\Sigma=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{r} & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $m \times n$ and rank r.
-The pseudo-inverse is $A^{+}=\mathrm{V} \Sigma^{+} \mathrm{U}^{T}, \Sigma^{+}=\left[\begin{array}{ccc}1 / \sigma_{1} & 0 & 0 \\ 0 & 1 / \sigma_{r} & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $n \times m$ and rank r.
- Note that $\Sigma \Sigma^{+}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $m x m$ and is a projection matrix onto the column space.
- Note also that $\Sigma^{+} \Sigma=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $n x n$ is a projection matrix onto the row space. - $\Sigma \Sigma^{+} \neq I \neq \Sigma^{+} \Sigma$.

