Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 18, Friday 21st Novemher 2014

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Mathematics for Signals and Systems

Positive definite matrices: a bit more on this!

- If a matrix A is positive-definite, its inverse A^{-1} it also positive definite. This comes from the fact that the eigenvalues of the inverse of a matrix are equal to the inverses of the eigenvalues of the original matrix.
- If matrices A and B are positive definite, then their sum is positive definite. This comes from the fact $x^{T}(A+B) x=x^{T} A x+x^{T} B x>0$. The same comment holds for positive semi-definiteness.
- Consider the matrix A of size $m \times n$ (rectangular, not square). In that case we are interested in the matrix $A^{T} A$ which is square.
- Is $A^{T} A$ positive definite?

Mathematics for Signals and Systems

Positive definite matrices: a bit more on this!

- Is $A^{T} A$ positive definite?
- $x^{T} A^{T} A x=(A x)^{T} A x=\|A x\|^{2}$
- In order for $\|A x\|^{2}>0$ for every $x \neq 0$, the null space of A must be zero.
- In case of A being a rectangular matrix of size $m \times n$ with $m>n$, the rank of A must be n.

Imperial College

Mathematics for Signals and Systems

Similar matrices

- Consider two square matrices A and B.
- Suppose that for some invertible matrix M the relationship $B=M^{-1} A M$ holds. In that case we say that A and B are similar matrices.
- Example: Consider a matrix A which has a full set of eigenvectors. In that case $S^{-1} A S=\Lambda$. Based on the above A is similar to Λ.
- Similar matrices have the same eigenvalues! Matrices with identical eigenvalues are not necessarily similar! There are different "families" of matrices with the same eigenvalues.
- Consider the matrix A with eigenvalues λ and corresponding eigenvectors x and the matrix $B=M^{-1} A M$.
We have $A x=\lambda x \Rightarrow A M M^{-1} x=\lambda x \Rightarrow M^{-1} A M M^{-1} x=\lambda M^{-1} x$

$$
B M^{-1} x=\lambda M^{-1} x
$$

Therefore, λ is also an eigenvalue of B with corresponding eigenvector $M^{-1} x$.

Imperial College

Mathematics for Signals and Systems

Similar matrices in the "bad" case of repeated eigenvalues

- Consider the "families" of matrices with repeated eigenvalues.
- Example: Lets take the 2×2 size matrices with eigenvalues $\lambda_{1}=\lambda_{2}=4$.
$>$ The following two matrices

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=4 I,\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right]
$$

have eigenvalues 4,4 but they belong to different families, i.e., they are not similar.
> There are two families of matrices with eigenvalues 4,4.
$>$ The matrix $\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$ is a loner. The only matrix similar to it, is itself!
> The "big" family includes $\left[\begin{array}{ll}4 & 1 \\ 0 & 4\end{array}\right]$ and any matrix of the form $\left[\begin{array}{ll}4 & a \\ 0 & 4\end{array}\right]$,
$a \neq 0$. These matrices are not diagonalizable since they only have one non-zero eigenvector.

Mathematics for Signals and Systems

Similar matrices in the "bad" case of repeated eigenvalues

- Lets find more matrices of the family of $\left[\begin{array}{ll}4 & 1 \\ 0 & 4\end{array}\right]$.
- Any matrix with trace 8 and determinant 16 belongs to that family.
- Examples are $\left[\begin{array}{cc}5 & 1 \\ -1 & 3\end{array}\right]$ and $\left[\begin{array}{cc}4 & 0 \\ 17 & 4\end{array}\right]$.
- Similar matrices with repeated eigenvalues have identical eigenvalues and same number of independent eigenvectors. The reverse is not true.

Imperial College

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- Any matrix A can be factorized as $A=U \Sigma V^{T}$.
» U is an orthogonal matrix with columns u
» Σ is a diagonal matrix
» V is an orthogonal matrix with columns v
- U is in general different to V.
- When A is a square invertible matrix then $A=S \Lambda S^{-1}$.
- When A is a symmetric positive definite matrix, the eigenvectors of S are orthogonal, so $A=Q \Lambda Q^{T}$.
- Therefore, for symmetric positive definite matrices SVD is effectively an eigenvector decomposition $U=Q=V$ and $\Lambda=\Sigma$ (positive).

Imperial College

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- With SVD an orthogonal basis in the row space, which is given by the columns of v, is mapped by matrix A to an orthogonal basis in the column space given by the columns of u. This comes from $A V=U \Sigma$.

Row Space

Imperial College

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- In matrix form the mapping between the row and column space that the SVD achieves can be written as:

$$
A\left[\begin{array}{lll}
v_{1} & \ldots & v_{r}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & \ldots & u_{r}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{r}
\end{array}\right] \text { or } A V=U \Sigma .
$$

- So the goal is to find an orthonormal basis (V) of the row space and an orthonormal basis (U) of the column space that diagonalize the matrix A to Σ.
- In the generic case the basis of V would be different to the basis of U.
- Note that if A is singular, the null space of A is not empty. Then the SVD is written as:
$A\left[\begin{array}{llllll}v_{1} & \ldots & v_{r} & v_{r+1} & \ldots & v_{n}\end{array}\right]=\left[\begin{array}{llllll}u_{1} & \ldots & u_{r} & u_{r+1} & \ldots & u_{n}\end{array}\right]\left[\begin{array}{cccc}\sigma_{1} & \ldots & 0 & 0 \\ \vdots & \sigma_{r} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & & 0\end{array}\right]$

Imperial College

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- The following relationships hold:

$$
\begin{gathered}
A V=U \Sigma \\
A=U \Sigma V^{-1}=U \Sigma V^{T}
\end{gathered}
$$

- The matrix $A^{T} A$ is therefore

$$
\begin{gathered}
A^{T} A=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} \text { with } \\
\Sigma=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
\end{gathered}
$$

- Therefore, the above expression is the eigenvector decomposition of $A^{T} A$.
- Similarly, the eigenvector decomposition of $A A^{T}$ is:

$$
A A^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T}
$$

- So we can determine all the factors of SVD by the eigenvalue decompositions of matrices $A^{T} A$ and $A A^{T}$.

Imperial College

London

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- Example: $A=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$ and $A^{T} A=\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}25 & 7 \\ 7 & 25\end{array}\right]$
- The eigenvalues of $A^{T} A$ are 32 and 18.
- The eigenvectors of $A^{T} A$ are $v_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and

$$
A^{T} A=V \Sigma^{2} V^{T}
$$

- Similarly $A A^{T}=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]=\left[\begin{array}{cc}32 & 0 \\ 0 & 18\end{array}\right]$
- Therefore, the eigenvectors of $A A^{T}$ are $u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $A A^{T}=U \Sigma^{2} U^{T}$.
- Note that: $\operatorname{eig}(A B)=\operatorname{eig}(B A)$

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- Therefore, the SVD of $A=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$ is:

$$
A=U \Sigma V^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{32} & 0 \\
0 & \sqrt{18}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right]
$$

Imperial College

London

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- Example: The matrix A is singular $A=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$

- The eigenvalues of $A^{T} A=\left[\begin{array}{ll}4 & 8 \\ 3 & 6\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]=\left[\begin{array}{ll}80 & 60 \\ 60 & 45\end{array}\right]$ are 0 and 125 .

$$
A=U \Sigma V^{T}=\left[\begin{array}{cc}
1 / \sqrt{5} & 2 / \sqrt{5} \\
2 / \sqrt{5} & -1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{125} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0.8 & 0.6 \\
0.6 & -0.8
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
8 & 6
\end{array}\right]
$$

Mathematics for Signals and Systems

Singular Value Decomposition (SVD)

- Orthonormal basis for row space: $v_{1} \quad \ldots \quad v_{r}$
- Orthonormal basis for column space: $u_{1} \quad$... u_{r}
- Orthonormal basis for null space: $v_{r+1} \quad \ldots \quad v_{n}$
- Orthonormal basis for null space of $A^{T}: \begin{array}{lll}u_{r+1} & \ldots & u_{n}\end{array}$

These bases make matrix A diagonal $A v_{i}=\sigma_{i} u_{i}$

