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Mathematics for Signals and Systems

In this set of lectures we will talk about two applications:

• Linear Transformations

• Summary of Decompositions and Matrices



Linear transformations

• Consider the parameters/functions/vectors/other mathematical quantities denoted 

by 𝑢 and 𝑣.

• A transformation is an operator applied on the above quantities, i.e., 𝑇 𝑢 , 𝑇(𝑣).

• A linear transformation possesses the following two properties:

 𝑇 𝑢 + 𝑣 = 𝑇 𝑢 + 𝑇(𝑣)

 𝑇 𝑐𝑣 = 𝑐𝑇(𝑣) where 𝑐 is a scalar.

• By grouping the above two conditions we get

𝑇 𝑐1𝑢 + 𝑐2𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇(𝑣)

• The zero vector in a linear transformation is always mapped to zero.



Examples of transformations

• Is the transformation 𝑇: 𝑅2 → 𝑅2 , which carries out projection of any vector of the 

2-D plane on a specific straight line, a linear transformation?

• Is the transformation 𝑇: 𝑅2 → 𝑅2, which shifts the entire plane by a vector 𝑣0, a 

linear transformation?

• Is the transformation 𝑇: 𝑅3 → 𝑅, which takes as input a vector and produces as 

output its length, a linear transformation?

• Is the transformation 𝑇: 𝑅2 → 𝑅2 , which rotates a vector by 45o a linear 

transformation?

• Is the transformation 𝑇 𝑣 = 𝐴𝑣, where 𝐴 is a matrix, a linear transformation?



Examples of transformations

• Consider a transformation 𝑇: 𝑅3 → 𝑅2 .

• In case 𝑇 𝑣 = 𝐴𝑣, then 𝐴 is a matrix of size 2 × 3.

• If we know the outputs of the transformation if applied on a set of vectors 

𝑣1, 𝑣2 , … , 𝑣𝑛 which form a basis of some space, then we know the output to any 

vector that belongs to that space.

• Recall: The coordinates of a system are based on its basis.

• Most of the time when we talk about coordinates we think about the “standard” 

basis, which consists of the rows (columns) of the identity matrix.

• Another popular basis consists of the eigenvectors of a matrix. 



Examples of transformations: Projections

• Consider the matrix 𝐴 that represents a linear transformation 𝑇.

• Most of the times the required transformation is of the form 𝑇: 𝑅𝑛 → 𝑅𝑚.

• I need to choose two bases, one for 𝑅𝑛, denoted by 𝑣1, 𝑣2 , … , 𝑣𝑛 and one for 𝑅𝑚

denoted by 𝑤1, 𝑤2 , … , 𝑤𝑚.

• I am looking for a transformation that if applied on a vector described with the 

input coordinates produces the output co-ordinates.

• Consider 𝑅2 and the transformation which projects any vector on the line shown 

on the figure below.

• I consider as basis for 𝑅2 the vectors shown with red below and not the 

“standard” vectors 
1
0

and 
0
1

.

• One of the basis vectors lies on the required line and the other is perpendicular 

to the former.



Examples of transformations: Projections cont.

• I consider as basis for 𝑅2 the vectors shown with red below both before and 

after the transformation.

• Any vector 𝑣 in 𝑅2 can be written as 𝑣 = 𝑐1𝑣1 +𝑐1 𝑣2.

• We are looking for 𝑇(∙) such that

𝑇 𝑣1 = 𝑣1 and 𝑇 𝑣2 = 0.

• Furthermore,

𝑇 𝑣 = 𝑐1𝑇 𝑣1 +𝑐2 𝑇 𝑣2 = 𝑐1𝑣1
1 0
0 0

𝑐1
𝑐2

=
𝑐1
0

• The matrix in that case is Λ.

This is the “good” matrix.

𝑣1 = 𝑤1

𝑣2 = 𝑤2



• I now consider as basis for 𝑅2 the “standard” basis.

• 𝑣1 =
1
0

and 𝑣2 =
0
1

.

• Consider projections on to 45o line.

• In this example the required matrix is

𝑃 =
𝑎𝑎𝑇

𝑎𝑇𝑎
=

1/2 1/2
1/2 1/2

• Here we didn’t choose the “best” basis, we chose the “handiest” basis.

𝑣2 = 𝑤2

Examples of transformations: Projections cont.

𝑣1 = 𝑤1



• Consider a linear transformation that takes the derivative of a function. (The 

derivative is a linear transformation!)

• 𝑇 =
𝑑(∙)

𝑑𝑥

• Consider input 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2. Basis consists of the functions 1, 𝑥, 𝑥2.

• The output should be 𝑐2 + 2𝑐3𝑥. Basis consists of the functions 1, 𝑥.

• I am looking for a matrix 𝐴 such that 𝐴

𝑐1
𝑐2
𝑐3

=
𝑐2
2𝑐3

.

• This is 𝐴 =
0 1 0
0 0 2

.

Examples of transformations: Derivative of a function



• What is it?

 𝐴 = 𝐿𝑈, 𝐴 is a square matrix.

 𝐿 a lower triangular matrix with 1s on the diagonal.

 𝑈 an upper triangular matrix with the pivots of 𝐴 on the diagonal.

• When does it exist?

 If the matrix is invertible (the determinant is not 0), then a pure 𝐿𝑈 decomposition 

exists only if the leading principal minors are not 0. The leading principal 

minors are the “north-west” determinants.

Example: 

The matrix 𝐴 =
0 1
1 1

does not have an 𝐿𝑈 although it is invertible.

 If the matrix is not invertible (the determinant is 0), then we can't know if there is 

a pure LU decomposition.

• 𝐿𝑈 decomposition works with rectangular matrices as well, with slight 

modifications/extensions.

Summary of Decompositions: LU Decomposition



• What is it?

 𝐴 = 𝐿𝐷𝑈, 𝐴 is a square matrix.

 𝐿 a lower triangular matrix with 1s on the diagonal.

 𝐷 a diagonal matrix with the pivots of 𝐴 across the diagonal.

 𝑈 an upper triangular matrix with 1s on the diagonal.

• When does it exist?

 The same requirements as in pure 𝐿𝑈 decomposition.

Example: 

𝐴 = 𝐿𝑈 =
2 1
8 7

=
1 0
4 1

2 1
0 3

The above can be written as:

𝐴 = 𝐿𝐷𝑈 =
2 1
8 7

=
1 0
4 1

2 0
0 3

1 1/2
0 1

• 𝐿𝐷𝑈 decomposition works with rectangular matrices as well, with slight 

modifications/extensions.

LDU Decomposition



• What is it?

 𝐴 = 𝐸𝑅

 𝐴 is any matrix of dimension 𝑚 × 𝑛.

 𝐸 a square invertible matrix of dimension 𝑚 ×𝑚.

 𝑅 =
𝐼𝑟×𝑟 𝐹𝑟×(𝑛−𝑟)

𝟎(𝑚−𝑟)×𝑟 𝟎(𝑚−𝑟)×(𝑛−𝑟)

 𝐹 is a random matrix.

 𝑟 is the rank of 𝐴.

• When does it exist?

 Always.

A=ER



• What is it?

 𝐴 = 𝑄𝑅

 𝐴 is any matrix of dimension 𝑛 × 𝑛.

 𝑄 a square invertible matrix of dimension 𝑛 × 𝑛 with orthogonal columns.

 The columns of 𝑄 are derived from the columns of 𝐴.

 If 𝐴 is not invertible the first 𝑟 columns of 𝑄 are derived from the independent 

columns of 𝐴. 𝑟 is the rank of 𝐴. The last (𝑛 − 𝑟) columns of 𝑄 are chosen to be 

orthogonal to the first 𝑟 ones.

 𝑅 is upper triangular if 𝐴 is invertible. If 𝐴 is NOT invertible the last (𝑛 − 𝑟) rows 

of 𝑅 are filled with zeros. (Look at Problem Sheet 6, Question 6, Matrix B).

• When does it exist?

 Always.

• 𝑄𝑅 decomposition exists also for rectangular matrices. I haven’t taught this case.

A=QR for square matrices



• What is it?

 𝐴 = 𝑆Λ𝑆−1

 𝐴 is a square invertible matrix of dimension 𝑛 × 𝑛.

• When does it exist?

 When 𝐴 has 𝑛 linearly independent eigenvectors.

𝐴 = 𝑆Λ𝑆−1



• What is it?

 𝐴 = 𝑄Λ𝑄𝑇

 𝐴 is a real, symmetric matrix of dimension 𝑛 × 𝑛.

 The above decomposition is the so called Spectral Theorem.

• When does it exist?

 When 𝐴 is real and symmetric.

𝐴 = 𝑄Λ𝑄𝑇



• What is it?

 𝐴 = 𝑈Σ𝑉𝑇

 𝐴 is any matrix of dimension 𝑚 × 𝑛.

 𝑈 is an orthogonal matrix of dimension 𝑚 ×𝑚 whose columns are the 

eigenvectors of matrix 𝐴𝐴𝑇.

 Σ is a singular value matrix, with the singular values of 𝐴 in its main 

diagonal.

 𝑉 is an orthogonal matrix of dimension 𝑛 × 𝑛 whose columns are the 

eigenvectors of matrix 𝐴𝑇𝐴.

 The squares of the singular values of 𝐴 are the eigenvalues of both 𝐴𝐴𝑇 and 

𝐴𝑇𝐴.

• When does it exist?

 Always.

The Singular Value Decomposition 𝐴 = 𝑈Σ𝑉𝑇



• Projection matrix 𝑃 onto subspace 𝑆.

 𝑝 = 𝑃𝑏 is the closest point to 𝑏 in 𝑆.

 𝑃2 = 𝑃 = 𝑃𝑇.

 Condition 𝑃2 = 𝑃 is sufficient to characterise a matrix as a projection matrix.

 Eigenvalues: 0 or 1.

 Eigenvectors are in 𝑆 or 𝑆⊥.

 If the columns of matrix 𝐴 are a basis for 𝑆, then 𝑃 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇.

• Orthogonal matrix 𝑄.

 Square matrix with orthonormal columns.

 𝑄−1 = 𝑄𝑇

 Eigenvalues: 𝜆 = 1.

 Eigenvectors are orthogonal.

 Preserves length and angles, i.e., 𝑄𝑥 = 𝑥 .

Summary of matrices



• Symmetric (or Hermitian) matrices (real eigenvalues).

• Positive definite and positive semi-definite matrices. Their eigenvalues are 

positive or non-negative respectively.

• Matrices 𝐴𝑇𝐴 and 𝐴𝐴𝑇.

 They have identical eigenvalues.

 Their eigenvalues are non-negative.

• Square matrices.

• Rectangular matrices.

Also recall


