Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 18, Friday 18 ${ }^{\text {th }}$ Novemher 2016

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Mathematics for Signals and Systems

In this set of lectures we will talk about two applications:

- Linear Transformations
- Summary of Decompositions and Matrices

Linear transformations

- Consider the parameters/functions/vectors/other mathematical quantities denoted by u and v.
- A transformation is an operator applied on the above quantities, i.e., $T(u), T(v)$.
- A linear transformation possesses the following two properties:
$>T(u+v)=T(u)+T(v)$
$>T(c v)=c T(v)$ where c is a scalar.
- By grouping the above two conditions we get

$$
T\left(c_{1} u+c_{2} v\right)=c_{1} T(u)+c_{2} T(v)
$$

- The zero vector in a linear transformation is always mapped to zero.

Examples of transformations

- Is the transformation $T: R^{2} \rightarrow R^{2}$, which carries out projection of any vector of the 2-D plane on a specific straight line, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which shifts the entire plane by a vector v_{0}, a linear transformation?
- Is the transformation $T: R^{3} \rightarrow R$, which takes as input a vector and produces as output its length, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which rotates a vector by 45° a linear transformation?
- Is the transformation $T(v)=A v$, where A is a matrix, a linear transformation?

Examples of transformations

- Consider a transformation $T: R^{3} \rightarrow R^{2}$.
- In case $T(v)=A v$, then A is a matrix of size 2×3.
- If we know the outputs of the transformation if applied on a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ which form a basis of some space, then we know the output to any vector that belongs to that space.
- Recall: The coordinates of a system are based on its basis.
- Most of the time when we talk about coordinates we think about the "standard" basis, which consists of the rows (columns) of the identity matrix.
- Another popular basis consists of the eigenvectors of a matrix.

Examples of transformations: Projections

- Consider the matrix A that represents a linear transformation T.
- Most of the times the required transformation is of the form $T: R^{n} \rightarrow R^{m}$.
- I need to choose two bases, one for R^{n}, denoted by $v_{1}, v_{2}, \ldots, v_{n}$ and one for R^{m} denoted by $w_{1}, w_{2}, \ldots, w_{m}$.
- I am looking for a transformation that if applied on a vector described with the input coordinates produces the output co-ordinates.
- Consider R^{2} and the transformation which projects any vector on the line shown on the figure below.
- I consider as basis for R^{2} the vectors shown with red below and not the "standard" vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- One of the basis vectors lies on the required line and the other is perpendicular to the former.

Examples of transformations: Projections cont.

- I consider as basis for R^{2} the vectors shown with red below both before and after the transformation.
- Any vector v in R^{2} can be written as $v=c_{1} v_{1}+c_{1} v_{2}$.
- We are looking for $T(\cdot)$ such that

$$
T\left(v_{1}\right)=v_{1} \text { and } T\left(v_{2}\right)=0
$$

- Furthermore,

$$
\begin{aligned}
& T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)=c_{1} v_{1} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]}
\end{aligned}
$$

- The matrix in that case is Λ.

This is the "good" matrix.

Examples of transformations: Projections cont.

- I now consider as basis for R^{2} the "standard" basis.
- $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- Consider projections on to 45° line.
- In this example the required matrix is
$P=\frac{a a^{T}}{a^{T} a}=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
- Here we didn't choose the "best" basis, we chose the "handiest" basis.

Imperial College

Examples of transformations: Derivative of a function

- Consider a linear transformation that takes the derivative of a function. (The derivative is a linear transformation!)
- $T=\frac{d(\cdot)}{d x}$
- Consider input $c_{1}+c_{2} x+c_{3} x^{2}$. Basis consists of the functions $1, x, x^{2}$.
- The output should be $c_{2}+2 c_{3} x$. Basis consists of the functions $1, x$.
- I am looking for a matrix A such that $A\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}c_{2} \\ 2 c_{3}\end{array}\right]$.
- This is $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.

Summary of Decompositions: LU Decomposition

- What is it?
- $A=L U, A$ is a square matrix.
- L a lower triangular matrix with 1 s on the diagonal.
- U an upper triangular matrix with the pivots of A on the diagonal.
- When does it exist?
- If the matrix is invertible (the determinant is not 0), then a pure $L U$ decomposition exists only if the leading principal minors are not 0 . The leading principal minors are the "north-west" determinants.
Example:
The matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ does not have an $L U$ although it is invertible.
- If the matrix is not invertible (the determinant is 0), then we can't know if there is a pure LU decomposition.
- $L U$ decomposition works with rectangular matrices as well, with slight modifications/extensions.

LDU Decomposition

- What is it?
- $A=L D U, A$ is a square matrix.
- L a lower triangular matrix with 1 s on the diagonal.
- D a diagonal matrix with the pivots of A across the diagonal.
- U an upper triangular matrix with 1 s on the diagonal.
- When does it exist?
- The same requirements as in pure $L U$ decomposition.

Example:

$$
A=L U=\left[\begin{array}{ll}
2 & 1 \\
8 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]
$$

The above can be written as:

$$
A=L D U=\left[\begin{array}{ll}
2 & 1 \\
8 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right]
$$

- $L D U$ decomposition works with rectangular matrices as well, with slight modifications/extensions.

$A=E R$

- What is it?
- $A=E R$
- A is any matrix of dimension $m \times n$.
- E a square invertible matrix of dimension $m \times m$.
- $R=\left[\begin{array}{cc}I_{r \times r} & F_{r \times(n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times(n-r)}\end{array}\right]$
- F is a random matrix.
- r is the rank of A.
- When does it exist?
- Always.

$A=Q R$ for square matrices

- What is it?
- $A=Q R$
- A is any matrix of dimension $n \times n$.
- Q a square invertible matrix of dimension $n \times n$ with orthogonal columns.
- The columns of Q are derived from the columns of A.
- If A is not invertible the first r columns of Q are derived from the independent columns of $A . r$ is the rank of A. The last $(n-r)$ columns of Q are chosen to be orthogonal to the first r ones.
- R is upper triangular if A is invertible. If A is NOT invertible the last ($n-r$) rows of R are filled with zeros. (Look at Problem Sheet 6, Question 6, Matrix B).
- When does it exist?
- Always.
- $Q R$ decomposition exists also for rectangular matrices. I haven't taught this case.

$A=S \Lambda S^{-1}$

- What is it?
- $A=S \Lambda S^{-1}$
- A is a square invertible matrix of dimension $n \times n$.
- When does it exist?
- When A has n linearly independent eigenvectors.

$$
A=Q \Lambda Q^{T}
$$

- What is it?
- $A=Q \Lambda Q^{T}$
- A is a real, symmetric matrix of dimension $n \times n$.
- The above decomposition is the so called Spectral Theorem.
- When does it exist?
- When A is real and symmetric.

The Singular Value Decomposition $A=U \Sigma V^{T}$

- What is it?
- $A=U \Sigma V^{T}$
- A is any matrix of dimension $m \times n$.
- U is an orthogonal matrix of dimension $m \times m$ whose columns are the eigenvectors of matrix $A A^{T}$.
- Σ is a singular value matrix, with the singular values of A in its main diagonal.
- V is an orthogonal matrix of dimension $n \times n$ whose columns are the eigenvectors of matrix $A^{T} A$.
- The squares of the singular values of A are the eigenvalues of both $A A^{T}$ and $A^{T} A$.
- When does it exist?
- Always.

Summary of matrices

- Projection matrix P onto subspace S.
- $p=P b$ is the closest point to b in S.
- $P^{2}=P=P^{T}$.
- Condition $P^{2}=P$ is sufficient to characterise a matrix as a projection matrix.
- Eigenvalues: 0 or 1.
- Eigenvectors are in S or S^{\perp}.
- If the columns of matrix A are a basis for S, then $P=A\left(A^{T} A\right)^{-1} A^{T}$.
- Orthogonal matrix Q.
- Square matrix with orthonormal columns.
- $Q^{-1}=Q^{T}$
- Eigenvalues: $|\lambda|=1$.
- Eigenvectors are orthogonal.
- Preserves length and angles, i.e., $\|Q x\|=\|x\|$.

Also recall

- Symmetric (or Hermitian) matrices (real eigenvalues).
- Positive definite and positive semi-definite matrices. Their eigenvalues are positive or non-negative respectively.
- Matrices $A^{T} A$ and $A A^{T}$.
- They have identical eigenvalues.
- Their eigenvalues are non-negative.
- Square matrices.
- Rectangular matrices.

